The limiting efficiency of silicon solar cells under concentrated sunlight, IEEE Transactions on Electron Devices, vol.33, issue.2, pp.234-239, 1986. ,
DOI : 10.1109/T-ED.1986.22472
Optically induced conductivity changes in discharge???produced hydrogenated amorphous silicon, Journal of Applied Physics, vol.51, issue.6, pp.3262-3268, 1980. ,
DOI : 10.1063/1.328084
Potential of amorphous silicon for solar cells, Applied Physics A: Materials Science & Processing, vol.69, issue.2, pp.155-167, 1999. ,
DOI : 10.1007/s003390050986
Plasmonics for improved photovoltaic devices, Nature Materials, vol.14, issue.3, pp.205-213, 2010. ,
DOI : 10.1038/nmat2629
URL : http://authors.library.caltech.edu/17636/1/Atwater2010p7079Nat_Mater.pdf
Harnessing plasmonics for solar cells, Nature Photonics, vol.108, issue.3, pp.130-132, 2012. ,
DOI : 10.1038/nphoton.2012.30
Design Considerations for Plasmonic Photovoltaics, Advanced Materials, vol.33, issue.43, pp.4794-4808, 2010. ,
DOI : 10.1002/adma.201000488
Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers, Nature Communications, vol.37, p.517, 2011. ,
DOI : 10.1038/ncomms1528
URL : http://doi.org/10.1038/ncomms1528
Photocurrent increase in n-i-p thin film silicon solar cells by guided mode excitation via grating coupler, Applied Physics Letters, vol.96, issue.21, p.213508, 2010. ,
DOI : 10.1063/1.3435481
Nanodome Solar Cells with Efficient Light Management and Self-Cleaning, Nano Letters, vol.10, issue.6, pp.1979-1984, 2010. ,
DOI : 10.1021/nl9034237
Light trapping in ultrathin plasmonic solar cells, Optics Express, vol.18, issue.S2, pp.237-245, 2010. ,
DOI : 10.1364/OE.18.00A237
Optimization of amorphous silicon thin film solar cells for flexible photovoltaics, Journal of Applied Physics, vol.103, issue.11, p.114509, 2008. ,
DOI : 10.1063/1.2938839
Influence of the substrate geometrical parameters on microcrystalline silicon growth for thin-film solar cells, Solar Energy Materials and Solar Cells, vol.93, issue.10, pp.1714-1720, 2009. ,
DOI : 10.1016/j.solmat.2009.05.025
Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings, Journal of the Optical Society of America A, vol.12, issue.5, pp.1068-1076, 1995. ,
DOI : 10.1364/JOSAA.12.001068
Highly improved convergence of the coupled-wave method for TM polarization, Journal of the Optical Society of America A, vol.13, issue.4, pp.779-789, 1996. ,
DOI : 10.1364/JOSAA.13.000779
Computation of the near-field pattern with the coupled-wave method for transverse magnetic polarization, Journal of Modern Optics, vol.26, issue.7, pp.1357-1374, 1998. ,
DOI : 10.1364/JOSAA.14.001583
Optical Constants of the Noble Metals, Physical Review B, vol.6, issue.12, pp.4370-4379, 1972. ,
DOI : 10.1103/PhysRevB.6.4370
Handbook of Optical Constants of Solids, 1985. ,
Optimization of ZnO:Al/Ag/ZnO:Al structures for ultra-thin high-performance transparent conductive electrodes, Thin Solid Films, vol.520, issue.13, pp.4432-4435, 2012. ,
DOI : 10.1016/j.tsf.2012.02.080
A New Architecture for Transparent Electrodes: Relieving the Trade-Off Between Electrical Conductivity and Optical Transmittance, Advanced Materials, vol.324, issue.21, pp.2469-2473, 2011. ,
DOI : 10.1002/adma.201100419
Influence of the ZnO buffer on the guided mode structure in Si/ZnO/Ag multilayers, Journal of Applied Physics, vol.106, issue.4, p.44502, 2009. ,
DOI : 10.1063/1.3203937