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Broadband light trapping is numerically demonstrated in ultra-thin solar cells composed of a flat

amorphous silicon absorber layer deposited on a silver mirror. A one-dimensional silver array is used

to enhance light absorption in the visible spectral range with low polarization and angle

dependencies. In addition, the metallic nanowires play the role of transparent electrodes. We predict

a short-circuit current density of 14:6 mA=cm2 for a solar cell with a 90 nm-thick amorphous silicon

absorber layer. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4758468]

Thin film solar cells based on amorphous silicon are a

promising solution to achieve low-cost and efficient photovol-

taic devices.1 This technology has many advantages as it uses

an abundant and non-toxic material which can be deposited at

low temperature and on large areas. The latest record of 10%

efficiency for an hydrogenated amorphous silicon (a-Si:H) so-

lar cell was achieved in 2009 with a 250 nm-thick active

layer.2 Reducing further the thickness of the absorbing layer

could lead to higher open-circuit voltages3 and thereby boost

the solar cell conversion efficiency. In addition, for a-Si:H, the

use of a thinner active layer increases the stability of the cell

under light soaking.4,5 Achieving efficient light absorption

within ultra-thin active layers (thickness �100 nm) requires

advanced concepts of light management; losses in contact

layers must also be reduced. Due to their ability to confine

light in small volumes, plasmonic nanostructures have been

proposed to enhance light absorption in photovoltaic devi-

ces.6–10 It has been shown that sinusoidal gratings11 and two-

dimensional nanoparticles12–14 patterned on the back contact

allow the incident light to couple with guided modes sup-

ported by the a-Si:H layer. Yet, the growth of amorphous sili-

con on textured substrates results in a higher defect density as

demonstrated by S€oderstr€om15 and Python.16

In this paper, we propose a design for broadband light

trapping in ultra-thin amorphous silicon solar cells using a

one-dimensional (1D) silver array embedded in the front

layer of the cell. We demonstrate numerically that, despite

the polarization selectivity of the structure, broadband

absorption is achieved in the flat absorbing layer with low

polarization and angle dependencies. We analyze the physi-

cal mechanism behind the absorption enhancement in the red

part of the solar spectrum (k > 600 nm). In addition, the me-

tallic nanowires play the role of transparent conductive elec-

trodes. This results in a short-circuit current density (Jsc) of

14:6 mA=cm2 with a 90 nm-thick a-Si:H absorber layer.

The optical properties of the structures are simulated with

fully vectorial numerical calculations obtained with a rigorous

coupled-wave analysis method.17,18 For TM polarization

(magnetic field parallel to the wires), the field calculation in

the cell is performed with a semi-analytical treatment19 for the

sake of accuracy. The metallic parts (back contact and gra-

ting) are made of silver. Optical constants of silver (Ag) and

silicon nitride (Si3N4) are taken from Ref. 20 and Ref. 21

respectively. The refractive indices of a-Si:H, indium tin oxide

(ITO), and aluminum doped zinc oxide (ZnO:Al) were meas-

ured by ellipsometry.

We first consider a reference structure corresponding to

a conventional a-Si:H solar cell deposited on a silver mirror:

Ag/ZnO:Al (15 nm)/a-Si:H (90 nm)/ITO (70 nm). We use nu-

merical simulations to design the thicknesses of the stack in

order to maximize the integrated absorption at normal inci-

dence, while keeping an absorber layer thinner than 100 nm.

The absorption spectrum of this reference structure is shown

in Fig. 1 (dashed curve). The spectral photon flux density

corresponding to the normalized AM1.5 G solar spectrum

U1:5ðkÞ is shown as a reference (grey curve). The reference

cell exhibits an absorption maximum in the 450–550 nm

wavelength range because of a broad Fabry-Perot-like reso-

nance in the multilayer stack. However, the absorption effi-

ciency drops in the red part of the solar spectrum

(k > 600 nm). In addition, the use of ITO as a front contact

layer results in poor a-Si:H absorption at short wavelengths.

Our objective is to show that the performance of this opti-

mized structure can be further enhanced by an alternative

front contact made of metal nanowire electrodes.

The optimization of transparent conductive electrodes

using metallic films as an alternative to ITO front layers has

been investigated in recent theoretical22 and experimental23–25

works. In Ref. 23, two-dimensional networks of silver

nanowires patterned on glass are shown to exhibit lower

sheet resistance and larger optical transmittance than those

achieved with 80 nm-thick ITO layers. Therefore, we propose

to replace the ITO layer by a thin 1D metallic grating
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embedded in a transparent anti-reflection coating layer, so

that the collection of current relies only on the metallic nano-

wires. The sheet resistance Rs of a silver 1D mesh is given by

Rs ¼ qp=whm, where q ¼ 1:59 � 10�8 X � m is the bulk resis-

tivity of Ag, p is the grating period, w the width of the wires,

and hm ¼ 20 nm is the metal thickness. In our case, in the

direction parallel to the wires, we obtain estimated values of

Rs between 0:8 X=sq for a non-patterned metallic film to 8 �
X=sq for w/p¼ 0.1 (Ref. 22) (to be compared with Rs �
60 X=sq for the reference structure with a top ITO layer23).

The ultra-thin a-Si:H solar cell considered in the follow-

ing is displayed in Fig. 1 (inset). The 1D silver grating is

covered by a 60 nm-thick Si3N4 layer. We have added two

spacing layers above (ITO, 10 nm) and below (ZnO:Al,

15 nm) the a-Si:H layer to prevent diffusion of the metal.

Light transmission is avoided by the use of a silver mirror as

back contact. Figure 1 displays the absorption spectra result-

ing from this optimization procedure, with the same a-Si:H

layer thickness as the reference structure (hs ¼ 90 nm). The

parameters of the optimized grating are hm ¼ 20 nm,

w¼ 80 nm, and p¼ 200 nm. The absorption intensity in the

a-Si:H absorber layer is calculated for both TM (magnetic

field parallel to the wires) and TE (electric field parallel to

the wires) light polarizations at normal incidence.

Introducing the metallic grating in the top Si3N4 layer

enables a significant absorption enhancement up to 720 nm.

The optical absorption is enhanced at short wavelengths

(k � 400 nm) with respect to the reference cell. This is due

to reduced absorption losses in the front contact. Multi-

resonant absorption spectra are observed between 400 and

700 nm. Indeed, in the red part of the spectrum, light trap-

ping effects are achieved very close to the electronic

bandgap of amorphous silicon (kg ¼ 760 nm), with reso-

nance wavelengths at k ’ 700 nm for both TE and TM polar-

izations. Due to the anisotropy of the 1D grating, the

positions and intensities of the absorption peaks correspond-

ing to the different resonances in the structure vary with the

polarization of incident light. The period of the grating has

been identified as the main geometrical parameter for the

optimization of these resonance wavelengths. The periodic-

ity dependence is illustrated in Fig. 2, for (a) TM and (b) TE

polarizations. The spectral shift can be attributed to the exci-

tation of guided modes in the multilayer structure via grating

coupling.11,13,26,27 The electric field intensity is plotted in

Fig. 2(c) for each resonance wavelength. In TM polarization,

the plasmonic nature of the guided modes is identified

through the field enhancement close to the metal. In TE

polarization, the guided mode is mainly confined in the a-

Si:H layer, leading to slightly lower metal absorption.

The absorption spectrum AðkÞ within the a-Si:H active

layer is used to predict the performances of the solar cell.

The theoretical short-circuit current density JSC is calculated

for AM1.5 G solar illumination with the expression

JSC ¼ q

ð
AðkÞU1:5ðkÞ k

h c
dk; (1)

assuming that all generated carriers are collected. In Eq. (1),

q is the electron charge, h is the Planck constant, and c is the

light speed. A short-circuit current density of 14:6 mA=cm2

is obtained for a 90 nm-thick a-Si:H absorber layer at normal

incidence, which represents a gain of 0:6 mA=cm2 with

respect to the reference cell. A theoretical conversion effi-

ciency of 9% is predicted using state-of-the-art values for the

electrical characteristics of the device (open-circuit voltage

VOC ¼ 0:88 V and fill factor FF¼ 0.7 (Ref. 11)). We also

investigate the dependence of JSC with the angle of incidence

h of the impinging photons (plane of incidence perpendicular

to the nanowires) for an unpolarized incident light. We find

that the short-circuit current density of the optimized struc-

ture weakly depends on the angle of incidence and the polar-

ization of the incident light (see the inset of Fig. 3). For

h ¼ 70
�
, the Jsc value still represents more than 80% of the

short-circuit current density at normal incidence.

We expect several beneficial effects of the present archi-

tecture on the electrical properties of the cell with respect to

conventional amorphous silicon solar cells. First, the use of a

thin p-i-n junction should provide a better stability of the cell

FIG. 1. Theoretical absorption in the a-Si:H layer of the ultra-thin solar cell

depicted in the inset under TE (green) and TM (orange) polarizations at nor-

mal incidence. The structure investigated has a 90 nm-thick a-Si:H absorber

layer. The grating parameters are hm ¼ 20 nm, w¼ 80 nm, and p¼ 200 nm.

The normalized AM1.5 G solar spectrum is shown as a reference (grey

curve). Dashed curve: absorption spectrum of the reference structure (same

thickness, ITO front layer (70 nm), no grating).

FIG. 2. Evolution of the absorption intensity in the a-Si:H layer as a function

of the grating period p under (a) TM and (b) TE polarizations. The other pa-

rameters of the structure are hs ¼ 90 nm; hm ¼ 20 nm, w¼ 80 nm. (c) Elec-

tric field intensity maps for an excitation at k ¼ 636 nm (TM), k ¼ 710 nm

(TM), and k ¼ 697 nm (TE) at normal incidence for a structure with

p¼ 200 nm.
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against light-induced degradation. Due to the Staebler-

Wronski effect,4 defects are created in the bandgap during

light soaking thereby degrading the photoconductivity of

a-Si:H. Decreasing the intrinsic layer thickness allows to

maintain an effective carrier collection in spite of the addi-

tional recombination centers.5

Second, a thinner p-i-n junction exhibits a decrease of

bulk recombinations and thus of the dark current Idark. It

thereby should lead to an increase of the open-circuit voltage

as VOC ¼ n kT
q

ln
Iphoto

I0
þ 1

� �
, where k is the Boltzmann con-

stant, T is the temperature, and n is the ideality factor of the

diode. Iphoto and I0 are the photogenerated and saturation cur-

rents, respectively, and Idark ¼ I0ðeqV=kT � 1Þ.
Third, as previously mentioned, it has been shown that

the growth of amorphous silicon on a textured substrate leads

to the formation of voids and cracks in the n doped layer.15,16

These low density and porous regions favor carrier recombi-

nation and form contamination routes for doping atoms and

impurities. In our design, we manage strong light trapping

within the solar cell while preserving a flat amorphous silicon

layer. Thus, we avoid detrimental consequences on the electri-

cal performances (low fill factor and open circuit voltage).

As the plasmonic structures are deposited on top of the

active layer, we expect significant absorption losses in the

metal, especially at short wavelengths. In the calculations, we

separately consider the absorption fractions in the different

materials of the stack. The resulting absorption spectra are

shown in Fig. 3. It is noteworthy that only 6% (on average

between 300 and 800 nm) of the incident photons are absorbed

within the metal. This is due to the thin metallic grating used

in this structure (hm ¼ 20 nm) and to the high refractive index

and absorption coefficient of amorphous silicon.

In summary, we have shown that the introduction of a

thin 1D metallic grating in the front window of an ultra-thin

solar cell enables an absorption enhancement over the whole

solar spectrum. Unexpectedly, we have demonstrated numeri-

cally that the optical response of the cell was almost insensi-

tive to the light polarization despite the use of an anisotropic

grating. In this design, the metallic nanowires are also used for

the collection of current in the front contact. The conventional

ITO front window is thereby replaced by a non-absorbing ma-

terial (Si3N4) in order to decrease optical and electrical losses.

This results in a theoretical short-circuit current density of

14:6 mA=cm2 for a 90 nm-thick a-Si:H absorber layer.

This multi-resonant approach can be used to enhance

absorption in high-efficient devices such as tandem amor-

phous/microcrystalline silicon solar cells. It additionally

offers an alternative to the use of an intermediate reflector to

match the currents of the two junctions. The realization of

solar cells using nanopatterned metallic gratings in the front

window may open the way towards a new generation of effi-

cient and low-cost ultra-thin solar cells.

The authors would like to thank J. F. Guillemoles and A.
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ported by the ANR project ULTRACIS.
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