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Abstract: We study the quality factor variation of three-dimensional
Metal-Insulator-Metal nanoresonators when their volume is shrunk from
the diffraction limit(λ/2n)3 down to a deep subwavelength scale(λ/50)3.
In addition to rigorous fully-vectorial calculations, we provide a semi-
analytical expression of the quality factorQ obtained with a Fabry-Perot
model. The latter quantitatively predicts the absorption and radiation losses
of the nanoresonator and provides an in-depth understanding of the mode
lifetime that cannot be obtained with brute-force computations. In particu-
lar, it highlights the impact of slow-wave effects on theQ-factor as the size
of the resonator is decreased. The Fabry-Perot model also evidences that,
unexpectedly, wave retardation effects are present in metallic nanoparticles,
even for deep subwavelength dimensions in the quasi-static regime.
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1. Introduction

Optical nanoresonators with ultra-small volumes are a key ingredient for numerous nanopho-
tonics applications. They are the building blocks (the so-called meta-atoms) of metamateri-
als [1,2], high performance sensors [3–5], photovoltaic cells [6], solid-state non-classical light
sources [7,8] or nanolasers [9]. Confining light in three-dimensional (3D) volumes well below
the diffraction limit can be achieved by taking advantage of the large wavevectors of surface
plasmon polaritons (SPPs) that result from the coupling between light and free electrons in met-
als [10]. Among numerous types of plasmonic resonators, Metal-Insulator-Metal (MIM) struc-
tures, i.e., alternating metal and dielectric layers with finite dimensions, show promising perfor-
mance. In addition to ultra-small confinement volumes and high field enhancements [11–13],
MIM resonators (also known as cut-wire pairs in the metamaterials community [14]) can pro-
vide a magnetic response that is involved in the appearance of artificial magnetism at optical
frequencies [14–18]. Consequently, arrays of MIM resonators have been studied for achieving
either a negative effective index [14, 15] or an efficient absorption for sensor or photodetector
applications [5,19–24].

In view of potential applications of MIM resonators in a variety of areas ranging from
metamaterials to photovoltaics, it is important to obtain a deep understanding of their opti-
cal properties, in particular when their size is scaled down to deep subwavelength dimensions.
Indeed, ultra-small resonators are of major importance both for metamaterials, where meta-
atoms should be much smaller than the wavelength, and for photodetector applications, where
several resonators can be associated within a subwavelength cell to engineer multi-resonant
structures [24]. The tunability of the resonance wavelength of MIM resonators with the res-
onator dimensions being well-known [11, 12, 25–27], we will mainly focus on the analysis of
the quality factor (Q-factor) variation as the resonator size is scaled down.

We study the resonance with the lowest energy supported by a single 3D MIM resonator, see
Fig. 1. This fundamental resonance is crucial in the context of ultra-small resonators because
it has no cut-off and can be scaled down to deep subwavelength dimensions in the quasi-static
regime. Moreoever, this resonance presents a ”magnetic” character and can be used to engi-
neer negative-index metamaterials [14, 15, 28, 29]. We especially quantify the variation of the
Q-factor when the resonator volume is shrunk from the diffraction limitV = (λ/2n)3 down
to a deep subwavelength scaleV = (λ/50)3. As shown by 3D fully-vectorial calculations, the
main trend is a significant increase of theQ-factor by one order of magnitude when the size is
reduced. To explain this increase, we use an approximate Fabry-Perot model, which allows us
to derive semi-analytical expressions of the quality factor, of the absorption and of the radia-
tion losses. The model thus provides a real understanding of the physics governing the mode

#165330 - $15.00 USD Received 23 Mar 2012; accepted 22 Jun 2012; published 11 Jul 2012
(C) 2012 OSA 16 July 2012 / Vol. 20,  No. 15 / OPTICS EXPRESS  16882



910 930 950 970 990
0

1000

3000

5000

7000

Wavelength  (nm)

In
te

n
s
it
y
 E

n
h

a
n

c
e

m
e

n
t

(a) (b) (c) LRe(J
y
)

Re(J
z
)

|H
x
|
2

y

z

A

y
z

x
w

L

td

tm

Fig. 1. Magnetic resonance of a single MIM nanoresonator. (a) The nanoresonator consists
of a dielectric rectangular nanoparticle (widthw, lengthL and thicknesstd) sandwiched
between a metal substrate and a metal layer of thicknesstm. The metal is silver and the
dielectric material is a semiconductor (such as GaAs) with a high refractive index of 3.5.
(b) Spectrum of the intensity enhancement|E|2/|Einc|2 at the point A in (c) for a resonator
(w = 40 nm,td = 20 nm andL = 70 nm) illuminated by a plane wave impinging from
air at normal incidence and polarized along thez-direction. (c) Distribution of the induced
currentJ (see the text for its definition) and of the magnetic field|Hx|2 at resonance in the
(y,z) plane (x = 0). Blue and red colors correspond to negative and positive values. The
induced current forms a loop, which highlights the magnetic response of MIM resonators.

lifetime at deep subwavelength scales. In particular, it evidences the crucial role played by the
slowness of the SPP modes that are bouncing back and forth inside the resonator, a physical ef-
fect that is completely hidden in brute-force computations. Over the past ten years, Fabry-Perot
models have been successfully applied to a variety of micro- and nanoresonators, including
photonic-crystal microcavities and micropilars [30, 31], and plasmonic nanowire resonators
with a longitudinal length of a few wavelengths [32–36]. Hereafter we evidence that such a
useful picture remains valid and helpful even for analyzing nanoresonators that are operating
far below the diffraction limit in the quasi-static regime.

We note that a Fabry-Perot model has already been used for studying two-dimensional (2D)
MIM resonators [26]. However, the authors in [26] overlooked the importance of slow-wave
effects and consequently derived aQ-factor expression that is not consistent with the asymptotic
value derived in the quasi-static limit for metallic nanoparticles of arbitrary shape [37]. We
correct this discrepancy by properly taking into account slow-wave effects in the Fabry-Perot
model. Indeed, as we show in Sections 3 and 4, a correct Fabry-Perot expression for theQ-factor
is highly accurate and fully consistent with other asymptotic expressions derived in the quasi-
static limit [37]. In Section 3 we highlight three different regimes for theQ-factor variation
with the resonator size. As the volume shrinks from the diffraction limit(λ/2n)3 to (λ/20)3,
theQ-factor first increases because of a reduction of the radiation losses. Then, from(λ/20)3

to (λ/35)3, the radiation losses reduction is balanced by an increase of the absorption and one
would intuitively expect a drop of theQ-factor as predicted in [26]. However, theQ-factor
keeps on increasing because of the slowdown of the SPP mode that bounces back and forth
inside the resonator. This slow-wave effect, which is similar to the one classically encountered
in photonic crystal microcavities [30, 31], results in an increase of the cavity-mode lifetime.
Finally, for ultrasmall resonators, the Fabry-Perot model correctly predicts the quality factor
saturation toward the asymptotic value obtained in the quasi-static limit [37].
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2. Magnetic resonance of a single 3D MIM resonator

The 3D MIM resonator under study consists of a dielectric rectangular nanoparticle (widthw,
lengthL and thicknesstd) sandwiched between a metal substrate and a metal layer with the
same width and length and with a thickness denoted bytm, see Fig. 1(a). Calculations have
been performed for silver, whose permittivity has been taken from the data tabulated in [38].
In order to maximize the confinement and theQ-factor, the dielectric material has been chosen
to be a semiconductor (such as GaAs) with a high refractive index (n= 3.5). Since it has only
a weak impact on the resonator properties as long as it remains larger than the skin depth, the
thicknesstm of the top metallic layer is fixed in the following and we taketm = 25 nm. All
rigorous fully-vectorial calculations are performed with a 3D frequency-domain fully-vectorial
modal method known as the aperiodic Fourier Modal Method (a-FMM) [39]. Stretching of the
numerical space through coordinate transforms is additionally incorporated for improving the
computational accuracy, see the method MM3 in the benchmark article [40] for more details.

We study the resonance with the lowest energy supported by the MIM resonator – the fun-
damental mode. Figure 1(b) presents the spectrum of the electric field enhancement inside the
MIM resonator (dimensions are provided in the figure caption) when the latter is illuminated
from air by a plane wave at normal incidence and polarized along thez-direction. Figure 1(c)
shows the distribution of the magnetic field|Hx|2 and of the electric current densityJ(r) in-
duced in the nanoresonator by the incident plane wave at resonance,λ = 947 nm. From the
curl Maxwell equations, the induced current is proportional to the total electric fieldE(r),

J(r) =−iωε0[ε(r)− εref(r)]E(r) , (1)

with ω the frequency,ε0 the vacuum permittivity,ε(r) the relative permittivity distribution
that defines the resonator andεref(r) the relative permittivity of a reference background. We
have chosen a uniform backgroundεref(r) = 1, which implies that the field radiated by the
current densityJ(r) placed in air includes both the reflection of the incident plane wave by
the metallic plane and the scattering by the resonator. As can be seen from Fig. 1(c), at the
resonance wavelength, the electric current densityJ(r) induced by the incident plane wave is
essentially localized around the resonator and forms a loop in the(y,z) plane, Re(Jx)≪ Re(Jy)
and Re(Jx)≪ Re(Jz). Moreover, the resonant magnetic field is perpendicular to the loop. This
highlights the magnetic character of the fundamental MIM resonance, as previously discussed
in the literature [14,15,28,29].

In the following, we thoroughly study the quality factorQ of this resonance. Note that,
throughout the report, the resonance wavelengthλ0 = 950 nm is maintained constant. In or-
der to fulfill this condition as the two transverse resonator dimensions (the widthw and the
dielectric thicknesstd) are varied, one simply adjusts the lengthL of the MIM particle. The
quality factor can be directly derived from the full-width-at-half-maximum of a Lorentzian
fit of the intensity enhancement spectrum shown in Fig. 1(b). However, in order to get more
physical insight, we analyze the MIM resonator as a Fabry-Perot cavity.

3. Fabry-Perot model of the resonance

Within the Fabry-Perot picture, the resonance is described as a standing wave pattern along the
z-direction created by the bouncing between the nanoparticle facets atz=−L/2 andz= L/2 of
a single mode, the fundamental plasmonic mode of the MIM waveguide, whose cross-section
in the(x,y) plane is represented in Fig. 2. The single mode approximation amounts to assume
that all higher-order modes of the MIM waveguide play a negligible role to build the resonance.
The validity of the assumption is discussed in more details in the following; as will be shown,
it depends mostly on the transversal size of the MIM waveguide. The key parameters of the

#165330 - $15.00 USD Received 23 Mar 2012; accepted 22 Jun 2012; published 11 Jul 2012
(C) 2012 OSA 16 July 2012 / Vol. 20,  No. 15 / OPTICS EXPRESS  16884



Fabry-Perot model are the propagation constantβ = k0neff + i α
2 of the fundamental plasmonic

mode supported by the MIM waveguide and its complex reflection coefficientr =
√

Rexp(iφr)
at the air/MIM interface.

We first calculate and discuss these two important physical quantities in Section 3.1. Then we
provide in Section 3.2 analytical expressions for the resonance lengthL and the quality factor
Q. These formulae are validated against fully-vectorial calculations and the gained physical
understanding for theQ-factor variation with the resonator volume is discussed in Section 3.3.

3.1. Fabry-Perot parameters: fundamental mode of the MIM waveguide and its reflectivity

The three main field components of the fundamental mode of the MIM waveguide,|Ey|2, |Ez|2
and |Hx|2, are shown in Figs. 2(a)-2(c) forw = 40 nm andtd = 20 nm. Forw → ∞ (planar
MIM stack) andtm → ∞, this mode results from the coupling with a symmetric magnetic field
Hx of two metal/insulator SPPs [41]. TheHx-symmetric mode of a planar MIM stack has no
cut-off as the insulator thickness decreases, unlike the antisymmetric mode that is cut-off at
roughlyλ/(2n). Therefore, for the thicknesses of interest,td < 100 nm, the planar MIM stack
is monomode. Reducing the top metal thickness totm = 25 nm does not change the nature of
the fundamental mode, except that the symmetry is slightly broken, see Figs. 2(a)-2(c). As the
dielectric thicknesstd decreases, the symmetric mode of the MIM stack interacts more strongly
with the metal and presents a rapid increase of both its effective indexneff = Re(β )/k0 and its
attenuationα = 2Im(β ), as shown by the thin-solid curves in Figs. 2(d)-2(e).
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Fig. 2. Fundamental plasmonic mode of the MIM waveguide forλ = 950 nm. (a)-(c) Main
field components|Ey|2, |Ez|2 and |Hx|2 of the mode forw = 40 nm andtd = 20 nm. (d)
Dependence on the dielectric thicknesstd of the effective indexneff = Re(β )/k0, (e) of
the attenuationα = 2Im(β ) and (f) of the group indexng = neff −λ ∂neff

∂λ . In (d)-(f), four
different widths are considered,w = 40 nm (solid blue), 100 nm (dashed red), 350 nm
(dashed-dotted black) and∞ (planar waveguide, thin solid line).

The fundamental mode of the MIM waveguide with a finite width follows a similar trend.
As can be seen from Figs. 2(d)-2(e), the impact of the widthw on the propagation constant is
much weaker than the impact of the thicknesstd; the propagation constant of the 2D waveguide
is almost equal to that of the planar stack, especially for small thickness. Let us emphasize that
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the mode group indexng = c/vg, with vg the group velocity, also increases as the dielectric
thickness is reduced, see Fig. 2(f). As will be shown hereafter, the slowdown of the plasmonic
mode supported by thin MIM waveguides directly impacts the resonator lifetime. Finally, it is
noteworthy that for finite widths higher-order modes with the same profile alongy as the funda-
mental plasmonic mode may exist. They are determined by a total-internal-reflection condition
at the air/dielectric interfaces and possess an increasing number of nodes alongx, see the insets
in Fig. 3(c).

The large increase of the effective index is a key ingredient to build ultra-small resonators
since the resonator lengthL corresponding to the fundamental resonance is of the order of
λ0/(2neff). However, the price to pay for a reduction of the resonator volume is an enhanced
dissipation in the metal. In order to accurately quantify the impact on the quality factor of the
absorption increase, we need to thoroughly evaluate the variation of the radiation losses with
the size. In the Fabry-Perot picture, the normalized power dissipated by radiation per round-
trip is simply equal to 1−R, with R the reflectivity of the fundamental mode at the air/MIM
interfaces,z=−L/2 andz= L/2.
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Fig. 3. Reflectivity at the air/MIM interface forλ = 950 nm. (a) Map of the reflectivity
as a function of the widthw and the dielectric thicknesstd. (b) Reflectivity as a function
of td for w= 40 nm (solid blue), 100 nm (dashed red), 350 nm (dashed-dotted black) and
∞ (planar waveguide, thin solid line). (c) Reflectivity as a function ofw for td = 20 nm
(solid blue), 35 nm (dashed red) and 50 nm (dashed-dotted black). The insets show the
distribution of|Hx|2 in the(x,y) plane for the first two symmetric higher-order waveguide
modes fortd = 50 nm. The first two drops in the reflectivity curves identified by arrows
correspond to the cut-off of these modes (w= 190 nm andw= 370 nm).

We have performed fully-vectorial calculations of the modal reflection coefficientr =√
Rexp(iφr) as a function ofw andtd with the a-FMM [39, 40]. The results are presented in

Fig. 3(a). The reflectivity strongly increases as the waveguide cross-section is reduced because
of the increased mode confinement. Forw = td = 100 nm, the facets only weakly reflect the
fundamental plasmonic mode,R= 0.7, whereas forw = 40 nm andtd = 10 nmR is as large
as 0.999. Figure 3(b) shows the dependence of the reflectivity with the thicknesstd for w= 40,
100, 350 nm and∞. The four curves show the same main trend, namely a significant enhance-
ment ofRastd is reduced. The width dependence is highlighted in Fig. 3(c) fortd = 20, 35 and
50 nm. It is important to note the non-monotonous variation of the reflectivity. The narrow dips
correspond to a strong backscattering into higher-order MIM waveguide modes that are cut-
off at the dip wavelength. The insets in Fig. 3(c) show the profile of the first twox-symmetric
higher-order modes [42]. When a higher-order mode passes its cut-off and becomes propaga-
tive, the total density of states is modified by the appearance of a new mode (often with a small
group velocity) and this causes a sharp dip in the modal reflectivity of the fundamental mode.
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The dip is especially pronounced for the appearance of the first higher-order mode. Finally,
it is noteworthy that even extremely tiny waveguides with transverse dimensions as small as
w< 100 nm andtd < 10 nm are not monomode. This unexpected observation can be intuitively
understood from the large value of the effective indexn1D

eff of planar MIM stacks (w infinite)
with a small dielectric thicknesstd; the cut-off width of higher-order modes is indeed linked to
the value ofλ/(2n1D

eff ), which becomes smaller and smaller astd is decreased.

3.2. Fabry-Perot equations: phase-matching condition and quality factor

Since we have fixed the resonance wavelength toλ0 = 950 nm, the lengthL of the resonator is
easily obtained from the phase-matching condition

L =
λ0

2neff

(

m− φr

π

)

, (2)

with m= 1,2, . . ., neff the effective index of the waveguide mode given in Fig. 2(d) andφr

the phase of the modal reflection coefficientr. We are interested hereafter in the fundamen-
tal resonancem= 1. The reflection phase varies betweenφr = π/8 for the largest waveguide
cross-section (w = 350 nm andtd = 100 nm) andφr = −π/20 for the smallest cross-section
(w= 40 nm andtd = 5 nm) and therefore, with a good approximation, one may consider that
Eq. (2) leads toL = λ0/(2neff), corresponding to the classical half-wavelength condition for the
resonator length [43]. Figure 4(a) shows the resonator length obtained from Eq. (2) as a func-
tion of the dielectric thicknesstd for w= 40, 100 and 350 nm. Because of the strong increase
of neff, L rapidly decreases astd decreases. On the other hand, the resonator widthw is found
to weakly impact the length.

Within the Fabry-Perot picture, and under the assumption of a narrow resonance, the quality
factorQ can be derived analytically as [31]

Q=
k0ngLeff

1−Reff
, (3)

with k0 = 2π/λ0, ng = neff − λ ∂neff
∂λ the group index of the MIM waveguide mode,Reff =

Rexp(−αL) the effective reflectivity that includes the absorption loss over one-half round-
trip, and Leff = L + 2Lp the effective resonator length that includes the penetration length

Lp = − λ 2

4πng

∂φr
∂λ , which is due to the dispersive nature of the reflection. The penetration length

represents less than 10% of the effective lengthLeff and it can be safely neglected for all values
of w andtd considered in the present work [44].

The predictions of Eq. (3) are shown in Fig. 4(b) forw = 40, 100 and 350 nm together
with fully-vectorial calculations of theQ-factor, extracted from Lorentzian fits of the intensity
enhancement spectra and shown with various markers. The analytical formula of Eq. (3) accu-
rately predicts theQ-factor increase. When the resonator volume is shrunk from roughly the
diffraction limit V = (λ/2n)3 (w = 120 nm,td = 100 nm andL = 100 nm) down to a deep
subwavelength scaleV = (λ/50)3 (w = 40 nm,td = 5 nm andL = 30 nm), theQ-factor is
significantly enhanced by one order of magnitude.

Strictly speaking, the Fabry-Perot model should be applied only when all higher-order modes
are evanescent. For instance, forw= 100 nm, the MIM is monomode only fortd > 15 nm, and
for w = 350 nm, the MIM is multimode whatever the value oftd. Hopefully, the presence of
higher-order modes does not alter the model predictions, except close to their cut-off where
a drop ofQ is inaccurately predicted in Fig. 4(b) because of the rapid change of the facet
reflectivity. Note that the deviation between the model predictions and rigorous calculations
vanishes as the waveguide width increases.
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Fig. 4. Fabry-Perot model predictions for the resonance atλ0 = 950 nm. (a) Length of
the nanoresonator predicted with Eq. (2) forw = 40 nm (solid blue), 100 nm (dashed
red) and 350 nm (dashed-dotted black). (b) Quality factor predicted with Eq. (3),Q =
k0ngLeff/[1−Rexp(−αL)], for w= 40 nm (solid blue), 100 nm (dashed red) and 350 nm
(dashed-dotted black). The markers represent theQ-factor values extracted from fully-
vectorial calculations of intensity enhancement spectra [see Fig. 1(b)] for the same widths,
w= 40 nm (blue circles), 100 nm (red squares) and 350 nm (black triangles). The horizon-
tal arrow shows the quasi-staticQ-factorQs given by Eq. (4). (c) Quality factor predicted
with the Fabry-Perot model forw = 40 nm (thick solid blue). TheQ-factors predicted
without radiation (R= 1 in Eq. (3), solid magenta), without absorption (α = 0 in Eq. (3),
dashed-dotted black) and without slow light effect (ng = 5 in Eq. (3), dashed red) are also
presented. The vertical dashed lines mark the different regimes of theQ-factor variation.

3.3. Analysis of the Q-factor increase

Because of its analytical treatment, the model allows us to provide a comprehensive analysis
of the Q-factor limitations. As shown by Eq. (3), the cavity-mode lifetime is impacted both
by absorption (α in Reff) and radiation (1−R). In order to separate the contributions of these
two loss channels and to clarify the impact of the SPP slowdown, Fig. 4(c) shows theQ-factor
predicted by Eq. (3) forw= 40 nm (thick solid blue curve) together with theQ-factor values
that would have been achieved forα = 0, R= 1 andng = 5. Takingα = 0 in Eq. (3) amounts
to remove the absorption; the black dashed-dotted curve thus gives an approximation of the
radiation-limitedQ. Then, considering the particle facets as perfect reflectors,R= 1 in Eq. (3),
amounts to neglect the radiation losses and gives an approximation of the absorption-limitedQ.
Consistently with the fact that the absorption and the scattering of small particles respectively
scale as the particle volume and as the particle volume squared [45], we find that theQ-factor
of large MIM resonators withV = (λ/2n)3 is mostly limited by radiation,Q≈ Qα=0, whereas
theQ-factor of small resonators in the quasi-static limit withV = (λ/50)3 is completely limited
by absorption,Q≈ QR=1. Radiation and absorption losses are balanced fortd = 35 nm. Finally,
the impact on the resonance lifetime of the slowdown of the MIM waveguide mode is unraveled
by considering Eq. (3) with a constant group indexng = 5, a value corresponding to thick MIM
waveguides withtd = 100 nm (red dashed curve).

Three different regimes ofQ-factor variation can be considered. They are marked by vertical
dashed lines in Fig. 4(c). The first regime concerns large resonator thicknesses,td > 35 nm. The
absorptionαL and the group indexng are roughly constant and the increase of the quality factor
is purely due to a reduction of the radiation losses (increase of the reflectivityR). In the second
regime, 10< td < 35 nm, theQ-factor increases (solid thick blue curve) due to the slowdown
of the SPP mode bouncing inside the resonator. Indeed, it is noticeable that a resonator with the
actual absorption and radiation but with a constant group index (red dashed curve) would see
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its Q-factor decreasing because the radiation-loss reduction is balanced by an increase of the
absorption. Finally, for extremely thin dielectric layers,td < 10 nm, we enter the quasi-static
regime where the resonator performance is purely limited by absorption. The validity of the
Fabry-Perot model in this last regime is discussed in the next Section.

4. Fabry-Perot model in the quasi-static limit

In the quasi-static limit, i.e., for dimensions much smaller than the wavelength, the quality
factor Qs of any metallo-dielectric resonant nanoparticle composed of a single lossy metal is
completely determined from the relative permittivity of the metalεm = ε ′m+ iε ′′m [37],

Qs =
ω0

∂ε ′m
∂ω

2ε ′′m
. (4)

In this limit, the specific structure of the particle is not important and theQ-factor depends
neither on the geometric shape nor on the dielectric media, provided that the latter are disper-
sionless and lossless. This universal result has been derived in [37] by assuming a nanoparticle
built in a noble metal (|ε ′m| ≫ ε ′′m) that supports a purely electrostatic resonance (∇×E = 0)
whose damping is solely due to absorption (no radiation losses). This last assumption can be
justified by the fact that the scattering of small particles scales as the particle volume squared
whereas the absorption scales only as the particle volume [45].

The quasi-static regime is usually associated to the absence of wave retardation effects be-
causek0L ≪ 1 for small size-to-wavelength ratios. On the other hand, the Fabry-Perot model
describes a resonance as the result of a round-trip phase accumulation of 2mπ, m= 1,2, . . . [43].
Thus, at first sight, the Fabry-Perot picture seems inappropriate to describe a resonance in the
quasi-static limit. This intuitive conclusion is in contradiction with Fig. 4(b) that evidences the
accuracy of the Fabry-Perot predictions even for ultrasmall resonators withV = (λ/50)3. In
order to clarify whether a nanoparticle can be described by a non-vanishing wave retardation
in the quasi-static limit, we now analytically study the asymptotic behavior of the Fabry-Perot
model as resonator sizes tend toward zero. We emphasize that retardation effects are present
in very small objects and that MIM nanoparticles, even in the quasi-static limit, are equivalent
to half-wavelength antennas. This equivalence has been recently discussed for the resonance
wavelength [46], and hereafter, we additionally evidence that it applies also quantitatively to
the quality factor of the resonance. In particular, we show that the closed-form expression of
theQ-factor given by Eq. (3) reduces to Eq. (4) in the quasi-static limit.

We consider a Fabry-Perot resonance with aQ-factor given by Eq. (3). As in [37], we assume
that the resonance damping in the quasi-static limit is purely due to absorption. This amounts
to considerR= 1 in Eq. (3), an assumption legitimated for the geometry under study by the
numerical results of Fig. 4(c). Moreover, the resonator length is small and the absorption term
in theQ-factor can be approximated by exp(−αL) ∼ 1−αL. With these two approximations,
Eq. (3) leads to

Q=
k0ng

α
. (5)

To obtain this result, we have considered thatLp ≪ L andLeff ≈ L [44]. Equation (5) emphasizes
that, in the absence of radiation losses, theQ-factor is purely driven by the guided SPP mode
bouncing back and forth inside the particle. The important parameter is the group-index-to-
attenuation ratio, and not only the attenuation as concluded in [26].

Next we examine the asymptotic value of the propagation constant of MIM waveguides as
their transverse dimensions become much smaller than the wavelength. Actually, the limit as
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td/λ → 0 of the normalized propagation constantn1D
eff of planar MIM stacks is known analyti-

cally [26]

n1D
eff →− εdλ0

πεmtd
, (6)

with εd the relative permittivity of the dielectric layer. We note from Fig. 2 that the normalized
propagation constant of the fundamental mode of 2D MIM waveguides with finite widths w
becomes independent of the width astd/λ → 0 and asymptotically tends towardn1D

eff . This is
understood by realizing that for any fixed value of the widthw, we can havew≫ λ/(2n1D

eff ) as
td is reduced. Thus Eq. (6) can be safely used to derive the limit of theng/α ratio for any 2D

MIM waveguide. The expressions ofng = n1D
eff −λ

∂n1D
eff

∂λ andα = 2k0Im(n1D
eff ) are easily derived

from Eq. (6), and by inserting them into Eq. (5), the asymptotic valueQs
FP of the Fabry-Perot

Q-factor in the quasi-static limit is found to be given by

Qs
FP=

ω0
∂ε ′m
∂ω

2ε ′′m
, (7)

which is exactly theQs value of Eq. (4) derived in [37]. Note that to derive Eq. (7), we assumed
that |ε ′m| ≫ ε ′′m. The prediction of Eq. (7) is represented by the horizontal arrow in Fig. 4(b). It
is noteworthy that the 3D MIM nanoparticle under study enters the quasi-static regime only for
very small dielectric thicknesses,td < 10 nm.

The derivation of Eq. (7) leads to two important conclusions. First, it evidences that the
Fabry-Perot resonator model can be appropriately used to describe a resonance in the quasi-
static limit. In other words, the quasi-static regime does include wave retardation effects linked
to the propagationinside the particle of plasmonic modes whose wavevector diverges as the
length shrinks (actually the productk0neffL = π is fixed by the Fabry-Perot phase-matching
condition). The second important conclusion concerns the properties of plasmonic waveguides
in the quasi-static limit. Indeed, theQ-factor expressions of Eqs. (4) and (5) should be identical
as the transverse cross-section shrinks, whatever the shape of the waveguide cross-section. We
can therefore deduce that, in the limit of small transverse dimensions compared to the wave-
length, the propagation constant of any plasmonic waveguide should satisfy

(

k0ng

α

)s

=
ω0

∂ε ′m
∂ω

2ε ′′m
, (8)

regardless of the geometric shape of the waveguide cross-section or of the dielectric media
composing it, provided that they are dispersionless and lossless. Note that Eq. (8) holds in
a regime where the scattering of the plasmonic mode at an interface can be neglected. The
waveguide dimensions corresponding to this regime can be different from one waveguide to
the other [47].

5. Conclusion

In summary, we have studied the quality factor of the fundamental resonance supported by MIM
nanoresonators when their volume is shrunk from the diffraction limitV = (λ/2n)3 down to a
deep subwavelength scaleV = (λ/50)3. The ten-fold increase of theQ-factor given by rigorous
fully-vectorial calculations has been accurately predicted with a Fabry-Perot model, which pro-
vides analytical expressions of the quality factor, of the absorption and of the radiation losses.
These expressions allow for a comprehensive analysis of the increase of the mode lifetime as the
dimensions of the resonator are shrunk. The main mechanisms are a reduction of the radiation
losses and a slowdown of the plasmonic mode bouncing back and forth inside the resonator.
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The slow-wave effect is responsible for theQ-factor increase when the radiation-loss decrease
is fully balanced by an increase of the absorption.

A second important result of this work is to show that the Fabry-Perot model remains quan-
titatively valid down to very small dimensions far below the diffraction limit. This evidences
that the localized plasmon resonances of MIM nanoparticles in the quasi-static limit can be
quantitatively analyzed with the same wave retardation effects as the delocalized resonances of
nanowires with a length of a few wavelengths. The nanoparticle is indeed an half-wavelength
antenna but with a vanishing effective wavelengthλ0/(2neff) [33].

We hope that the Fabry-Perot analytical treatment of the magnetic resonance supported by
MIM nanoparticles will be helpful for further ”bottom-up” approaches for the design of optical
metamaterials starting from the optical properties of single meta-atoms.
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