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Jean Etesse,1 Rémi Blandino,1 Bhaskar Kanseri,1 and Rosa Tualle-Brouri1, 2

1Laboratoire Charles Fabry, Institut d’Optique, CNRS, Université Paris Sud
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We demonstrate that different kind of mesoscopic quantum states of light can be efficiently gen-
erated from a simple iterative scheme using homodyne heralding. These states exhibit strong non-
classical features, and are of great interest for many applications such as quantum error-correcting
codes or fundamental testings. On this basis we propose a protocol allowing a large loophole-free
violation of a CHSH-type Bell inequality with a remarkable robustness to line losses.

PACS numbers: 03.65.Ud, 03.67.-a, 42.50.Dv

The violation of Bell inequalities is a crucial test for
the foundations of quantum mechanics, to rule out clas-
sical mechanisms as the origin of quantum correlations
[1]. But up to now all experimental demonstrations of
such violation left opened two so-called “loopholes”: the
“locality” loophole, which arises when the separation be-
tween the measured states is not large enough to com-
pletely discard the exchange of subluminal signals during
the measurements [2, 3]; and the “detection-efficiency”
loophole, which occurs when the particle detectors are
not efficient enough to warrant that the detected events
are representative of the whole ensemble [4, 5].

The detection efficiency loophole has been closed with
information encoded on atoms and ions [6, 7], but one
can hardly imagine separating such systems far enough
to close the locality loophole. Light is a better candi-
date to close this second loophole as it can easily cover
long distances [2, 3], but it is difficult to detect photons
with a high efficiency. The minimal efficiency required
to close the detection efficiency loophole with the CHSH
inequality [8] is 82.8% in the symmetric case, while it
is 66.6% with the Eberhards inequality [9]. Such a value
was recently reached [10], closing the loophole with global
detection efficiencies between 70% and 80%, using transi-
tion edge sensors [11]. These cryogenic sensors are how-
ever not really widespread technologies and that is the
reason why both loopholes are still not closed together.
But even if this goal could be achieved in the near future,
a loophole free violation of Bell inequalities is not only a
major test for quantum mechanics: it can meet concrete
applications like device independent quantum key distri-
bution [12], and for that reason it can be interesting to
obtain such a violation with affordable devices.

Homodyne measurements could be an interesting alter-
native as they are not subject to the detection efficiency
loophole: every measurement will lead to a result. Dif-
ferent schemes have been proposed to obtain a violation
with homodyne measurements, but they require either
measurements [13, 14] or states [15–18] that seem prac-
tically unfeasible. Some proposals are based on more

realistic setups [19, 20] but provide only a small hardly
measurable violation. Some hybrid schemes, mixing ho-
modyne measurements with photon detection, have been
recently proposed [21], allowing a detection efficiency
threshold of about 65% with feasible states, but quite
more complex states have to be considered in order to
obtain a lower value [22].

FIG. 1. Elementary stage involved in the present protocol:
two states are mixed on a symmetric beamsplitter, and the
desired output state is generated owing to a heralding event
based on a quadrature measurement.

In this paper we present a realistic protocol to imple-
ment the method proposed in [16], which allows a maxi-
mal violation of the CHSH inequality with simple homo-
dyne measurements performed on a quite complex state.
We show that this state can be efficiently generated using
a method based on an iterative application of the setup
depicted in Fig. 1: two states ψ1(x) and ψ2(x) (where x
is a quadrature) are mixed on a 50:50 beamsplitter, and
owing to the heralding event |x| < ∆x/2 one implements,
if ∆x is small enough, the non-linear operation:

(ψ1(x), ψ2(x)) −̃→ ψ1(
x√
2

)ψ2(
x√
2

). (1)

In the case where the two input states are identical, such
a setup allows cat breeding operation [23], which can thus
be performed with quadrature measurements [24, 25].
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This can be understood as follows: if this protocol is iter-
ated p times, it will output the final state (with n = 2p):

ψout(x) = Nψn(x/
√
n) (2)

where N is a normalization factor. If for instance the
first input states are pure single photons, with ψ(x) ∝
x exp(−x2/2), the resulting state will be arbitrarily close
(at large n) to an even Schrödinger cat state (SCS)
|α〉+ |−α〉 of amplitude α =

√
n and with 3dB squeezing

[26]. SCS can therefore be generated from single pho-
ton states with an iterative homodyne heralding and, as
was also noticed in [27], this can be performed in a re-
ally efficient way as good fidelities can be obtained with
quite large heralding width: we have searched the opti-
mal width ∆xl at each stage l (1 ≤ l ≤ p) in order to
maximize the success probability for a given fidelity with
the nearest SCS. We empirically found that the choice
∆xl+1 = 1.3∆xl is very close to the best one as shown in
Fig. 2.
In the following, we will define the success probability
Psucc as the ratio of the minimal number of resources
needed for the protocol (single photon states) to the av-
erage number of resources needed for a success event.
Thanks to the iterative nature of the protocol, which al-
lows to store intermediate states in quantum memories,
this success probability (pictured in Fig. 2) does not de-
crease much faster than 1/n (∼ 1.3/n1.3 for instance at
F = 97%), with an average number of resources of the
order of n2. This last quantity can be large, but should
be manageable in the near future with time and space
multiplexing.

Breeding with any number of photons n can also be
performed by writing the binary expression of n. For
instance, if n = 7 = 1112 the breeding will consist in
the mixing of a 0-stage breeded cat (20, a single photon)
with a 1-stage breeded cat (21) to form a state ψc,1,
which will then be mixed with a 2-stages breeded cat
(22) to form the output cat. The parity of this cat will
be the same as the parity of n.

The non-linear transform in Eq.(1) can find ap-
plications beyond SCS generation. To see this, it is
interesting to understand how it can transform a single
photon state into a SCS. The wavefunction ψ(x) of the
pure single photon presents two extrema at x = ±1, and
can be approximated at the vicinity of these extrema
as ψ(x) ≈ ψ(±1)[1 − (x ∓ 1)2] ≈ ψ(±1) exp[−(x ∓ 1)2].
By raising this last term to the nth power, it re-
sults two thin Gaussians of width 1/

√
n (that are

rescaled in Eq.(2) by the 1/
√
n term). Out of the

vicinity of these extrema, the output function is smaller
than the tails of the Gaussians and is therefore negligible.

The same reasoning can be extended to any other
wavefunction with local extrema. With a sine function
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FIG. 2. Success probability as a function of the fidelity of
the state obtained after p iterations of the breeding scheme
of Fig.1 with the nearest squeezed SCS, for p varying from 1
to 5. The lines are obtained with ∆xl+1 = 1.3∆xl, while the
different symbols correspond to optimized ∆xl.

for instance, applying Eq.(2) will result in a comb of
Gaussian peaks. Such a sine function can be obtained
by simply applying a phase shift π/2 to a squeezed cat
state (amplitude α, squeezing s′), which gives (with a
normalization factor here only valid at high alpha):

ψs
′

+ (x) = 2(
s′2

π
)1/4 exp(−s′2x

2

2
) cos(s′

√
2αx) (3)

for an even squeezed cat state, and

ψs
′

−(x) = 2(
s′2

π
)1/4 exp(−s′2x

2

2
) sin(s′

√
2αx) (4)

for an odd squeezed cat state.
Comb states were first introduced by D. Gottesman

and coworkers in [28] as a mean to construct error-
correcting codes embedding a finite dimensional space
in a system described by continuous quantum variables.
Here we propose a simple method to encode such states
on a travelling optical mode using only linear optics and
homodyne detection. Let us first define these states ex-
plicitly: if Gs(x) ≡ (πs2)−1/4 exp[−x2/(2s2)] we intro-
duce, following [28], the comb states

〈x|0̄〉s,s
′

a =
√
aG1/s′(x)

∑
k

Gs(x− ka) (5)

〈x|1̄〉s,s
′

a =
√
aG1/s′(x)

∑
k

Gs

(
x− (k +

1

2
)a
)
, (6)

where the normalization factor
√
a is valid only when

s � a � 1/s′, which we will call the comb state condi-
tion: the Gaussian peaks have to be thinner than their
separation, and a significant number of peaks is required
within the overall Gaussian envelope.
We propose a “comb breeding” protocol, by feeding the
setup of Fig. 1 with e.g. the cat state (3) and by iter-
ating the protocol p′ times. It is clear from the previous



3

considerations that such a protocol, whose action is sum-
marized in Eq.(2), will generate a good approximation of

|0̄〉s,s
′

a , with a = 2p
′/2a0, a0 = π/(

√
2s′α) and s = a0/π.

At each iteration step the spacing a is multiplied by
√

2.
This point can be understood in another way by com-

puting the action of a symmetric beamsplitter (BS) on
comb states. For instance one has:

|0̄, 0̄〉s,s
′

a → 1√
2

[
|0̄, 0̄〉s,s

′

a
√

2
+ |1̄, 1̄〉s,s

′

a
√

2

]
(7)

which is one of the Bell states in the comb states basis.
The comb breeding protocol can then be easily under-
stood: the measurement x ' 0 selects the comb state
|0̄〉s,s

′

a
√

2
in the heralding port of the beamsplitter, and a

comb state |0̄〉s,s
′

a
√

2
is therefore generated. The main point

here concerns the fact that the detection of |0̄〉s,s
′

a
√

2
is not

limited to x ' 0: any event like

∀k ∈ Z, |x− ka
√

2| < ∆x/2 (8)

can be considered as successful, what will considerably
increase the success rate of the heralding process.
Similarly, any event like

∀k ∈ Z, |x− (k +
1

2
)a
√

2| < ∆x/2 (9)

will generate a comb state |1̄〉a√2.

The numerical simulations, plotted in Fig. 3 for up to
3 iteration stages, were obtained using the heralding con-
dition (8). It appears that this breeding method allows to
generate high fidelity comb states with a high efficiency.
The empirical law ∆xl+1 = 1.3∆xl also applies in that
case, and is very close to the best result.
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FIG. 3. Same as Fig. 2 for comb states generation with p′

iterations of the breeding stage of Fig. 1 (p′ varying from 1
to 3) fed by a 5-stages breeded cat. Lines are obtained with
∆xl+1 = 1.3∆xl, while the different symbols correspond to
optimized ∆xl.

Comb states may prove to have a wide range applica-
tion in the field of quantum information. The purpose

of the present paper is to show how they allow a loop-
hole free violation of CHSH inequality with homodyne
measurements, following the protocol proposed in [16].

It is straightforward to check that the mixing of an

even (resp. odd) squeezed cat state |ψ+〉s
′

(resp. |ψ−〉s
′
)

of amplitude α′ with a comb state |1̄〉s,s
′

a on a 50:50 beam-
splitter creates a state |f〉 (resp. |g〉) which is very close
to the state |f〉 (resp. |g〉) introduced in [16]:

〈x|f〉 ∝ G1/s′(x)
∑
k

Gs̄(x− (k +
1

2
)ā) cos[

πx

2ā
] (10)

〈x|g〉 ∝ G1/s′(x)
∑
k

Gs̄(x− (k +
1

2
)ā) sin[

πx

2ā
] (11)

with s̄ =
√

2s and ā =
√

2a, under the condition s′α′a =
π

2
√

2
.

The comb state can be obtained through p′ stages of
comb breeding, fed by cats of amplitude α = π2p

′/2/(s′ā)
and squeezing s′. Comparing the expressions of α and α′

leads to α =
√

22+p′α′. In other words, if the cats of am-
plitude α used for comb breeding are generated through

p cat breeding steps, the cat |ψ+〉s
′

of amplitude α′ has
to be generated by p− p′ − 2 steps of cat breeding.

We are therefore able to perform the transformations

|ψ+〉s
′
→ |f〉 and |ψ−〉s

′
→ |g〉. Starting from the two-

mode state |ψ+〉s
′
|ψ−〉s

′
+eiθ |ψ−〉s

′
|ψ+〉s

′
, which can for

instance be obtained through a delocalized photon sub-
traction [29], we therefore generate |f, g〉+ eiθ |g, f〉. This
last state is slightly different from the one proposed in
[16], but we can obtain a violation of the CHSH inequal-
ity in the same way: quadrature x or p are measured,
and one assigns εx = sign[〈x|f〉 〈x|g〉] (if the measure-
ment is x) or εp = sign[〈p|f〉 〈p|g〉 /i] (if the measurement
is p) to the result. A maximal violation of the CHSH in-
equality S 6 2 can then be obtained for θ ' −π/4 (with
S := |< εAp ε

B
p > − < εAx ε

B
x >|+ |< εAp ε

B
x > + < εAx ε

B
p >|).

!

FIG. 4. Proposal of a scheme for the generation of a state
allowing a violation of the CHSH inequality with homodyne
measurements.

Fig. 4 pictures a possible implementation of this

protocol: cat states |ψ+〉s
′

have first to be unsqueezed
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(→ s′ = 1) before the delocalized photon subtraction,
even if they have to be squeezed again (“sq” in Fig. 4)
in order to match the comb state. After the photon sub-
traction, each mode is mixed with a comb state using the
setup of Fig. 1, what we will call the “modulation stage”
and is based on a double heralding event. We are going
to present results corresponding to two extreme cases: a
“strong” comb, obtained with p = 6 stages of cat breed-
ing and p′ = 2 stages of comb breeding, which will be
called the state (6, 2); and a “weak” comb, with an odd
cat state obtained with n = 7 photons instead of the
comb |1̄〉 (i.e. a comb state with p′ = 0), which will be
called the state (3, 0).

The values obtained for the success probability of the
whole setup depicted in Fig. 4 for different values of the
heralding intervals ∆x as a function of S is plotted in
Fig. 5. R has been taken equal to 0.001 and the total
efficiency of the APD was taken equal to 0.06.
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FIG. 5. Total success probability of the protocol depicted in

Fig. 4 for a comb state |1̄〉s,s
′

a = (3, 0) and for |1̄〉s,s
′

a = (6, 2)
as a function of S.

Given the possibility to use high repetition rate
sources in optics, this success probability could still lead
to acceptable experiment durations.

A very impressive result concerns the robustness of
these states against line losses. Fig. 6 presents the evo-
lution of S with line transmission between the generated
states and the final homodyne detections, and it can be
seen that the (6,2) state permits a CHSH Bell inequality
violation as long as T > 74% (energy transmission) if we
adapt the squeezing of the state before undergoing losses.
This figure also shows that the (6,2) state (10 photons in
average) is more robust against losses than the (3,0) state
(4 photons in average).

This shows that mesoscopic states can present inter-
esting feature in term of robustness to losses, while still
exhibiting strong quantum features.

We acknowledge support from the EU project ANR
ERA-Net CHISTERA HIPERCOM.
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FIG. 6. Lines: Value of S obtained for comb states (3, 0)
and (6, 2) as a function of line transmission; symbols: same
as lines but with an additional squeezing in order to optimize
robustness to losses.
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