
HAL Id: hal-00785276
https://hal-iogs.archives-ouvertes.fr/hal-00785276

Submitted on 5 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Superlens in the time domain
Alexandre Archambault, Mondher Besbes, Jean-Jacques Greffet

To cite this version:
Alexandre Archambault, Mondher Besbes, Jean-Jacques Greffet. Superlens in the time domain. Phys-
ical Review Letters, 2012, 109, pp.097405. �hal-00785276�

https://hal-iogs.archives-ouvertes.fr/hal-00785276
https://hal.archives-ouvertes.fr


Superlens in the Time Domain

Alexandre Archambault, Mondher Besbes, and Jean-Jacques Greffet*

Laboratoire Charles Fabry, Institut d’Optique, Université Paris-Sud, CNRS, 2 av Fresnel, 91127 Palaiseau, France
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It has been predicted theoretically and demonstrated experimentally that a planar slab supporting

surface plasmons or surface phonon polaritons can behave as a super lens. However, the resolution is

limited by the losses of the slab. In this Letter, we point out that the resolution limit imposed by losses can

be overcome by using time-dependent illumination.
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An important property of surface waves is their ability to

focus the energy at subwavelength scales. This property is

a consequence of the existence of surface waves with wave

vectors K parallel to the interface larger than 2�=�, where
� is the wavelength in vacuum. For an air-metal interface,

the well-known dispersion relation K ¼ ð!=cÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�=ð�þ 1Þ
p

shows that when the metal dielectric constant � approaches
�1, the wave vector modulus diverges. The availability of

arbitrary large wave vectors is the basis of the plasmonic

super lens proposed by Pendry [1,2] and demonstrated by

several groups [3–5]. While experiments with subwave-

length resolution have been reported, the improvement

appears to be limited by the presence of losses as originally

predicted [1] and analyzed in several contributions [6–9].

Further developments have been focussed on other

schemes such as the hyperlens [10,11]. In this Letter, we

show that using a time-dependent incident pulse allows

improving the spatial resolution. We report a theoretical

and numerical analysis of the imaging properties of a

silicon carbide (SiC) planar slab using time-dependent

illumination. We find that the resolution can be improved

if the pulse duration is shorter than the surface wave decay

time.

At first glance, the idea of improving spatial resolution

by using a time-dependent illuminating field seems dubi-

ous as a time-dependent field is a linear superposition of

monochromatic fields, each of them being subject to a

resolution limit due to losses. Let us first present two

qualitative arguments suggesting that spatial resolution

might indeed depend on the time shape of an incident

pulse. It is well known that the resolution limit can be

analyzed in terms of the exponential decay expð�KdÞ of
the evanescent waves of a field at a distance d from the

object [12,13]. In his original proposal of a perfect lens,

Pendry pointed out that in the electrostatic regime (for any

large wave vector K), a silver slab with thickness h has a

p-polarized transmission connecting the amplitudes at

both interfaces given by

tðK;!Þ ¼
4� expð�KhÞ

ð�þ 1Þ2 � ð�� 1Þ2 expð�2KhÞ
: (1)

The key point is that for �ð!Þ þ 1 ¼ 0, the transmission

factor takes the value expðKhÞ so that the exponential

decay expð�KhÞ appearing in the numerator is replaced

by an enhancement factor expðKhÞ that compensates the

decay of evanescent waves in the vacuum. It is useful to

introduce the transmission factor ~tðK;!Þ ¼ tðK;!Þ�
expð�KhÞ which takes value 1 for �ð!Þ þ 1 ¼ 0. As

discussed in the original paper and confirmed by later

analysis and experiments, the presence of losses prevents

to obtain �ð!Þ ¼ �1 so that there is a practical limit to the

resolution.

There is another point of view that is often used to

explain the resolution limit due to losses. When plotting

the dispersion relation of a surface plasmon propagating

along a metal-vacuum interface, assuming that the fre-

quency is real, the relation K ¼ ð!=cÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�=ð�þ 1Þ
p

yields

a complex wave vector. When plotting the dispersion

relation in the plane ðReðKÞ; !Þ, a backbending is observed
(see Fig. 1). Hence, the dispersion relation shows a maxi-

mum value of the wave vector Kmax corresponding to the

turning point. From a Fourier analysis, a resolution limit

�x ¼ �=Kmax is expected.

The point that we want to make here is that these argu-

ments are implicitly assuming that the measurement is

FIG. 1 (color online). Dispersion relation of a surface phonon

polariton at the SiC-air interface displaying the real part of !
versus the real part of K. Green (dashed) curve: the wave vector

is chosen to be complex, there is an upper bound for K. Blue
(solid) curve: the circular frequency is chosen to be complex,

there is no upper bound for K.
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performed in a stationary regime with a harmonic field. Let

us revisit these arguments allowing ! to be a complex

frequency. The equation, �ð!Þ þ 1 ¼ 0, can now be solved

exactly if we seek a complex solution !sw. Of course, a

wave varying as expð�i!swtÞ with Imð!swÞ< 0 diverges

for negative times so that it is not an acceptable solution for

all times. However, we may consider approaching this

function in a limited time window. Improving the resolu-

tion will depend on our ability to approach this ideal

solution. Obviously, such a solution has a time-dependent

amplitude which indicates that a time-dependent illumina-

tion has to be used. Finally, this first remark also provides

the relevant time scale for the time-dependent illumination:

the surface wave decay time 1=Imð!swÞ.
Let us now revisit the discussion of the dispersion

relation for lossy materials. While solving the equation

K ¼ ð!=cÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�=ð�þ 1Þ
p

with a real frequency and a com-

plex K yields a dispersion relation with a backbending, it

turns out that by solving the same equation with a complex

frequency and a real wave vector, K yields a dispersion

relation without backbending as shown in Fig. 1. Hence,

the dispersion relation for complex frequencies displays an

asymptote with arbitrary large wave vectors. There is a

price to pay. The surface waves with very large wave

vectors which may contribute to a highly localized field

are very short-lived modes. Note also that they have an

almost zero group velocity. This is not a drawback for the

superlens imaging process which is essentially an electro-

static image. For plasmons, the typical time scale is on the

order of 10 fs whereas for surface phonon polaritons, decay

times are on the order of 1 ps. Again, we see that it is

possible to recover large wave vectors and therefore im-

prove the resolution by working with time-dependent

fields. Let us note in passing that the dispersion relation

with an asymptote not only leads to the prediction of large

spatial resolution but also to large electromagnetic density

of states close to the interface. This large density of states

can be independently calculated in the direct space and has

a divergence [14]. Two well-known physical consequences

of this divergence are the extremely short decay time of a

two-level system close to an interface [15] and the diver-

gence of the thermal radiation density of energy close to

the interface [16]. The existence of two dispersion relations

which can both being meaningful depending on the context

was recognized in the early days of surface plasmons [17].

A detailed discussion can be found in Ref. [18].

From the previous discussion, we are led to revisit the

resolution of a super lens consisting of a thin symmetric

slab supporting surface waves. A number of conditions

need to be fulfilled in order to achieve super resolution:

(i) The carrier frequency has to be chosen close to the

surface wave frequency !sw satisfying �ð!swÞ þ 1 ¼ 0 in

order to ensure an effective excitation of the surface waves

with a large wave vector, and (ii) the contribution of the

transient surface wave needs to be the leading contribution

to the field. If a stationary field builds up, it may over-

whelm the transient contribution. Since the transient sur-

face waves decay exponentially with a typical time scale

given by 1=Imð!swÞ, we can separate them from the inci-

dent field using a shorter pulse so that the resonantly

excited surface waves are the only contributor to the near

field after the end of the incident pulse. This amounts to

perform a time filtering of the largeKwhich contributes to

the large resolution. This is the major difference with

previous work that considered a time analysis of the tran-

sient regime [9,19] or a relatively long pulse illumination

[20]. For plasmons, the second condition implies pulses

shorter than 10 fs. For surface phonon polaritons, the

duration of the pulses needs to be on the order of a

picosecond.

We now show a numerical simulation of the image of a

time-dependent pointlike dipole pfðtÞ�ðr� r0Þ. Since we

are working in the nonretarded approximation, the field

spatial structure can be derived using electrostatics. We

derive the potential �ðr; r0; tÞ created at r by a time-

dependent charge q0�ðt� t0Þ located at r0. The potential

�pðr; r0; tÞ produced by a dipole p can then be derived

using p � rr0

�ðr;r0;tÞ
q0

. The electric field is then given by

Eðr; tÞ ¼ �rr�pðr; r0; tÞ. The system studied here is a

SiC slab with thickness d in a vacuum as depicted in

Fig. 2. The dielectric constant is given by �ð!Þ ¼

�1
!LO�!2�i�!
!TO�!2�i�!

, where �1 ¼ 6:7, !TO ¼ 793 cm�1,

!LO ¼ 969 cm�1, and � ¼ 4:76 cm�1, where TO and

LO refer to transverse and longitudinal optical phonon

frequencies, respectively). For this material, the condition

�ð!Þ þ 1 ¼ 0 is satisfied for !sw with Reð!swÞ ¼
947:7 cm�1. The corresponding decay time is

1=2Imð!swÞ ¼ 1:1 ps. The potential produced by a har-

monic unit charge at r ¼ ðx; y; zÞ with � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

in a

vacuum is given by [8]

�ðr;!Þ¼
q0fð!Þ

4��0

Z 1

0
dKJ0ðK�Þexpf�K½z�ðz0þ2hÞ�g

¼
q0fð!Þ

4��0

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2þ½z�ðz0þ2hÞ�2
p : (2)

FIG. 2. Scheme of the planar lens with thickness h. The image

is located at z ¼ z0 þ 2h.
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In the presence of a slab, the potential produced on the

other side of the slab is found by introducing the

frequency-dependent transmission factor:

�ðr; !Þ ¼
q0fð!Þ

4��0

Z 1

0
dK~tðK;!ÞJ0ðK�Þ

� expf�K½z� ðz0 þ 2hÞ�g: (3)

The value of this filter is plotted in Fig. 3 for three different

frequencies as a function of the wave vector K. For the
complex frequency !sw, the filter does not depend on K.
For real frequencies, the filter is band limited. Out of

resonance, the filter decays very fast. As expected, the

cutoff frequency is larger for Reð!swÞ ¼ 947:7 cm�1.

In practice, we use a time-dependent signal composed of

real frequencies. Hence, the key issue is the design of the

best possible time shape of the pulse. Here, we have not

attempted to optimize the pulse shape. For the sake of

illustration, in what follows, we consider a stationary

monochromatic field which is turned off at t ¼ 0 (see

Fig. 4). The surface wave field then naturally decays with

a frequency close to !sw and we study the field for t > 0.
The carrier frequency is taken to be the real part of the

surface wave resonant frequency !0
sw ¼ Re½!sw� for a

single interface so that the incident field is given by fðtÞ ¼
Hð�tÞ expð�i!0

swtÞ.
We are now ready to evaluate the field in time domain.

The potential is given by

�ðr; tÞ ¼
Z 1

�1

d!

2�
�ðr; !Þ expð�i!tÞ: (4)

The results are shown in Fig. 5. We consider a dipole

oriented perpendicularly to the interface. We plot the

square of the z component of the electric field averaged

over a few cycles. The intensity is shown at different times

t > 0. In order to compare the resolution at different times

t > 0, we have compensated the exponential decay of the

amplitude. It is clearly seen that the width at half-

maximum of the intensity distribution decreases as time

increases showing that the resolution is increased. It is seen

that for a 16 ps delay, the width is reduced to 60% of its

value for a monochromatic illumination. Of course, the

price to pay for this resolution enhancement is the expo-

nential decay of the amplitude. Note, however, that the

incident field is extinguished so that detecting the signal is

only limited by the signal to noise ratio.

So far, we have introduced the idea that time-dependent

illumination allows exciting surface waves with no limita-

tion regarding the wave vector. Yet, we have not analyzed

the detailed mechanism. Analyzing the behavior of the

planar lens requires us to examine the image formation

in terms of spatial frequencies filtering in the time domain.

To proceed, we assume that the time-dependent source

q0fðtÞ has been induced by an incident electric fieldEðtÞ ¼

FIG. 4 (color online). Incident field Hð�tÞ expð�i!0
swtÞ used

to excite the system mode with complex frequency.

FIG. 5 (color online). Normalized profile of the intensity at the

image location. A 60% reduction of the width of the pulse is

observed at t ¼ 16 ps. The amplitudes have been normalized in

order to compare the widths.

FIG. 3. Transmission factor as a function of the wave vector

for three different frequencies. An ideal superlens is character-

ized by a transmission factor ~tðK;!Þ ¼ 1 at the optimum fre-

quency. In the presence of losses, we obtain the best behavior at

! ¼ Reð!swÞ.
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E0fðtÞ. We introduce the frequency spectrum of the time-

dependent charge qðtÞ ¼ q0
R
fð!Þ expð�i!tÞd!=2�.

The time-dependent potential transmitted by the superlens

is thus given by

�ðr; tÞ ¼
q0

4��0

Z 1

0
dKJ0ðK�Þ expf�K½z� ðz0 þ 2hÞ�g

�
Z 1

�1

~tðK;!Þfð!Þ expð�i!tÞ
d!

2�
: (5)

The last integral appears to be a time-dependent filter

�ðK; tÞ. Hence, a proper choice of fð!Þ may allow tailor-

ing the spatial frequency filter. The filter �ðK; tÞ can be

evaluated analytically for a given pulse. The transmission

factor ~tðK;!Þ of a symmetric slab has poles associated

with the symmetric and antisymmetric surface modes.

Their excitation generates two contributions oscillating at

the surface waves frequencies. A beating is observed as

already discussed in Refs. [9,19]. Here, we see that the

choice of the carrier frequency and the envelope of the

pulse provides an additional degree of freedom to control

the modes excitation. The structure of the filter is shown in

Fig. 6 for the step function illumination. It is seen that the

filter has a broader bandwidth than the stationary filter at

!sw. The closed-form expression can be found in Ref. [21].

In summary, we have put forward the idea that spatial

resolution using lossy surface waves can be improved by

using time-dependent illumination. The fundamental idea

illustrated here is that when dealing with time-dependent

fields, it is relevant to think in term of modes with real a

wave vector and complex frequency (i.e., limited lifetime).

The associated dispersion relation does not present any

spatial frequency cutoff. A direct simulation confirms these

ideas and shows a 40% reduction of the width of the image

of a point source. Further optimization of the time shape of

the incident pulse should allow improving further the

resolution. Yet, the general trend is that the increase of

the spatial bandwidth comes at the cost of an exponential

decay of the amplitude of the field. Hence, although the

resolution is not theoretically limited with this time-

dependent scheme, the signal to noise ratio introduces a

severe limitation.
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