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Abstract. The macroscopic transport properties in a disordered poten tial,
namely di�usion and weak/strong localization, closely dep end on the microscopic
and statistical properties of the disorder itself. This dep endence is rich of
counter-intuitive consequences. It can be particularly ex ploited in matter wave
experiments, where the disordered potential can be tailore d and controlled,
and anisotropies are naturally present. In this work, we app ly a perturbative
microscopic transport theory and the self-consistent theo ry of Anderson
localization to study the transport properties of ultracol d atoms in anisotropic
2D and 3D speckle potentials. In particular, we discuss the a nisotropy of single-
scattering, di�usion and localization. We also calculate a disorder-induced shift
of the energy states and propose a method to include it, which amounts to
renormalize energies in the standard on-shell approximati on. We show that the
renormalization of energies strongly a�ects the predictio n for the 3D localization
threshold (mobility edge). We illustrate the theoretical � ndings with examples
which are revelant for current matter wave experiments, whe re the disorder
is created with a laser speckle. This paper provides a guidel ine for future
experiments aiming at the precise location of the 3D mobilit y edge and study
of anisotropic di�usion and localization e�ects in 2D and 3D .
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1. Introduction

Transport in disordered media is a fascinatingly rich �eld, which sparks a broad
range of phenomena such as Brownian motion [1], electronic conductivity [2, 3],
superconductivity [4], superuid ows of 4He on Vycor substrates [5], as well as
localization of classical (electromagnetic or sound) waves in dense media [6, 7] and of
ultracold atoms in controlled disorder [8, 9, 10, 11, 12]. In the case of a matter particle
for instance, two regimes should be distinguished. In the classical regime, where the
de Broglie wavelength is vanishingly small, transport leads to normal or anomalous
di�usion [ 13, 14]. The dynamics is characterized by the appearance of a percolation
transition, which separates a trapping regime { where the particle isbound in deep
potential wells { from a di�usion regime { where the particle trajecto ry is spatially
unbounded [15, 16]. In the quantum regime, the wave nature of the particle determines
its transport properties, in close analogy with those of a classical wave [17, 18]. In
this case, interference e�ects can survive disorder averaging, leading to striking e�ects
such as weak localization [6], the related coherent back-scattering e�ect [19], and
strong (Anderson) localization [20, 21, 22].

Localization shows a widely universal behaviour [23], but observable features
signi�cantly depend on the details of the system. It shows a renewed interest in the
context of ultracold matter waves [8, 9, 10, 11, 12]. On the one hand, the microscopic
parameters in these systems are precisely known and, in many cases, tunable,
which paves the way to unprecedented direct comparison betweenexperiments and
theory [24, 25]. This is a great advantage of ultracold atoms, compared to traditional
condensed-matter systems. On the other hand, these systemso�er new situations,
which can induce original e�ects [26] and provide new test-grounds in non-standard
disorder [27, 28, 29, 30, 31]. Major advances in this �eld were the observation of
one-dimensional (1D) Anderson localization of matterwaves [32, 33] and studies of
the e�ects of weak [34, 35, 36, 37, 38, 39, 40, 41, 42, 43] and strong [44, 45, 46, 47]
interactions in disordered gases. Presently, a major challenge is the study of quantum
transport in dimensions higher than one. While localization is the dominant e�ect
in one dimension [48, 49], higher dimensions show a richer phenomenology where
regimes of di�usion, weak localization and Anderson localization can appear [23].
Recent experiments reported the observation of an Anderson transition in momentum
space using cold-atom kick-rotor setups [50, 51, 52], study of classical di�usion in two-
dimensional (2D) speckle potentials [53, 54], coherent back-scattering [55, 56], and
evidence of Anderson localization in noninteracting Fermi [57] and Bose [58] gases in
three-dimensional (3D) speckle potentials.

From a theoretical viewpoint, di�usion and localization of noninterac ting matter
waves have been thoroughly studied for disordered potentials withzero-range
correlations [59, 60] and isotropic correlation functions [61, 62, 63, 64, 65, 66]. However,
transport experiments in dimensions higher than one are most often performed with
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speckle potentials which are anisotropic, either e�ectively in 2D setups [53, 54],
or for fundamental optical constraints in 3D [57, 58]. Moreover, correlations in
speckle potentials can be tailored in a broad range of con�gurations[67], which
o�ers scope for investigation of localization in nonstandard models of disorder [29, 30].
Taking into account anisotropic e�ects is of fundamental importance because they can
strongly a�ect coherent transport and localization properties. This was demonstrated
in various stretched media [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78]. Optical
disorder, relevant to ultracold-atom experiments [57, 58], can show signi�cantly more
complex anisotropic correlation functions, the e�ect of which has been addressed only
recently [79].

In this paper, we study quantum transport and Anderson localization of matter
waves in 2D and 3D anisotropic speckle potentials. We �rst introducethe basics of
quantum transport of matter waves in disordered media (Sec.2) and the models of
disorder we focus on in 2D and 3D (Sec.3). We then present a detailed description of
the theoretical framework pioneered in Refs. [75, 80], which intends to be pedagogical.
We study single-scattering (Sec.4), Boltzmann di�usion (Sec. 5), and localization
(Sec. 6), as a function of the particle energy, and discuss in particular thedi�erent
anisotropies of these quantities. From a technical viewpoint, while the scattering
allows for analytic expressions as for isotropic models of disorder [62], di�usion and
localization are more involved and require in general numerical diagonalization of a
certain operator. Some analytic expressions are however found insome limits for
anisotropic disorder. In Secs.4, 5 and 6, we focus on the 2D case, which contains
most of the anisotropy e�ects discussed in the paper. The 3D cases are discussed in
the next sections, where we study the same quantities as above (Sec. 7). We also
show that energy-dependent quantities calculated in the usual on-shell approximation
should be renormalized in strong disorder, and propose a method todo it. It does
not strongly alter the overall energy-dependence of the quantities calculated in the
previous sections, and in particular their anisotropies. However, itmay be important
when comparing to energy-resolved experimental measurements. Most importantly,
we show that it strongly a�ects the calculation of the 3D mobility edge. Finally, we
summarize our results and discuss their impact on recent and future experiments on
ultra-cold atoms in speckle potentials in the conclusion (Sec.8).

2. Matter waves in disordered media

2.1. Basics of quantum transport

Before turning to a more formal description, it is worth recalling the basic picture
of coherent transport in a disordered medium, which is genuinely understood in
a microscopic approach [81, 80]. Consider a wave of momentumk and velocity
� = r k �=~ [� (k) is the dispersion relation] propagating in a disordered medium. We
assume for the moment that the medium is isotropic and will drop this assumption
in the following sections. The wave propagation is governed by scattering from the
random impurities. Three typical energy-dependent length scalescan be identi�ed,
which characterize three basic e�ects induced by the disorder (see Fig. 1). First,
single scattering from impurities depletes thek-wave states, which can be seen as
quasiparticles in the disordered medium, with a �nite life-time � s(k ). Single scattering
hence de�nes the �rst length scale, namely thescattering mean-free path, l s = �� s,
which characterizes the typical length travelled by the wave before it loses the memory
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Figure 1. (Color online) Schematic view of the coherent transport of a matter
wave in a disordered medium, with special emphasis on the cha racteristic length
scales. The �gure shows a trajectory of a particle (solid mul ticolor line) in a two-
dimensional disordered landscape (blue surface). Along it s trajectory, the wave
loses the memory of its phase (encoded in the various colors a long the trajectory)
on the characteristic length l s (scattering mean-free path). Multiple scattering
then deects the trajectory and the wave loses the memory of i ts direction on
the characteristic length lB (transport mean-free path). Interference between
the multiple-scattering paths can �nally cancel di�usion ( strong or Anderson
localization). The wave then acquires an exponentially dec aying probability
pro�le (orange-green surface) of characteristic length L loc (localization length).

of its initial state, and primarily the memory of its initial phase. Then, multiple
scattering de�nes the second length scale, namely thetransport (Boltzmann) mean-
free path, lB , which characterizes the typical length travelled by the wave before it loses
the memory of its initial direction. In general, several scattering events are necessary
to signi�cantly deect the trajectories so that lB � l s. The two length scales are found
to be equal only in the white-noise limit (if it exists), where the wavelength is smaller
than the typical size of the impurities. In this case the scattering is isotropic and
the wave loses the memory of its phase and initial propagation direction at the same
time. Within the distance lB , the transport crosses over from ballistic to di�usive.
The average squared size of the wavepacket increases linearly in time, r 2 � 2dDB t
with D B = �l B =d the Boltzmann di�usion constant ( d is the space dimension) [2, 3].
Finally, di�usive transport allows the wave to return to its initial posit ion via loop
paths, and interference e�ects enter the game. Each loop can betraveled in one way
or the other, which generates two multiple-scattering paths alongwhich exactly the
same phase is accumulated during the successive scattering events. This coherent
e�ect holds for any speci�c realization of the disordered potential and thus survives
disorder averaging. Moreover, since these two paths are in phase, it gives rise to a
constructive interference of the matter wave, which signi�cantly enhances its return
probability. This e�ect induces coherent back-scattering and weak localization, which
leads to di�usive transport with a reduced di�usion coe�cient, D � < D B [6]. For
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strong enough disorder, the di�usion can completely cancel, an e�ect known as strong,
or Anderson, localization [22]. Then, the probability distribution of the wave decays
exponentially in space, hence de�ning the third characteristic length, L loc , the so-called
localization length.

The picture above shows that localization relies on two characteristics of the
medium: coherence along the multiple-scattering paths and returnprobablity to the
origin. One then understands that the strength of localization should be governed by
the interference parameterklB [82] (since the more the coherence length exceeds the
typical length of a loop path, the more signi�cant interference terms are) and by the
dimension of spaced (since the return probability decreases whend increases). As a
matter of fact, in 1D and 2D, any state is localized, although disorder correlations may
lead to strong energy-dependence of the localization length [83, 84, 28, 27]. In 1D, one
�nds that L loc � lB so that di�usion is strictly absent. In 2D, one �nds lB < L loc , and
di�usion shows up at intermediate distances and times. In 3D, the return probability
is �nite and localization appears only for su�ciently low values of klB . A mobility
edge shows up forklB � 1, which separates localized states (forklB . 1) from di�usive
states (for klB & 1) [23, 85].

The microscopic description outlined above o�ers a comprehensive picture of
transport and localization e�ects for coherent waves in disordered media. The next
subsections give mathematical support to this picture within a formalism adapted to
anisotropic disorder.

2.2. Green functions

Consider a quantum particle in a given homogeneous underlying mediumand
subjected to some static randomness. Its dynamics is governed by the single-
particle Hamiltonian H = H0 + V (r ), where H0 is the disorder-free, translation-
invariant, Hamiltonian of the underlying medium, and V (r ) is the time-independent
(conservative) disordered potential. Without loss of generality, the disordered
potential can be assumed to be of zero statistical averageb, V = 0. The evolution
of the wave function between t0 and t > t 0 is determined by the retarded single-
particle propagator G(t; t 0) � exp[� iH (t � t0)=~] �( t � t0), where the Heaviside step
function �( t � t0) accounts for temporal ordering. In the energy domainc, G is the
retarded Green operator

G(E) =
�
E � H + i0+ � � 1

; (1)

where E is the particle energy. It is the solution of the equation

G(E) = G0(E ) + G0(E ) V G(E); (2)

whereG0 = ( E � H0 + i0+ )� 1 is the disorder-free retarded Green function associated
to the unperturbed Hamiltonian H0.

2.3. Properties of the disordered medium

In a disordered medium, meaningful observable quantities correspond to statistical
averages over realizations of the disorder. When averaging over disorder realizations,

b Here we choose the zero of energies such that the disordered potential is of zero average, i.e. V = 0.
For any other choice of the energy reference all energies app earing below should be shifted by V , i.e.
replace E by E � V .
c Here, we use G(E ) � � i

~

R
d�G (� ) exp[ iE�= ~].
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some quantities can be written in terms of the average Green function G(E), for
instance the spectral function (see below). The Born series of Eq. (2), averaged over
the disorder, reads

G = G0 + G0V G0V G0 + G0V G0V G0V G0 + ::: (3)

since the �rst order term, G0V G0, vanishes It is convenient to represent this equation
diagrammatically:

= + + + ::: (4)

where a plain line is a Green function (grey forG0 and black for G), the vertices (black
dots) are scattering events and the dashed lines recall that theyare correlated. The
Dyson equation [86]

G = G0 + G0� G; (5)

with �( E ) the self energy, can be developped in powers ofV thanks to Eq. (3) so as
to determine �. The average Green function then reads

G =
�
G� 1

0 � �
� � 1

: (6)

If the disorder is homogeneous, i.e. if its statistical properties aretranslation-
invariant [ 87], then the disorder-averaged Green function is diagonal ink-spaced:

hk jG(E)jk0i � (2� )d � (k � k0)G(E; k)

=
(2� )d � (k � k0)

E � � (k) � �( E; k) + i0+ ; (7)

where � (k) is the dispersion relation associated toH0 and d the space dimension. In
addition, if the statistical properties of the disorder are isotropic, then G(E; k) �
G(E; jk j).

This features an e�ective homogeneous (i.e. translation-invariant) medium, which
contains all necessary information to determine the disorder average of any quantity
linear in G. It is the case of the spectral functionA(E; k) de�ned by [ 81]:

2� hkj� (E � H )jk0i � (2� )d � (k � k0)A(E; k): (8)

It contains all the information about the spectrum of the disordered medium. Using
Eq. (1), it yields

A(E; k) = � 2=
�
G(E; k)

�
: (9)

The spectral function can be interpreted (up to a numerical factor) as the (normalized)
probability density for an excitation of momentum k to have energy E andR

dE
2� A(E; k) = 1. It is also the unnormalized probability, per unit energy, to �nd

a particle of energyE with momentum k and
R

dk
(2 � )d A(E; k) = 2 �N (E), where N (E)

is the density of states per unit volume. For a particle in disorder-free space, it is
given by A0(E; k) = 2 �� [E � � (k )]. In the presence of disorder, Eqs. (7) and (9) yield

A(E; k) =
� 2� 00(E; k)

�
E � � (k ) � � 0(E; k)

� 2
+ � 00(E; k)2

; (10)
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Figure 2. (Color online) Schematic representation of the spectral fu nction
A(E; k ) of a particle of energy E = ~2k2

E =2m, as a function of the particle
momentum k. The vertical red line is the spectral function for the disor der
free particle A0(E; k ) = 2 �� [E � � (k )] with � (k ) = ~2k2=2m. In the
presence of disorder the spectral function is shifted and broadened (black
line).

with � 0 and � 00 the real and imaginary parts of �, respectively. As represented
schematically in Fig. 2, for a particle in free space [� (k) = ~2k2=2m, where m is
the mass of the particle] with a weak disordered potential, the spectral function
has a Lorentzian-like shape as a function ofk . It is centered in k0, solution of
E � � (k0) � � 0(E; k0) = 0. The quantity � 0(E; k0) thus describes the shift in energy of
the free-particle modes when they are dressed by the disorder. The quantity � 00(E; k)
is the energy width of the spectral function, which de�nes the scattering mean free
time

� s(E; k) = �
~

2� 00(E; k)
; (11)

or equivalently the scattering mean free pathl s(E; k) = j� j� s(E; k). It accounts for the
depletion of the free particle mode atE = � (k) due to scattering from the disordered
medium.

The spectral function, which contains all the information about th e relative
weight, the energy, and the life time of the quasi-particles, will be the key ingredient
in the following calculations. In addition, in ultracold atomic systems, a broad range
of energies are involved, but only the momentum distribution is usuallymeasured by
time-of-ight techniques. The spectral function relates the energy distribution ( DE )
and the momentum distribution ( Dk ) of the stationary particles in the disorder via

DE (E ) =
Z

dk
(2� )d A(E; k)Dk (k); (12)

d Here jk i is normalized so that
R dk

(2 � ) d jk ihk j = 1.
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which is normalized by
R

dE
2� DE (E ) = 1. The exact calculation of the spectral

function requires the knowledge of the real and imaginary parts ofthe self energy
� [see Eq. ( 10)], or, according to Eq. (8), the direct diagonalization of the disordered
Hamiltonian and an average over disorder realizations. This is, in general, a
complicated task, especially in dimensions larger than one and for anisotropic disorder.
In Secs.5 to 7, we work within the usual on-shell approximation [80], in which one
neglects the real-part of the self energy �0(E; k) and the structure of the spectral
function (see schematic dashed blue line in Fig.2). In Sec. 7.4, we describe a method
to go beyond the on-shell approximation, which amounts to renormalizing the energies
in a self-consistent way [79].

2.4. Propagation of the Wigner function

Some quantities are not simply related to the averaged Green function G and require
a more elaborate treatment. It is for instance the case of the spatial density and the
momentum distribution. More generally, consider the time evolution of the one-body
density matrix � (t) [81] or equivalently of the Wigner function [88]

W (r ; k; t) �
Z

dq
(2� )d ei q �r

D
k +

q
2

�
�
� � (t)

�
�
�k �

q
2

E
: (13)

The spatial density probability is given by n(r ; t) =
R

dk
(2 � )d W (r ; k; t) and the

momentum distribution by Dk (k ; t) =
R

dr W (r ; k ; t). It is fruitful to rewrite
Eq. (13) in a form indicating explicitly the initial conditions, using the relation
� (t) = �( t � t0)e� iH ( t � t 0 )=~ � (t0)e+ iH ( t � t 0 )=~ . When averaging over the disorder, if
there is no correlations between the initial state and the disorder,one �nds [63]

W (r ; k; t) =
Z

dr 0
Z

dk0

(2� )d W0(r 0; k0) Fk ;k 0(r � r 0; t � t0); (14)

where W0(r ; k) � W (r ; k ; t0) is the initial Wigner function and Fk ;k 0(R ; t) is the
phase-space propagation kernel, de�ned by (ift > 0)

Fk ;k 0(R ; t) �
Z

dE
2�

Z
dq

(2� )d

Z
d~!
2�

ei q �R e� i!t � k ;k 0(q; !; E ); (15)

and
hk+ jG(E+ )jk0

+ ihk0
� jGy(E � )jk � i � (2� )d � (q � q0)� k ;k 0(q; !; E ); (16)

with k � � k � q=2, k0
� � k0� q0=2, E � � E � ~!= 2, and (q, ! ) the Fourier conjugates

of the space and time variablese. As discussed above, disorder averaging features
a translational invariance in space so that Eq. (15) depends only on the di�erence
R = r � r 0. For the same reason, translational invariance, or equivalently momentum
conservation, imposes that the sum of the in-going wavevectors (k+ and k0

� ) on one
hand, and out-going wavevectors (k0

+ and k � ) on the other hand, are equal. It leads
to the condition on momentum transfer, q = q0, in Eq. (16).

As can be seen in Eqs. (14) and (15), the building block to describe wave
propagation in random media is the density propagator �, which can be represented
as a four-point vertex with k � and k0

� the left and right entries [see left-hand side

e We use the Fourier transform ~f (q; ! ) �
R

dr dt f (r ; t ) exp[ � i (q � r � !t )].
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of Eq. (18)]. The skeleton of this vertex is made by retarded and advanced Green
functions (respectively G, represented by the top line, andGy, represented by the
bottom line). It contains all possible correlations between the scattering events of
these Green functions. Following the same approach as used for the average �eld
propagator G [leading to the Dyson equation (5)], the vertex � = G 
 Gy is formally
constructed from the uncorrelated-average vertexG
 Gy. Without any approximation,
� is then governed by the so-called Bethe-Salpeter equation (BSE)[81]

� = G 
 Gy + G 
 Gy U � ; (17)

represented diagrammatically as

k �

k+

k0
�

k0
+

� =

k+

k �

+

k+

k � k0
�

k0
+

U � (18)

where U is the vertex function including all irreducible four-point scattering diagrams:

U = + + + ::: (19)

The �rst term in the BSE ( 17)-(18) describes uncorrelated propagation of the �eld and
its conjugate in the e�ective medium. The second term accounts for all correlations
in the density propagation.

Analogously to Eq. (6), the solution of the BSE (17)-(18) can be formally obtained
from the inverse, if it exists, of the four-point operator � � 1 � G 
 Gy U f [89]:

� = � � 1 G 
 Gy: (20)

More explicitly, the ( k ; k0) component of a four-point vertex � which ful�lls
momentum conservation is � k ;k 0(q; !; E ), such that hk+ ; k0

� j� jk0
+ ; k � i � (2� )d � (q �

q0)� k ;k 0(q; !; E ), and

� k ;k 0(q; !; E ) = (2 � )d � (k � k0) � f k (q; !; E )Uk ;k 0(q; !; E ); (21)

and
f k (q; !; E ) � G(E+ ; k+ )Gy(E � ; k � ): (22)

Therefore Eq. (20) reads

� k ;k 0(q; !; E ) = � � 1
k ;k 0(q; !; E )f k 0(q; !; E ); (23)

f In this context, the inverse of an operator � is de�ned by
R dk 1

(2 � ) d � k ;k 1 (q; !; E )� � 1
k 1 ;k 0(q; !; E ) =

(2� )d � (k � k 0).
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and can be expressed as a geometric series
� k ;k 0(q; !; E ) = (2 � )d � (k � k0)f k (q; !; E ) (24)

+ f k (q; !; E )Uk ;k 0(q; !; E )f k 0(q; !; E )

+
Z

dk1

(2� )d f k (q; !; E )Uk ;k 1 (q; !; E )f k 1 (q; !; E )

� Uk 1 ;k 0(q; !; E )f k 0(q; !; E ) + :::
The operator � � 1(!; E ) can be expressed in terms of the eigenvectors and associated
eigenvalues of the operator �(!; E ) which was used in Refs. [75, 90] to solve the BSE.
It then gives access, via Eq. (23) to �, which is the quantity of interest [see Eqs. ( 13)
to (15)].

In the following we will see that the intensity kernel � has a di�usion po le, which
takes the form

� k ;k 0(q; !; E ) =
1

2�N (E)
A(E; k)A(E; k0)

i~! � ~q�D (!; E ) �q
(25)

where D is the so-called dynamic di�usion tensor. The average spatial density
distribution is then given by

n(r ; t) =
Z

dk
(2� )d W (r ; k ; t)

=
Z

dE
2�

Z
dr 0D0(r 0; E )P(r � r 0; t � t0jE ) (26)

where D0(r 0; E ) =
R

dk 0

(2 � )d A(E; k0)W0(r 0; k0) represents the initial joint position-
energy density andP(r � r 0; t � t0jE ) is the probability of quantum transport, i.e.
the probability for a particle of energy E originating from point r 0 at time t0 to be
in r at t. It can be expressed thanks to Eqs. (14), (15) and (25) as the space-time
Fourier Transform of the di�usion pole 1 =[i~! � ~q�D (!; E )�q]. In the long-time limit,
we will encounter two di�erent situations. First, if lim ! ! 0 D (!; E ) = D (E) is a real
de�nite positive tensor, the di�usion pole of the intensity kernel ( 25) describes normal
di�usion with the anisotropic di�usion tensor D (E), and the probability of quantum
transport reads

P(R ; t ! 1j E ) =
e� R �D � 1 (E ) �R =4t

p
(4�t )d det f D (E)g

�( t): (27)

Second, if D (!; E ) � 0+ � i! � (E ) in the limit ! ! 0+ with � (E ) a real positive
de�nite tensor, the pole describes localization. It leads to exponentially localized
phase-space propagation kernel and probability of quantum transport at long distance.
In 2D,

P(R ; t ! 1j E ) =
K 0

� q
R � L � 2

loc (E ) � R
�

2� detf L loc (E )g
�( t) (28)

where K 0 is the modi�ed Bessel function, and in 3D,

P(R ; t ! 1j E ) =
e�

p
R �L � 2

loc (E ) �R

4� detf L loc (E )g
q

R � L � 2
loc (E ) � R

�( t): (29)

In both 2D and 3D, the fonction P(R ) decays exponentiallyg over the characteristic
length L u

loc (E ) along the eigenaxisu of the localization tensor L loc (E ) �
p

� (E ).

g Note that K 0(x) � e� x
p

�= 2x for x � 1.
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2.5. Conductivity and Einstein's relation

Finally, another quantity of interest for our problem { in parallel of t hose studied in
sections2.3and 2.4{ is the conductivity. In complete analogy to the usual conductivity
of charge in condensed-matter systems [86], we here de�ne the conductivity tensor �
in our system as proportional to the current-current correlation function, via the Kubo
formulah [6]:

� i;j (!; E ) =
Z

dk
(2� )d

dk0

(2� )d <
h

� i hkjG(E+ )jk0i � 0
j hk0jGy(E � )jk i

i
; (30)

where � i = ~ki =m is the velocity along axis i . As the structure of Eq. (30) is
reminiscent of the de�nition of the four-point vertex � [see Eq. ( 16)], calculations
of the conductivity tensor can also be represented diagrammatically. The skeleton
diagram, shown in Eq. (31), consists of the in and out-going velocities� and � 0 and of
a bubblemade of a retarded (top line) and an advanced (bottom line) Green function.
As for �, the scattering events of the top and bottom lines can be correlated [see for
example Eqs. (18) and (19)].

� � 0
(31)

Thanks to Einstein's classical argument, it was realized that, at thermal
equilibrium, in a gas submitted to a force, the di�usion and drift curre nts have to
be equal. This relation holds in general for quantum systems in the linear response
regime (see e.g. Ref. [81]). In particular, here we expect the DC conductivity and
di�usion tensors to be proportional : � (! = 0) / D . Calculating � B (! = 0) in the
Boltzmann and Born approximations for anisotropic disorder permits us to �nd the
proportionality factor (see details in appendix Appendix C.1), which in our system
yields

� =
2�N 0(E )

~
D : (32)

3. Disorder correlation function

Having recalled the general theory of quantum transport in disordered media, we now
specify the framework of our study. We will consider ultracold matter waves in speckle
potentials as realized in several experiments [91, 92, 93, 94, 95, 96, 32, 46, 47, 53, 57,
58].

In brief, a speckle pattern is created when a coherent light beam is shone through
a di�usive plate and focused by an optical lens of focal distancef (see Fig. 3 and
Ref. [97]). At each point of its surface, the di�usive plate imprints a random p hase
on the electric �eld. The resulting electric �eld in the right-hand side o f the lens
is then the summation of many complex independent random components, and is

h This corresponds to the more general de�nition � i;j (!; E ) =
R1

0 dt ei!t Tr f � (E � H )j i (x; t )j j (x)g
(j is the current operator) where the correlations between G and Gy have been dropped (see for
example Ref. [6]).
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Figure 3. (Color online) Schematic of the apparatus used to create an
optical speckle pattern. A laser beam is di�racted by a groun d-glass plate
di�user of pupil function I D (� ), where � � (� x ; � y ) spans the di�user, which
imprints a random phase on the various light paths. The inten sity �eld,
I (r ), observed in the focal plane of a converging lens, is a speckle pattern,
which creates a disordered potential V (r ) for the atoms.

therefore a Gaussian random variable according to the central limittheorem. The
potential acting on the atoms is proportional to the intensity patt ern (i.e. the square
modulus of the electric �eld). It is thus a spatially (non Gaussian) random variable.
It is mainly characterized by the two-point correlation function C(r ) = V (r )V (0).
For a �ne-grain di�user, the two-point correlation function C(r ) is determined by the
pupil function I D (� ) (i.e. the intensity pattern just after the di�usive plate) [ 97]. For
Gaussian laser beams of waistswx;y and plates with homogeneous transmissioni , we
have I D (� x ; � y ) = I 0e� 2( � 2

x =w 2
x + � 2

y =w 2
y ) . For the con�guration of Fig. 3, in the paraxial

approximation, we �nd
C(r ) = V 2

R c1sp(x; y; z) (33)

with

c1sp(x; y; z) =
exp

h
� x 2 =� ?

2
x

1+4 z2 =� k
2
x

i

q
1 + 4z2=� k

2
x

exp
�
�

y 2 =� ?
2
y

1+4 z2 =� k
2
y

�

q
1 + 4z2=� k

2
y

; (34)

� k x;y
= 4 � L f 2=�w 2

x;y and � ? x;y = � L f=�w x;y where� L is the laser wavelength. Herex
and y are the coordinates orthogonal to the propagation axisz, and z = 0 corresponds
to the focal plane. We choseVR �

p
C(r = 0) as de�nition of the amplitude of the

disorder.

3.1. Anisotropic Gaussian speckle (2D)

If the atoms are con�ned in a 2D geometry by a strong trapping potential along z
centered onz = 0, they experience a disordered potential with correlation function

i Here we assume that the di�user covers the full area lit by the Gaussian beam. If it is not the
case, a cut-o� has to be introduced in the pupil function, whi ch results into some oscillations in the
wings of the correlation function. In experiments, if the di �usive plate is su�ciently large, this e�ect
is small, and we disregard it in the following.
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C(x; y) = V 2
R c1sp(x; y; 0) = V 2

R exp
h
� 1

� 2
?

(x2 + � 2y2)
i
, with � ? = � ? x and � =

� ? x =� ? y the con�guration anisotropy factor. The Fourier transform give s the power
spectrum

~C(k) = V 2
R �

� 2
?

�
exp

"

�
� 2

?

4
(k2

x +
k2

y

� 2 )

#

: (35)

Without loss of generality, we assume that� � 1. When jk j � � ?
� 1
x ; � ?

� 1
y , we get

~C(k) ' V 2
R � � 2

?
� and we recover the power spectrum of white noise disorder, the only

relevant parameter beingV 2
R � ? x � ? y . The power spectrum (35) is obtained by shining

an anisotropic Gaussian beam on the di�usive plate. It also approximately holds in
the case of Ref. [53] where a quasi-2D Bose gas of widthlz is subjected to a speckle
created by anisotropic Gaussian laser beam shone with an angle� with respect to the
plane of atoms, if lz � � ? � � k . In this case� ' 1=sin� (� ' �= 6 for the experiment
of Ref. [53]).

3.2. Single speckle (3D)

In the 3D case, the disorder correlation function C(r ) is given by Eq. (33) with
wx = wy = w. The resulting speckle pattern has correlation lengths� k in the
propagation axis (z) and � ? in the orthogonal plane (x; y). In general 4f > w ,
and C(r ) is elongated alongz . The corresponding disorder power spectrum reads

~C(k) = V 2
R ~c1sp(k) (36)

with

~c1sp(k) = � 3=2 � ? � k

jk? j
e�

� 2
?
4 k 2

? e
� 1

4

� � k
� ?

� 2 k 2
z

k 2
? ; (37)

where k? is the projection of k in the (kx ; ky ) plane. It is isotropic in the ( kx ; ky )
plane but has a signi�cantly di�erent shape along the kz axis. In particular, it shows
a strong algebraic divergence whenkz = 0 and k2

x + k2
y ! 0. It features absence

of white-noise limit, which reects the long-range correlations of the potentialj . The
consequences of this property, obtained in the paraxial approximation, will be further
discussed in the following.

4. Single-scattering

We now focus on the �rst time scale introduced in Sec.2.1: The scattering mean free
time.

4.1. Scattering mean-free time

�( E ) = V G0(E )V : (38)

For homogeneous disorder,hk j�( E )jk0i = (2 � )d � (k � k0)�( E; k) with

�( E; k) =
Z

dk00

(2� )d
~C(k � k00) G0(E; k00); (39)

j We assume that the disorder extends to in�nity. In experimen ts the speckle pattern has a �nite
extension L , and the divergence is truncated at jkj � 1=L. If the parameters are such that those
components play a role, the inhomogeneity of the disorder ha s to be taken into account.



CONTENTS 15

100

101

102

103

10-4 10-3 10-2 10-1 100 101 102 103 104

t E
, “ k 

 V
R

2 / - h 
E s

^

E/Es^

t  µ  E1/2

t E,x

t E,y

1.6

1.8

2

2.2

0 0.5 1 1.5 2
q/p

E=Es^

4
5
6
7
8

0 0.5 1 1.5 2
q/p

E=10Es^

Figure 4. (Color online) On-shell scattering mean free time � E; k̂ �

� s(E; k E k̂ ) [Eq. ( 42) for jk j = kE ] along the k̂ x (solid red line) and k̂ y

directions (dotted blue line) for the 2D speckle potential d e�ned in Sec. 3.1
with � = 4. The solid black lines are the isotropic low-energy limit s
obtained for kE � ? � 1 [Eq. (43)] and the high-energy limit obtained for
kE � ? � � [Eq. (44)]. The insets show the angular dependance of � E; k̂

at two di�erent energies [with the parametrization k̂ � (cos�; sin � )]. The
points on the lines are color- and shape-coded to match thosein the insets.

where ~C(k) is the disorder power spectrum. Using Eq. (11) and the disorder-free
Green function, we thus have

� s(E; k) =
~

2�
1


 ~C(k � k0)
�

k 0jE

; (40)

where


:::

�
k 0jE =

Z
dk0

(2� )d ::: �
�
E � � (k0)

�
(41)

represents the integration over thek-space shell de�ned by� (k) = E . In the following
we discuss anisotropic properties of the scattering time for the 2Dcase (the 3D cases
are presented in Sec.7.1).

In the case of isotropic disorder [i.e. ~C(k � k0) = ~C(jk � k0j)] the scattering
time does not depend on the direction of the incoming wave vectork . In general,
the scattering is however anisotropic, i.e. the probability that the particle acquires a
direction k0 depends on the direction ofk0 relative to k. Isotropic scattering is found
only for � -correlated disorder In the case of anisotropic disorder we are interested
in, not only the scattering depends on the relative direction ofk0 and k, but it also
depends on the direction of the incoming wavek.

4.2. Anisotropic Gaussian speckle (2D)

Let us consider the 2D anisotropic speckle potential of geometrical anisotropy factor �
introduced in Sec.3.1. Replacing ~C(k) by Eq. (35) in Eq. ( 40) and using the disorder-
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free dispersion relation of the vacuum in Eq. (41), we obtain the scattering mean free
time

� s(E; k) =
~E � ?

V 2
R

2�
R

d
 k̂
0 e�

� 2
?
4 (kE k̂ 0

x � kx )2 e�
� 2

?
4 � 2 (kE k̂ 0

y � ky )2
; (42)

where k̂ � k=jk j is the unit vector pointing in the direction of k, 
 k̂ is the k-space
solid angle,kE �

p
2mE=~ is the momentum associated to energyE in free space and

E � ? � ~2=m� 2
? is the correlation energy of the disorder. The scattering time (42) is

plotted in Fig. 4 as a function of energy along the two main axes, forjk j = kE and for
a �xed geometrical anisotropy � = 4. Let us discuss some limiting cases and use the
notation � E; k̂ � � s(E; kE k̂ ).

In the low-energy limit, kE � ? � 1, we have

� E; k̂ =
~E � ?

V 2
R

�
�

+
~E

4�V 2
R

�
� +

2
�

+ 2

 

� k̂2
x +

k̂2
y

�

!

+ O
�

E 2

� 4E 2
� ?

� �
; (43)

which is displayed in Fig. 4 (left-hand-side black lines). In this limit the de Broglie
wavelength of the particle (2�=k E ) exceeds the correlation lengths of the disorder
(� ? x and � ? y ) and the speckle can be approximated by a white-noise (uncorrelated)

disordered potential. Equation (35) becomes~C(k) ' V 2
R � � 2

?
� (see Sec.3.1) and � E; k̂ is

isotropic, constant, and it only depends on the productV 2
R � ? x � ? y (up to corrections

of relative order E=E � ? ).
In the opposite, high-energy limit, kE � ? � � , the de Broglie wavelength of the

particle is much smaller than the smallest correlation length of the disorder and the
particle behaves `classically'. Since~C(k) has a wider extension in the k̂y direction
than in the k̂x direction (for � > 1), there are more scattering channels for particles
travelling along x so that � E; k̂ x

< � E; k̂ y
. More precisely, we �nd

� E; k̂ '
~E � ?

V 2
R

kE � ?p
�

q
k̂2

x + � 2k̂2
y ; (44)

which is shown in Fig. 4 (right-hand-side black lines). In particular, we �nd that in
the high-energy limit � E; k̂ /

p
E .

It is also interesting to study the anisotropy factor of the scattering time

� s �
� E; k̂ x

� E; k̂ y

; (45)

which is shown in Fig. 5 as a function of E=E � ? and � . As already mentioned � E; k̂
is isotropic in the white-noise limit, so that � s ' 1 for kE � ? � 1 (left-hand-side red
line in Fig. 5). When increasing the energy, the scattering time �rst increasesalong
the direction with the largest correlation length, i.e. the direction in w hich ~C(k) is
narrower (x for � > 1). Therefore, � s increases withE , for su�ciently small values of
E=E � ? , and we have� s > 1. Using Eq. (43), an explicit calculation yields

� s ' 1 +
E

E � ?

� 2 � 1
2� 2 + O

�
E 2

� 4E 2
� ?

�
: (46)

For kE � ? � � , using Eq. (44), we obtain

� s '
1
�

; (47)
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Figure 5. (Color online) Anisotropy factor of the scattering time, � s =
� E; k̂ x

=� E; k̂ y
, as a function of E=E � ? and � , for the 2D speckle potential of

Sec.3.1. The red lines are the low (� s ! 1) and high energy limits ( � s ! 1
� )

[see Eqs. (43) and (47)].

which shows that the anisotropy factor of scattering is proportional to the inverse of
the geometrical anisotropy (right-hand-side red line in Fig.5). Note that the classical
limit relation ( 47) is universal provided that the con�guration anisotropy factor is well
de�ned, i.e. that the disorder correlation function can be obtained by the anisotropic
homothety of an isotropic one,C(x; y) = Ciso (x; �y ). In this high-energy limit, � s < 1
(contrary to the low-energy limit case). Therefore, for any valueof � , � E; k̂ exibits an
inversion of anisotropy when the energy increases, typically atE � E � ? .

As described in section2.3the scattering time is the width of the spectral function.
It can be measured in a 2D experiment such as that of Ref. [53] by monitoring the
momentum distribution of an almost energy-resolved wavepacket [66]. To illustrate
this, a plot of the spectral function as a function of momentum and at �xed energy
is shown in Fig. 6. In each direction k̂ the spectral function peaks at 4� E; k̂ =~ and
has a width proportional to 1=�E; k̂ . The anisotropy of the scattering time is revealed
in the angle-dependence of both these quantities. It is more apparent in the angular
dependence of the amplitude, which shows marked peaks. At low energy, the maxima
are located on thekx axis, while at high energy, they are located on theky axis, which
signals inversion of the scattering anisotropy.

5. Boltzmann di�usion

We now turn to the behaviour of the spatial density in the incoherent di�usive
regime, which is characterized by the Boltzmann di�usion tensor D B (E ). We �rst
give an explicit formula for the di�usion tensor, in the framework of t he usual on-shell
approximation, and then apply it to 2D disorder (3D cases are discussed in Sec.7.2).
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Figure 6. (Color online) On-shell spectral function as a function of k for
the 2D speckle potential of Sec. 3.1, with VR = 0 :2E � ? and � = 4. The
top row shows the full spectral function. The bottom row show s cuts along
the kx (solid red lines) and ky axis (dotted blue lines). The two columns
refer to di�erent energies: E = E � ? (left) and E = 10E � ? (right), which
correspond to the dots and the squares in Fig 4, respectively.

5.1. Solution of the Bethe-Salpeter equation

In the independent scattering (Boltzmann) and weak disorder (Born) approximation,
only the �rst term in Eq. ( 19) is retained and the irreducible vertex function U equals
the disorder structure factor [81]: U ' UB = V 
 V and

Uk ;k 0(q; !; E ) ' UB k ;k 0 = ~C(k � k0); (48)

or equivalently

UB = : (49)

Then, incorporating Eq. (48)-(49) into the BSE ( 17)-(18) and expanding it in series
of U, one �nds

k �

k+

k0
�

k0
+

� =

k+

k �

+

k+

k0
�k �

k0
+

� (50)
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where the di�uson � reduces to ladder diagrams:

� = + + + ::: (51)

It describes an in�nite series of independent scattering events, which leads to Drude-
like di�usion.

In appendix Appendix A , explicit calculations are detailed. In brief, in the long-
time (! ! 0) and large-distance (jqj ! 0) limit the vertex � is the sum of a regular
term and a singular term [75, 90]:

� k ;k 0(q; !; E ) = � sing
k ;k 0(q; !; E ) + � reg

k ;k 0(0; 0; E): (52)

The regular part is given by

� reg
k ;k 0(0; 0; E) =

X

� n
E 6=1

1
1 � � n

E
f E; k � n

E; k � n
E; k 0f E; k 0; (53)

where f E; k � f k (q = 0 ; ! = 0 ; E) [see Eq. (22)] and � n
E; k (� n

E ) are the eigenvectors
(eigenvalues) of an integral operator involving the disorder correlation function and k

f E; k : Z
dk0

(2� )d
~C(k � k0) f E; k 0 � n

E; k 0 = � n
E � n

E; k : (54)

The regular part contributes to the �nite time and �nite distance pr opagation of
the density, which we disregard here. The existence of the singularpart is a direct
consequence of the Ward identity [98] which expresses the conservation of particle
number, and which guarantees that one of the eigenvalues of Eq. (54) is equal to one,
� n =1

E = 1 (see appendixAppendix A). In the framework of the on-shell approximation,
such that � (k) = � (k0) = E , in the long time and large distance limit (jqj; ! ) ! 0, the
vertex � is given by

� sing
k ;k 0(q; !; E ) =

2�
~N0(E )

 k (q; E)  k 0(q; E)
� i! + q�D B (E ) �q

(55)

with N0(E ) the disorder-free density of states, and

 k (q; E) =
A0(E; k)

2�

�
1 �

2�i
~

(56)

�
X

� n
E 6=1

� n
E

1 � � n
E

� E; k̂ � n
E; k̂

hq � � 0� E; k̂
0� n

E; k̂
0i k 0jE

�
;

where A0(E; k) = 2 �� [E � � (k)] is the disorder-free spectral function. Equation (55)
shows that the vertex � is dominated by the di�usion pole ( i~! � ~q �D B (E ) �q)� 1.

k This operator is in fact 1 � �, taken in the Born and Boltzmann approximations, where � ha s been
introduced in paragraph 2.4.
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The Boltzmann di�usion tensor D B (E ) has components [75]

D i;j
B (E ) =

1
N0(E )

� D
� E; k̂ � i � j

E

k jE
(57)

+
2�
~

X

� n
E 6=1

� n
E

1� � n
E

D
� E; k̂ � i � n

E; k̂

E

k jE

D
� E; k̂ � j � n

E; k̂

E

k jE

�
;

where � i = ~ki =m, � E; k̂ � � s(E; kE k̂ ) = ~=2� h~C(kE k̂ � k0)i k 0jE is the on-shell
scattering mean free time [see Eq. (40)], and h:::i k jE represents integration over the
k-space shell de�ned by� (k) = E [see Eq. (41)]. The functions � n

E; k̂
and the real-

valued positive numbers� n
E are the solutions of the integral eigenproblem (54), which

becomes, in the on-shell approximation (see appendixAppendix A),

2�
~

D
� E; k̂

0 ~C(kE k̂ � k0)� n
E; k̂

0

E

k 0jE
= � n

E � n
E; k̂

; (58)

normalized by 2�
~



� E; k̂ � n

E; k̂
� m

E; k̂

�
k jE = � n;m [75]. It follows from Eq. ( 57) that

the incoherent (Boltzmann) di�usion tensor D B (E ) is obtained from the two-point
disorder correlation function C(r ), which determines � E; k̂ [see Eq. (40)] as well as
� n

E; k̂
and � n

E [see Eq. (58)].

In the isotropic case (for details see appendixAppendix B), Eq. (58) is solved
by the cylindrical, Z � 1

l , (2D; see appendix Appendix B) or spherical, Y m
l , (3D)

harmonics, the same level harmonics [i.e. with the samel] being degenerate in� n
E .

Then, it follows from the symmetries of the cylindrical/spherical harmonics that
only the �rst term in Eq. ( 57) plus the p-level harmonics (Z � 1

1 in 2D and Y m
1

with m = � 1; 0; 1 in 3D) couple to � and contribute to D B (E ). Incorporating the
explicit formulas for � n

E; k̂
and � n

E [see Eqs. (B.1) to ( B.7)], we then recover well-known

expressions for isotropic disorder [61, 62, 63, 65].
In the anisotropic case, harmonics couple, and the� n

E; k̂
are no longer

cylindrical/spherical harmonics.

5.2. Anisotropic Gaussian speckle (2D)

Consider again the 2D anisotropic speckle potential of Sec.3.1. The �rst step in
the calculation of D B is to determine the eigenfunctions � n

E; k̂
and the associated

eigenvalues� n
E of Eq. (58). We solve Eq. (58) numerically, by a standard algorithm of

diagonalization, with 29 = 512 points, regularly spaced on thek-space shelljk j = kE .
The di�usion tensor is diagonal in the basis made by the symmetry axes of the
correlation function (35): f ûx ; ûy g.

The eigenvalues and some eigenfunctions obtained numerically are shown in Fig. 7
for various values ofE=E � ? . As discussed above, we �nd� n =1

E = 1. For E � E � ? ,
only the �rst term in the right-hand side of Eq. ( 57) contributes to the di�usion
tensor since all � n> 1

E are vanishingly small. When the energy increases, the values
of the coe�cients � n> 1

E increase. It corresponds to an increase of the weight of the
terms associated to the orbitals with n > 1 in Eq. (57), and a priori all the orbitals
with n > 1 might have an increasing contribution. However, the symmetry properties
of the functions � n

E; k̂
cancel the contributions of most of them, and only the orbitals

with n = 2 and 3 do contribute (see below).
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Figure 7. (Color online) Top row: Eigenvalues of Eq. ( 58) for the 2D
speckle potential of Sec.3.1 with � = 4. Bottom row: Angular dependence
of the eigenfunctions � n

E; k̂
for n = 1 (dashed black line), 2 (solid red line)

and 3 (dotted blue line). We use the parametrization k̂ � (cos�; sin � ).
The di�erent columns refer to di�erent energies (indicated on top of the
�gure).

In the low energy limit, one can develop Eq. (35) in powers of jk j. Up to order
O(E 2=� 4E 2

� ?
), the �rst three eigenfunctions are given by:

� 1
E; k̂

= 1 �
E

2� 2E � ?

h
1 + ( � 2 � 1)k̂2

x

i
+ O

�
E 2

� 4E 2
� ?

�
; (59)

with eigenvalue � 1
E = 1;

� 2
E; k̂

= k̂x

� p
2 + B2

E
� 2E � ?

�
+ O

�
E 2

� 4E 2
� ?

�
(60)

with eigenvalue � 2
E = E=2E � ? ; and

� 3
E; k̂

= k̂y

� p
2 + B3

E
� 2E � ?

�
+ O

�
E 2

� 4E 2
� ?

�
(61)

with eigenvalue � 3
E = E=2� 2E � ? , where B2 and B3 are constant values that do

not intervene in the following. In this limit the numerical results agree very well
with the analytical �ndings (which for clarity are not shown on Fig. 7). In the
very low energy limit, the disorder power spectrum becomes isotropic and constant,
~C(k) ' V 2

R �� 2
? =� , [see Sec.3.1 and Eq. (35)]. The orbitals � n

E; k̂
are thus proportional

to the cylindrical harmonics, which are exact solutions of Eq. (58) in the isotropic case
(see appendixAppendix B, and use the parametrizationk̂x = cos � and k̂y = sin � ). In
contrast to the isotropic case where the values of� n

E are degenerated in a givenl-level,
here we �nd that the degeneracy inside al level is lifted for any anisotropy � 6= 1
[see the values of� 2;3

E below Eqs. (60) and (61)]. When the energy further increases,
the anisotropy plays a more important role and the harmonics are more and more
distorted (see Fig.7). However their topology remains the same, and in particular the
number of nodal points and their positions are unchanged. In the following, we thus
refer to Z � 1

l -like orbitals.
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Figure 8. (Color online) Components of the di�usion tensor: D x
B (soild

red line) and D y
B (dotted blue line) for the 2D speckle potential of

Sec. 3.1 with � = 4. Solid black lines are limit values at small E=E � ?

[Eqs. (62) and (63)], with the isotropic white-noise limit D x
B (E ) = D y

B (E ) �
~�EE � ? =m�V 2

R . For large E=E � ? we �nd D B (E ) � E 5=2 (see text); a �t
of the numerical data gives the prefactors D x

B = 4 :43E 5=2=V2
R E 1=2

� ? and
D y

B = 1 :24E 5=2=V2
R E 1=2

� ? (see dotted black lines). The inset shows the
transport anisotropy factor � B = D x

B =Dy
B .

Incorporating the values of � n
E , � n

E; k̂
and � E; k̂ in Eq. (57), we can determine

the Boltzmann di�usion tensor. Figure 8 shows the resulting eigencomponents of the
di�usion tensor. In the low energy limit ( E � E � ? ), using Eqs. (43), (60) and (61), we
�nd that the �rst term in the right-hand side of Eq. ( 57) gives the leading contribution
to D B (E ) (of order E=E � ? ). This contribution is isotropic owing to the isotropy of � E; k̂
at low energy and of the underlying medium. At very low energy, in thewhite-noise
limit, we recover an isotropic di�usion tensor D x

B (E ) = D y
B (E ) � ~�EE � ? =m�V 2

R .
The scaling D u

B (E ) / E is universal for 2D disorder in the white-noise limit (when
it exists). The Z +1

1 -like orbital � 2
E; k̂

contributes to the next order of D x
B and the

Z � 1
1 -like orbital � 3

E; k̂
to D y

B . Up to order O(E 3=� 6E 3
� ?

), we obtain

D x
B (E ) =

~
m

E 2
� ?

V 2
R

�
�E

�E � ?

+
E 2

�E 2
� ?

9� 2 + 3
8�

+ O
�

E 3

� 6E 3
� ?

��
; (62)

and

D y
B (E ) =

~
m

E 2
� ?

V 2
R

�
�E

�E � ?

+
E 2

�E 2
� ?

3� 2 + 9
8�

+ O
�

E 3

� 6E 3
� ?

��
; (63)

which are displayed on Fig.8 (left-hand-side solid lines). When the energy increases,
the anisotropy �rst comes from the anisotropic contribution of th e scattering time
� E; k̂ , and from the lift of the degeneracy between� 2

E and � 3
E . When the energy

further increases, the harmonics are distorted, { but their symmetries (i.e. periodicity
and parity) are preserved (see Fig.7). Hence, for the same reasons as in the isotropic
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Figure 9. (Color online) Boltzmann transport anisotropy factor � B =
D x

B =Dy
B as a function of E=E � ? and � for the 2D speckle potential of

Sec. 3.1. The inset shows the high energy asymptotic value (cut at
E = 10 4E � ? ). The dotted red line in both the �gure and the inset is
� .

case (see appendixAppendix B) only the Z � 1
1 -like orbitals couple to � in Eq. (57) and

contribute to D B while the others don't. The associated� n
E increase (see Fig.7), the

weight of the second term in Eq. (57) increases, and the components of the di�usion
tensor show a very di�erent behavior in the large-E limit. For kE � ? � � , we found
� E; k̂ / kE (see Sec.4.2). In addition, we �nd numerically a weak topological change
of the orbitals with energy for E=E � ? & 102. Therefore the evaluation of D B with
E is mainly determined by the normalization condition [see formula below Eq. (57)],
which yields � n

E; k̂
/ 1=

p
kE . Then, assuming the scaling 1� � n

E / 1=E, also veri�ed

numerically, we obtain D u
B (E ) / E 5=2, which matches the numerical results (see dotted

black lines in Fig. 8). This scaling is similar to that found for isotropic disorder [62].
As shown in Fig. 8, the change of slope between the low- and high-energy regimes is
di�erent in the two directions. For this reason, the anisotropy factor of the di�usion
tensor, � B = D x

B =Dy
B shows a nonmonotonous behaviour versusE, with a marked peak

(see inset of Fig.8).
The Boltzmann transport anisotropy factor � B is shown in Fig. 9 for various

con�guration anisotropies � . As it is well-known, the scattering and transport mean
free times are di�erent quantities in correlated disorder, due to angle-dependent
scattering [99, 100, 81]. In particular, in the 2D speckle we consider, we do not
�nd any inversion of the anisotropy of the di�usion, contrary to th e scattering time,
i.e. the componentD x

B (E ) of the di�usion tensor is always larger than the component
D y

B (E ). For large values ofE=E � ? , the Boltzmann transport anisotropy � B reaches a
constant value (see the inset of Fig.8 for a cut at � = 4), which increases with the
geometrical anisotropy � (see inset of Fig.9). This asymptotic value is larger than �
for small � and smaller for larger � . Therefore the anisotropy of the di�usion in the
classical regime is not simply related to the con�guration anisotropy.
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The two distinct regimes found in the behaviour of D B and the non-trivial
anisotropy e�ects make the Boltzmann di�usion regime in anisotropic 2D potentials
very interesting for future experiments. Those properties couldbe probed by imaging
directly the atoms in the 2D speckle (as in Ref. [53]) and controlling the width of the
atomic energy distribution.

6. Weak and strong localization

We now consider interference e�ects, which lead to weak and strong localization.
We �rst describe the quantum corrections (Sec. 6), then the self-consistent theory
(Sec. 6.1), and apply it to the 2D speckle potential (Sec. 6.2). The 3D case, which
follows the same route, is discussed in Sec.7.3.

subsectionWeak localization correction
We calculate corrections to Boltzmann di�usion by taking into account quantum

interference terms between the multiple-scattering paths. Those interferences appear
when the correlated scattering events do not occur in the same order in the propagation
of the �eld and its conjuguate. This is diagrammatically translated int o crossing
correlation lines as in the second term of Eq. (19) for example. In the weak scattering
regime only the two-point correlations are retained in the scattering diagrams and
the leading scale-dependent corrections to the classical conductivity are given by the
maximally crossed diagrams [101, 75, 90, 6]: the cooperon [Eq. (64)] and the �rst two
Hikami boxes [Eqs. (65) and (66)].

� � (X ) =
Jk =~ Jk 0=~

X (64)

� � (H 1 ) =
Jk =~ Jk 0=~

X (65)

� � (H 2 ) =
Jk =~ Jk 0=~

X (66)

where the cooperonX is the sum of maximally crossed diagrams

X = + + + ::: (67)

and

Jk =~
(68)
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is the renormalized vertex function (see appendixAppendix C.2).
Using time-reversal invariance [23, 102, 98, 81], the cooperonX can be expressed

in terms of the di�uson � [de�ned in Eq. ( 51)]

X k ;k 0(q; !; E ) = � k � k 0
2 + q

2 ; k 0� k
2 + q

2
(k + k0; !; E ): (69)

The di�usion pole carried by � in the limit ( !; q) ! 0 leads to a divergence ofX when
!; k + k0 ! 0. In appendix Appendix C.3 we translate those diagrams into equations,
and show that

� � (!; E ) = �
� B (E )

�N 0(E )

Z
dQ

(2� )d

1
� i~! + ~Q � D B (E ) � Q

: (70)

Using Einstein's relation (32) we then obtain the dynamic di�usion tensor D � (!; E ) =
D B (E ) + � D (!; E ), with [ 75]

� D (!; E )
D B (E )

= �
1

�N 0(E )

Z
dQ

(2� )d

1
� i~! + ~Q � D B (E ) � Q

: (71)

Note that the quantum corrections � D (!; E ) do not explicitly depend on the disorder
[i.e. on ~C(k)], but only on the Boltzmann di�usion tensor D B (E ) [75]. In other
words, in this approach, Boltzmann incoherent di�usion sets a di�using medium, which
contains all necessary information to compute coherent termsl . In particular, it follows
from Eq. (71) that the weak localization quantum correction tensor � D (!; E ) has the
same eigenaxes and anisotropies as the Boltzmann di�usion tensorD B (E ). Thus the
anisotropy can be removed by rescaling distances along the transport eigenaxesu byp

D u
B =Dav

B (i.e. momenta are rescaled by
p

D av
B =Du

B ) with D av
B � detf D B g1=d the

geometric average of the Boltzmann di�usion constants. Since �D is always negative
in the limit ! ! 0+ , the weak localization correction features slower di�usion than the
one obtained from incoherent di�usion. Equivalently, as long as the correction (71) is
small, one can write

D B (E )
D � (!; E )

= 1 +
1

�N 0(E )

Z
dQ

(2� )d

1
� i~! + ~Q � D B (E ) � Q

; (72)

which is the lowest-order term of a perturbative expansion of 1=D � (!; E ).

6.1. Strong localization

The quantum interference correction (71) has been derived perturbatively and is
therefore valid as long as the correction itself is small. In order to extend this
approach and eventually describe the localization regime whereD � vanishes, Vollhardt
and W•ole [ 102, 98] proposed to self-consistently replaceD B (E ) by the dynamic
di�usion tensor D � (!; E ) in the right-hand side of Eq. (72). For isotropic scattering
this procedure amounts to resumming more divergent diagrams than the cooperon
(which contain a square of a di�usion pole), thus contributing to localization [98, 80].
Generalizing this standard approach to anisotropic disorder yields

D B

D � (! )
= 1 +

1
�N 0(E )

Z
dQ

(2� )d

1
� i~! + ~Q � D � (! ) � Q

: (73)

l This property is a consequence of the on-shell approximatio n.



CONTENTS 26

In dimension d � 2 the integral in the right-hand side of Eq. (73) features ultraviolet
divergence. Since the di�usive dynamics is relevant only on length scales larger
than the Boltzmann mean free path lu

B (E ) � d
p

m=2E D u
B (E ) along each transport

eigenaxis, we regularize this divergence by setting an upper ellipsoidal cut-o� of radii
1=luB in the integral domainm . It corresponds to an isotropic cut-o� in the space
rescaled according to the anisotropy factors ofD B as described above.

6.2. Anisotropic Gaussian speckle (2D)

We now solve the self-consistent equation (73) for the inverse dynamic di�usion tensor
in the 2D case. In the long time limit ! ! 0+ , the unique solution of Eq. (73) is of the
form D � (!; E ) � 0+ � i! L 2

loc (E ), where L loc (E ) is a real positive de�nite tensor. As
described in Sec.2.4, it leads to the exponentially decreasing propagation kernel (28).
Solving Eq. (73) then yields the anisotropic localization tensor,

L loc (E ) = lav
B (E )

s
D B (E )
D av

B (E )

�
e�k E l av

B (E ) � 1
� 1=2

(74)

where lav
B (E ) � d

p
m=2E D av

B (E ). The eigenaxes of the localization tensor are thus
the same as those of the Boltzmann di�usion tensor and its anisotropy factor is the
square root of that of D B (E ), i.e. � loc � L x

loc =Ly
loc =

p
� B .

We now apply the self-consistent theory to our running example: the 2D
anisotropic speckle potential with correlation function (35). Including the results
for the Boltzmann di�usion tensor D B (E ) obtained in Sec.5.2 into Eq. ( 74), we �nd
the localization tensor L loc (E ). Figure 10 presents the eigencomponents ofL loc in its
eigenbasisf ûx ; ûy g as a function of energy, for a con�guration anisotropy of � = 4
and two di�erent amplitudes of the disorder, VR =E� ? = 0 :2 and 2. At low energy
(E � E � ? ; VR ; V 2

R =E� ? ), using Eqs. (62) and (63), we �nd

L x;y
loc (E ) = � ?

E 3
� ?

V 3
R

� 3=2

�
2E
E � ?

�
1 +

�EE � ?

2V 2
R

+
E

E � ?

(18 � 3)� 2 + (18 � 3)
16� 2

+ O
�

E 2

� 4E 2
� ?

;
E 2

� 2V 2
R

;
E 2E 2

� ?

V 4
R

� �
; (75)

where the upper sign holds for direction x, and the lower sign for direction y.
Equation (75) corresponds to the solid black lines in Fig.10. As D B is almost isotropic
for E=E � ? . 1 (see Fig.8), L loc is also almost isotropic in the whole range presented
in Fig. 10. Equation (75) describes an isotropic localization tensor with an anisotropic
correction which is signi�cant only if VR =E� ? & � 3=2=

p
� 2 � 1 (' 2 for � = 4). At

higher energy, whenkE lav
B (E ) = 2 mD av

B (E )=~ & 1, we expect

L u
loc (E ) '

2m
p

D av
B (E )D u

B (E )
kE ~

e�mD av
B (E )=~ ; (76)

which is plotted as dotted black lines in Fig. 8. According to Eqs. (62) and
(63) (retaining only the lowest-energy term), this regime appears for E=E � ? &
m Although somewhat arbitrary the factor unity between the cu t-o� radius and 1 =luB (E ) is justi�ed
by the agreement we �nd with another approach in the isotropi c case, provided that the real part of
the self energy is included, see Sec. 7.4.2.
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Figure 10. (Color online) Components of the localization tensor L x
loc (solid

red line) and L y
loc (dotted blue line) for the 2D speckle potential of Sec. 3.1,

with � = 4 and VR = 0 :2E � ? and 2E � ? . The solid black lines are the
limiting behaviour for small values of E=E � ? [Eq. (75)] and the dotted
ones for high values of E=E � ? [Eq. (76)]. The dashed grey lines indicate
typical values of the imaging resolution ( L res ) and the system size (L sys )
in ultracold-atom experiments, see text at the end of Sec. 6.2.

(�= 2� )(VR =E� ? )2. When � = 4 (as in Fig. 10), it gives E=E � ? & 0:015 for
VR =E� ? = 0 :2 andE=E � ? & 1:5 for VR =E� ? = 2. As predicted by the scaling theory of
Anderson Localization [23] and explicitely seen in Eq. (76), the 2D localization length
increases exponentially at large energy (hence the limited energy range in Fig. 10).
Therefore measuring it experimentally with ultracold atoms [54, 103, 104] is very
challenging and can be done in a rather narrow energy window, in whichL loc is larger
than the resolution of the imaging system (L res) but smaller than the size of the
sample (L sys). This is illustrated for � ? = 0 :25� m on Fig. 10 by the grey dashed lines
corresponding to L res ' 15� m and L sys ' 2 mm, which are typical values extracted
from Refs. [53, 58].

One can �nally note that 2D speckle potentials bear a classical percolation
threshold at energy Ep ' � VR =2 [54]. In the classical regime (1=k < � ? x ; � ? y ),
genuine Anderson localization has to be distinguished from classical trapping, which
happens forE < E p . However, classical percolation is not relevant for the parameters
used in Fig. 10. Indeed, for jVR j � 2E � ? (as in the �gure) and for E < E p , we have
E . jVR j=2 � E � ? , so that k� ? y � k� ? x = k� ? . 1, which is not in the classical
regime.

7. Three-dimensional anisotropic disorder

In this section we apply the formalism introduced in Secs.4 to 6 to the 3D speckle
potential of Sec. 3.2. We discuss single-scattering (Sec.7.1), Boltzmann di�usion
(Sec.7.2) and localization (Sec.7.3) properties and the position of the mobility edge
(Sec.7.4).
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Figure 11. (Color online) Scattering mean free time � E; k̂ in the 3D case

[Eq. (77)] with � k =� ? = 5 :8 with jk j = kE , in the ( k̂ x ; k̂ y ) plane (solid red
line) and along the k̂ z direction (dotted blue line). The black lines are the
low-energy [kE � ? � 1, see Eq. (79)] and the high energy [kE � ? � 1, see
Eq. (80)] limits. Note that in both limits � E; k̂ is anisotropic, although for
kE � ? � 1, the anisotropy is very small, � s ' 1:002. The insets show the
angular dependence of� E; k̂ at di�erent energies [with � = ( k̂ ; k̂ z )]. The
points on the lines are color- and shape-coded to match thosein the insets.

7.1. Single-scattering

Inserting Eqs. (36) and (37) into Eq. ( 40), we �nd the scattering mean free time

� s(E; k) =
~E � ?

V 2
R

(2� )2=kE � ?
R

d
 k̂
0 ~c1sp(kE k̂

0
� k)=� 3

?

; (77)

which is shown in Fig. 11 for jk j = kE [we use the de�nition � E; k̂ � � s(E; kE k̂ )].

Since ~C(k) is isotropic in the (kx ; ky ) plane, � E; k̂ only depends on the polar angle

� between k and k̂z and not on the azimutal angle � . We �nd that the scattering
time is an increasing function of energy. It is also shorter for particles travelling along
the z direction ( � E; k̂ z

< � E; k̂ ?
) for all values of E . As for the 2D case analyzed in

Sec.4.2, this is due to the wider extension of ~C(k) in the plane (kx ; ky ), which o�ers
more scattering channels to particles travelling alongz. In contrast to the 2D speckle
case however,� E; k̂ shows no inversion of anisotropy.

In the low energy limit ( kE � ? � 1), � E; k̂ converges to a constant value. In
contrast to the 2D case, it signals the absence of a 3D white-noise limit n . This can be
attributed to the strong anisotropic divergence of ~C(k) when jk j ! 0, which reects
the long-range correlations of the disorder (see Sec.3.2). More precisely, for jk j� ? � 1,

n In the case of a white-noise limit in 3D, the scattering time i s isotropic with the scaling � E; k̂ / 1=
p

E

(i.e. l sE; k̂ is constant). This can be found by inserting a constant ~C(k ) in Eq. ( 40).
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we have

~c1sp(k ) ' � 3=2 � ? � k

jk j
~c(k̂ ) = � 3=2 � ? � k

jk j
e

� 1
4

� � k
� ?

� 2 k̂ 2
z

k̂ 2
?

jk̂? j
: (78)

Replacing this expression into Eq. (77) we then �nd

� E; k̂ =
~E � ?

V 2
R

4
p

�
R

d
 k̂
0 ~c(k̂

0
� k̂ )

; (79)

which is independent ofE . Equation (79) is plotted as solid black lines on the left-
hand side of Fig. 11. Note that � E; k̂ does not become strictly isotropic in this limit.
However, the residual anisotropy of the scattering time, found from Eq. (79) and
from the anisotropy of ~c(k̂ ) in Eq. ( 78), is very small, and practically unobservable
(� E; k̂ ?

=�E; k̂ z
' 1:002). When the energy increases, the scattering time in the

(x; y) plane is the �rst to deviate signi�cantly from the low-energy behav iour at
E � E � k (= 3 � 10� 2E � ? for the parameters of Fig. 11), while the scattering time
in the z direction increases only atE � E � ? . This can be understood again by the
narrower width of the power spectrum ~C(k) in the kz direction.

In the high-energy limit ( kE � ? � 1) the k-space shell integral of Eq. (77), which
is done on a sphere of radiuskE containing the origin, can be reduced to integrating
~c1sp on the plane which is tangent to the sphere at the origin. We then �nd

� E; k̂ '
~E � ?

V 2
R

� ?

� k

4
p

�k E � ?

R
d� d� 0 e�

� 2 k̂ 2
z + � 02

4 e
� 1

4

� � k
� ?

� 2 � 2 k̂ 2
?

� 2 k̂ 2
z + � 02

p
� 2 k̂ 2

z + � 02

: (80)

In particular, we �nd � E; k̂ ?
= ~E � ? kE � ? =2V 2

R

p
� , � E; k̂ z

= ~E � ? kE � 2
? =V2

R �� k (both
shown as the right-hand-side solid black lines in Fig.11). The anisotropy of the
scattering then becomes signi�cant for the parameters of Fig.11, � E; k̂ ?

=�E; k̂ z
=

p
�� k=2� ? in this limit. The high-energy scaling � E; k̂ / kE , which was also found

in our 2D speckle, is quite universal: as long as the power spectrum is of �nite integral
in all the planes (lines in 2D) crossing the origin, the procedure described above can
be applied to Eq. (40). Then � E; k̂ only depends on the dispersion relation� (k) and,
in particular, it is independent of the space dimension.

7.2. Boltzmann di�usion

The Boltzmann di�usion is obtained, as in the 2D case analyzed previously, by
solving Eq. (58) numerically and incorporating the results into Eq. (57). For the
diagonalization of the integral operator (58) we use 27 � 27 = 128 � 128 points
regularly spaced on thek-space shelljk j = kE . We have studied several values of
the con�guration anisotropy � k=� ? , which all show the same behaviour discussed
below.

The eigenvalues� n
E of Eq. (58) for di�erent energies, as well as the topography

of the eigenvectors of Eq. (58) that dominate D x
B (bottom row), D y

B (2nd row), and
D z

B (3rd row) are shown in Fig. 12 for � k =� ? = 5 :8. Similarly as for the 2D case,
we fond that � n

E decays from 1 to 0 whenn increases, more sharply for low energy.
The � n

E; k̂
are topologically similar to the spherical harmonics at all energies, i.e.they



CONTENTS 30

Figure 12. (Color online) Three dimensional case with � k =� ? = 5 :8.
Eigenvalues of Eq. (58) at various energies indicated on the �gure (top row).
Topography of the eigenvectors � n

E; k̂ , at the same energies, which mainly

contribute to D x
B (bottom row), D y

B (2nd row) and D z
B (3rd row) respectively

[with the parametrization k̂ = ( k̂ x ; k̂ y ; k̂ z ) � (sin � cos�; sin � sin �; cos� )].
The values of n are indicated on the �gure, the red lines locate the nodal
lines. The points are color- and shape-coded to match those of Fig. 11.

show similar nodal surfaces, but the associated� n
E are not degenerated in a given

l-like level. More precisely, due to the cylindrical symmetry of the power spectrum,
the value of � n

E associated to theY + m
l -like and Y � m

l -like orbitals are the same for a
given m, but the degeneracy between the di�erent values ofjmj is lifted.

Figure 13(a) shows the resulting eigencomponents of the di�usion tensor in the
3D case for� k =� ? = 5 :8. It is isotropic in the ( x; y) plane, because of the cylindrical-
invariance of the correlation function ~C(k) around the axis k̂z . For the same symmetry
reasons as in the isotropic case (see appendixAppendix B) and as in the 2D case, only
the p-level-like orbitals couple to � . For kE � ? � 1, we �nd that D x;y

B is dominated
by the �rst term in Eq. ( 57) and D z

B by the Y 0
1 -like orbital ( n = 2 at all energies).

For kE � ? � 1, the situation changes: whileD z
B is still dominated by the Y 0

1 -like
orbital, D x

B is now dominated by theY +1
1 -like orbitals and D y

B by the Y � 1
1 -like orbitals

(respectively n = 6 and 5 at E = 50E � ? in Fig. 12) with a contribution of the Y � 1
3 -like

orbitals increasing with E . At high energy, we �nd that the nodal lines of the Y � 1
3 -

like orbitals calculated numerically are displaced compared to the associated spherical
harmonics. Therefore their contribution in Eq. (57) does not cancel out for symmetry
reasons. Those properties explain the main features ofD B .

Firstly, we �nd that the di�usion tensor is larger along axis z (D z
B > D x;y

B ) for all
values ofE [see Fig.13(a)], and the anisotropy of D B is thus reversed with respect to
that of � E; k̂ (we recall that we found � E; k̂ z

< � E; k̂ ?
for any E, see Sec.7.1). This is

due to the fact that the ( Y 0
1 -like) orbitals contributing to D z

B are associated to values
of � n

E larger than those contributing to D x;y
B (in Fig. 12, the � n

E; k̂
are numbered by

decreasing eigenvalues).
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Figure 13. (Color online) (a) Boltzmann di�usion coe�cients along the
transport eigenaxes (eigencomponents of D B ) for the 3D con�guration
with � k =� ? = 5 :8. The dotted lines are power-law �ts ( D u

B / E  u ) to
the data in the low and high energy limits. The inset show the t ransport
anisotropy factor D z

B =Dx;y
B , and the crosses match those of the right panel.

(b) Anisotropy factors � B = D z
B =Dx;y

B and � loc = L z
loc =Lx;y

loc =
p

D z
B =Dx;y

B

as a function of the con�guration anisotropy � = � k =� ? , at E=E � ? =
6 � 10� 3 ; 6 � 10� 1 and 60. The dotted line is a �t of all the data which
gives � B = 0 :59� + 0 :21� 2 .

Secondly, ~C(k) shows a strong anisotropic, infrared divergence in the paraxial
approximation (see Secs.3.2 and 7.1). Following-up with the scaling of ~c1sp(k),
Eq. (78), used to show that � k̂ ;E is independent of energy forkE � ? � 1, and inserting
it into Eq. ( 58) and the associated normalization, we �nd that � n

E does not depend on
E, and � n

E; k̂
is of the form ' n (k̂ )=

p
kE . Then, all terms in Eq. (57) are topologically

unchanged and scale asE at low energy. The anisotropy ofD B thus persists down to
arbitrary low values of E and D u

B / E , as observed in the left-hand side of Fig.13(a)
for kE � ? � 1 (i.e. E � E � ? ). This is another manifestation of the absence of white-
noise limito.

Thirdly, for kE � ? � 1, we found � E; k̂ /
p

E . Then, assuming weak topological
change of the orbitals and the scaling 1� � n

E / 1=E (con�rmed numerically), we get
� n

E; k̂
/ 1=kE and D u

B (E ) / E 5=2. This scaling is con�rmed in Fig. 13(a) by �ts to the

data for E � E � ? (right-hand-side dotted lines). Remarkably, in spite of the di�erent
contributing terms in Eq. ( 57) at low and high values of E , the transport anisotropy
is nearly independent ofE with D z

B =Dx;y
B ' 10 [see inset of Fig.13(a)].

We have repeated the same study for various values of the con�guration
anisotropy, � = � k =� ? . They all show a similar behaviour as a function of energy
as reported in Fig. 13(a) for � = 5 :8. In particular, we found the same scalings
with energy and a di�usion anisotropy � B = D z

B =Dx;y
B that is nearly independent of

energy. In Fig. 13(b), we plot � B versus� for three values of the energy. We �nd that
the di�usion anisotropy monotonously increases with the con�guration anisotropy, as
could be intuited. In order to guess a �tting function for � B , one may rely on a
simpli�ed model of random walk in an anisotropic lattice of anisotropy factor � . If
the transition time is governed by the travel duration between two wells, one expect

o A 3D white-noise limit would lead to the scaling D u
B (E ) /

p
E and an isotropic limit at low energy.
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� B / � . If it is governed by the trapping time, one expects� B / � 2. In our continuous
model of disorder, the situation may be expected to be somehow intermediate. For
our considered range of� , we �nd that the �t � B = 0 :59� + 0 :21� 2 reproduces well our
results as shown in Fig.13(b).

7.3. Localization

In order to analyze strong localization e�ects, we now solve the self-consistent
equation (73) for the 3D case in the long time limit ( ! ! 0). A threshold energy
Ec (mobility edge) appears, solution of D av

B (Ec) � detf D B (Ec)g1=3 = ~=
p

3�m .
For E < E c, one �nds D � (!; E ) � 0+ � i! L 2

loc (E ) for ! ! 0, where L loc (E )
is a real positive de�nite tensor. It characterizes exponential localization within
the propagation kernel (29) with the anisotropic localization tensor L loc (E ). The
localization tensor is diagonal in the same basis as the Boltzmann di�usion tensor
D B . Explicitely, we have

L u
loc = L av

loc

s
D u

B

D av
B

; (81)

where L av
loc = det f L loc (E )g1=3 is the unique solution of

L av
loc

lav
B

h
1 �

�
3

(kE lav
B )2

i
= arctan

�
L av

loc

lav
B

�
: (82)

For E > E c, D � (!; E ) converges to a real de�nite positive tensor when! ! 0.
It describes anisotropic normal di�usive dynamics, characterizedby the propagation
kernel (27) where D (E) is replaced by the quantum-corrected di�usion tensor

D � (E ) � lim
! ! 0

D � (!; E ) (83)

=

"

1 �
~2

3�m 2 f D av
B (E )g2

#

D B (E ):

As already mentionned in Sec.6 the behavior of L loc and D � is completely
determined by that of D B in our approach. The anisotropies ofL loc (E ) are the
square roots of those ofD B (E ) [see Eq. (81)] and the anisotropies of D � (E ) are
the same as those ofD B (E ) [see Eq. (83)]. Therefore, as for D B , for the 3D
con�guration, the anisotropy factors of L loc and D � are nearly independent ofE . The
localization anisotropy � loc = L z

loc =Lx;y
loc is plotted versus the con�guration anisotropy

on Fig. 13(b). At low energy, using the scaling of D u
B (E ) obtained previously we

predict L u
loc (E ) /

�
D u

B =Dav
B

� 1=2
E 3=2. When E increases,L u

loc (E ) grows and �nally
diverges at Ec. In the di�usive regime the quantum corrections are signi�cant only
close toEc, while for higher values ofE , D � (E ) ' D B (E ). Therefore, in the high E
limit we have D u

� (E ) / (D u
B =Dav

B )E 5=2 as found previously (see Sec.7.2).

7.4. About the 3D mobility edge

The self-consistent approach used above is expected to fairly describe the quantum
transport properties [75, 80, 62]. It gives some quantitative estimates consistent with
numerical calculations [105] and experimental data [106, 56]. However it has two main
aws.
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On the one hand, it predicts that, just below the mobility edge, the localization
length diverges asL u

loc (E ) / (Ec � E )� � with � = 1 and, just above the mobility edge
Ec, the corrected di�usion tensor increases asD u

� (E ) / (E � Ec)s with s = 1. Those
values of the critical exponents� and s are consistent with the prediction s = � (d� 2)
of the scaling theory [23, 107] and they are independent of the choice of cut-o� that we
made. However, it is known, from advanced numerical calculations on the Anderson
model [108, 109] and from experiments [52], that they are not correct. The correct
value of the critical exponents in 3D is � = s = 1 :58 � 0:01 [108, 109]. In order to
reproduce this value, it seems necessary to take into account thefractal nature of the
wave functions at the critical point [ 110], which is beyond the self-consistent theory
of AL.

On the other hand, in contrast to critical exponents, the mobility edge, Ec is a
non-universal quantity and should be determined from microscopictheory. In this
respect, the on-shell approximation is questionnable because it neglects the strong
modi�cation of the spectral function induced by the disorder. This renormalizes
energies and may thus strongly a�ect the value ofEc.

7.4.1. Energy renormalization In order to improve the self-consistent method, one
could in principle use the more sophisticated approach of Ref. [105], which does
incorporate the spectral function, and provides values ofEc in agreement with
numerical calculations in the Anderson model. For continuous disorder, one may rely
on the approach of Refs. [60, 64], which has been applied to several standard models of
disorder. However, since we are interested in continuous disordered potentials with �ne
and anisotropic structures, these methods are hardly practicable. From a numerical
point of view, estimates of necessary ressources seem out of present-day possibilities.
In order to overcome this issue, we have proposed in Ref. [79] an alternative method
based on the assumption that the leading term missing in the on-shellapproximation
is the real part of the self energy,

� 0(E; k) � P
Z

dk0

(2� )d

~C(k � k0)
E � � k 0

; (84)

where P is the Cauchy principal value, see Eq. (39). A quasi-particle of momentum k
has an energyE, solution of E � � (k) � � 0(E; k) = 0. Here, we incorporate � 0(E; k)
into the theory self-consistently and by averaging, in �rst approximation, its k-angle
dependence. It amounts to replace the on-shell prescription by� (k ) = E 0 � E � �( E )
with

�( E ) �
1

4�

Z

� (k )= E � �( E )
d
 k̂ � 0(E; k): (85)

Within this approach, all previous quantities [ � s(k ); D B ; L loc ; D � ] are now regarded as
functions of E 0 instead of E . It does not change the overall energy dependence of the
quantities discussed above, but may be important for direct comparison to energy-
resolved experimental measurements. In the following we concentrate on the 3D
mobility edge Ec. It is the solution of Ec � �( Ec) = E 0

c, whereE 0
c is determined using

the on-shell approach and � can be regarded as an energy shift, which renormalizes
the energies.

7.4.2. Isotropic disorder Here, we validate the above approach by a direct
comparison to an alternative method applicable to isotropic disorder. Consider a
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Figure 14. (Color online) Comparison of the mobility edges as calculat ed
with the SCBA method (the full black squares are the results o btained
by A. Yedjour and B. van Tiggelen in Ref. [ 64], that we reproduce here),
with the on-shell method ( E 0

c, red crosses) and with the renormalized self-
consistent approach (corrected Ec, thick blue circles), for an isotropic 3D
speckle potential. When comparing to Fig. 8 of Ref. [ 64], note that in
Ref. [64] the reference of energy is the minimum value of the disorder and
that we have the correspondencesE � = E � =2 and U = V 2

R .

speckle disorder obtained inside an integrating sphere lit with a laser beam, the real-
space correlation function of which reads [62, 64]

C(r ) = V 2
R

sin (jr j=� )2

(jr j=� )2 ; (86)

with � the correlation length. The associated power spectrum (see ap-
pendix Appendix B) is isotropic and bears the same infrared divergence as the
anisotropic model of 3D disorder considered in this work as well as other con�gu-
rations [79]: ~C(k) / 1=jkj when jk j ! 0. Figure 14 shows the on-shell mobility edge
E 0

c calculated as in Sec.7.3 (see also Ref. [62]), the renormalized mobility edge Ec

calculated by our method (see Sec.7.4.1), and the mobility edge found using the self-
consistent Born approximation (SCBA) in Ref. [64]. As it is clearly seen in Fig. 14,
the disorder-induced modi�cation of the spectral function plays a major role for the
prediction of the mobility edge. While the on-shell mobility edge, E 0

c, is above the
statistical average of the potential (V = 0 for our choice of energy reference), the
corrected mobility edge,Ec, as calculated either by the method of Ref. [64] or by our
self-consistent renormalized approach, is below the statistical average of the potential.
In addition, we �nd that the renormalized self-consistent approach predicts values of
Ec in very good agreement (within 5 � 7%) with those of Ref. [64]. These results
support our method to estimate Ec.

7.4.3. Anisotropic disorder We now apply our method to anisotropic disorder in the
3D single-speckle con�guration. The mobility edge is found by searching the root of
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di�erent values of VR (indicated on the �gure). The horizontal solid blue
line is the mean value and the dashed blue lines represent thestandard
deviation around the mean, both calculated over the k̂ -solid angle.
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Figure 16. (color online) On-shell ( E 0
c) and renormalized (Ec) mobility

edges versus the disorder amplitude VR for the 3D (single-speckle) case
with � k =� ? = 5 :8.

the self-consistent equation (85). Note that the averaging of the angular dependence
of � 0 in Eq. (85) is justi�ed a posteriori by the weak k̂-angle variations of � 0 found
around its mean value at Ec (with standard deviations less than 10� 15%). This is
illustrated in Fig. 15, which presents the angular variations obtained numerically in
the calculation of �( Ec), for typical values of VR and for an anisotropy of � k =� ? = 5 :8.

The on-shell (E 0
c) and renormalized (Ec) mobility edges are shown in Fig.16. As

for isotropic disorder, it is eye-catching that the shift of the energy states completely
changes the behavior of the mobility edge. While the on-shell mobility edge, E 0

c, is
above the statistical average of the potential, the renormalized mobility edge, Ec, is
below. This behaviour seems very robust for 3D speckle disorder. It was found for
isotropic 3D speckles (see Ref. [64] and Sec.7.4.2), as well as other models of speckle
potentials with structured correlations [79].
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8. Conclusions

Disordered potentials with �nite-range correlations are often characterized by a
counter-intuitive and interesting behaviour [32, 28, 29, 25, 30, 79]. These are directly
related to the microscopic statistical properties of the potential, hallmarked by the
disorder correlation function. In this paper we have focused on anisotropy e�ects
in 2D and 3D correlated disorder. We have quantitatively studied the transport
and localization of matter waves by using mesoscopic transport theory [81] and a
standard on-shell self-consistent perturbative approach [75]. The latter, �rst pioneered
by Vollhardt and W•olfe [ 102, 98], remains the most powerful, quantitative, microscopic
approach to Anderson localization in dimension higher than one (d > 2), in spite of
the unavoidable problem of describing the physics inside the critical region in d > 2.
Within this approach, we have characterized incoherent di�usion, quantum corrected
di�usion and localization tensors versus the particle energy and found rich di�usion
and localization properties. We have supported the general theory with application
to speckle potentials in 2D and 3D.

In the 2D case, we have considered an anisotropic Gaussian correlation function
as used in Refs. [53, 54]. The energy-dependences of relevant quantities are studied:
For E � E � ? , in the white-noise limit, we �nd � E; k̂ / 1 for the scattering time and
D B / E for the Boltzmann di�usion tensor, which are both isotropic. For E � E � ? ,
we �nd � E; k̂ /

p
E and D B / E 5=2. As a general rule, the anisotropy of the disorder

(� ), of the scattering time (� s) and of Boltzmann di�usion ( � B ) are all di�erent. The
scattering time shows an inversion of anisotropy from� s > 1 (for � > 1) at low energy
to � s = 1 =� (< 1) at high energy. In contrast, the transport anisotropy is always� B > 1
(for � > 1) but shows a strongly nonmonotonic behaviour as a function of energy with
a marked maximum at E � E � ? . The anisotropy of localization is simply the square
root of that of transport. For typical experimental parameter s, we found that it is
very small in observable regimes, except for very strongly anisotropic disorder. So far,
experiments have only studied the classical regime [53, 54] and our study o�ers scope
for future studies of quantum transport and localization in 2D speckle potentials.

In the 3D case we have considered the strongly anisotropic correlation function
of speckle potentials obtained with a single laser. Here, the energy dependence of
relevant quantities are the following: For E � E � ? , we �nd � E; k̂ / 1 and is slightly
anisotropic, while D B / E and is signi�cantly anisotropic, which is due to anisotropic
suppression of the white-noise limit in the model we used. ForE � E � ? , we �nd
� E; k̂ /

p
E and D B / E 5=2, both being anisotropic. We have also analyzed the

anisotropy of transport as a function of the con�guration anisotropy. We found that
it is almost independent of the energy, and has a the behaviour� B = 0 :59� + 0 :21� 2.
In our approach, the anisotropy of the localization tensor is the square root of that
of the Boltzmann di�usion tensor. We have also studied the behaviour of the 3D
mobility edge. To do so, we have extended the on-shell approach and proposed a way
to renormalize energies. We have found a striking agreement of ourmethod with the
more involved method based on SCBA developed in Ref [64] for isotropic disorder. The
e�ect of renormalizing energies does not alter the overall energy dependence of the
quantities discussed above, but may be important for direct comparison to energy-
resolved experimental measurements. As regards the mobility edge, we have found
that the renormalization of energies has both a quantitative and qualitative impact.
In particular, we �nd that, as for isotropic disorder, the renorma lized mobility edge is
below the average value of the disorder.
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Finally, our results and method may provide a guide line to future experiments
investigating the so-far unexplored e�ect of anisotropy in quantum transport of matter
waves. In the case of ultracold atoms, to which our study directly applies, the
transport properties can be probed by direct imaging of the atomsand control of
the energy. First experimental studies of Anderson localization of3D matter waves
in anisotropic speckle potentials have been reported [57, 58]. Our study is directly
relevant to these experiments. For a detailed comparison of theoretical predictions
and experimental observations, see Ref [79]. In addition, the e�ects discussed in this
manuscript can be expected for other kinds of waves and/or other models of disorder,
and are particularly relevant to new systems where the disorder correlations can be
controlled [10, 57, 58, 67, 112, 113, 114].
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Appendix A. Intensity kernel

In this section we show the step-by-step calculation of the long-time and large-distance
limit of the intensity kernel given by Eqs. ( 52), (53) and (55) and the di�usion tensor
Eq. (57).

As explained in Sec.2.4, the solution of the Bethe-Salpeter equation (17)-(18)
can be obtained by inverting the operator � � 1 � G 
 Gy U [see Eq. (20)]. To this
aim, we diagonalize the operatorG 
 Gy U in the (q; ! ) = (0 ; 0) limit. We thus solve

Z
dk0

(2� )d UE
k ;k 0 f E; k 0 � n

E; k 0 = � n
E � n

E; k (A.1)

where UE
k ;k 0 = Uk ;k 0(q = 0 ; ! = 0 ; E) and f E; k = G(E; k)Gy(E; k) [see Eq. (22) for

q = 0 and ! = 0].

Appendix A.1. Preliminary remark

First, let us notice that we have

f E; k =
� s(E; k)

~
A(E; k); (A.2)

whereA(E; k) is the spectral function de�ned in Eq. (9) and � s(E; k) is the scattering
mean free time de�ned in Eq. (11).

Appendix A.2. Properties of Eq. (A.1)

The main properties of Eq. (A.1) and of its eigenfuctions are listed below:
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(i) The eigenvalues� n
E and the eigenvectors� n

E; k of Eq. (A.1) are real.

Proof. By multiplying Eq. ( A.1) by Gy(E; k), we obtain

Z
dk0

(2� )d M E
k ;k 0 Gy(E; k0) � n

E; k 0 = � n
E Gy(E; k) � n

E; k ; (A.3)

whereM E
k ;k 0 � Gy(E; k) UE

k ;k 0 G(E; k0). The latter is Hermitian since Gy(E; k)� =
G(E; k) and UE

k ;k 0 is real and symmetric. Therefore all the eigenvalues� n
E are

real. By taking the complex conjugate of Eq. (A.3), dividing by G(E; k) and
comparing it to Eq. ( A.1), we obtain that the functions � n

E; k are real.

If UE
k ;k 0 is positive-de�nite, the eigenvalues � n

E are positive. In particular,
this is always true in the Born approximationp. When UE

k ;k 0 is symmetric

and positive-de�nite, we can write it as UE
k ;k 0 =

R
dk 00

(2 � )d Qk ;k 00dk 00QT
k 00;k 0, where

dk 00 > 0 and Q is an orthogonal operator. For any vector of components
xk , we have

R
dk

(2 � )d
dk 0

(2 � )d xk M E
k ;k 0xk 0 =

R
dk

(2 � )d dk jyk j2 > 0, where yk �
R

dk 0

(2 � )d Gy(E; k0)xk 0Qk 0;k . It shows that M E
k ;k 0 is positive de�nite. Its eigenvalues

� n
E are therefore positive.

(ii) The eigenvectors � n
E; k can be chosen to satisfy the orthonormalization condition

Z
dk

(2� )d f E; k � n
E; k � m

E; k = � n;m : (A.4)

Proof. This is an immediate consequence of the fact that, according to
Eq. (A.3), the functions Gy(E; k) � n

E; k are eigenfunctions of the Hermitian
operator M E

k ;k 0.

(iii) The eigenvectors � n
E; k satisfy the completeness relation

f E; k

X

n

� n
E; k � n

E; k 0 = (2 � )d � (k � k0): (A.5)

Proof. This follows from the fact that the eigenfuntions Gy(E; k) � n
E; k of the

matrix M E
k ;k 0, Eq. (A.3), form a complete basis.

(iv) The irreducible vertex function UE
k ;k 0 can be expressed as

UE
k ;k 0 =

X

n

� n
E � n

E; k � n
E; k 0: (A.6)

Proof. We multiply both terms of Eq. ( A.1) by � n
E; k 0 and sum overn. Equation

(A.6) is recovered by using the completeness relation Eq. (A.5).

p In this case, UE
k ;k 0 = ~C(k � k 0) is symmetric and positive-de�nite. This latter property i s assured

for any disordered potential by the fact that the power spect rum ~C(k ), being the Fourier Transform
of the autoconvolution product of the potential, is positiv e for any k .
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(v) The most important property of Eq. ( A.1) is that one of the eigenvalues is

� n =1
E = 1 ; (A.7)

and the corresponding eigenvector is proportional to the inversescattering mean
free time:

� n =1
E; k =

p
~

[� s(E; k)] � 1
q

dk 0

(2 � )d A(E; k) [� s(E; k)] � 1
: (A.8)

Proof. This is a direct consequence of the Ward identity [98]:

�� k (q; !; E ) =
Z

dk0

(2� )d Uk ;k 0(q; !; E ) � Gk (q; !; E ); (A.9)

where �� k (q; !; E ) = �( E+ ; k+ )� � y(E � ; k � ) and � Gk (q; !; E ) = G(E+ ; k+ )�
Gy(E � ; k � ). For ( q; ! ) = (0 ; 0) it becomes

�� k (0; 0; E) =
Z

dk0

(2� )d UE
k ;k 0 f E; k �� k (0; 0; E): (A.10)

When comparing Eq. (A.10) to Eq. ( A.1), we obtain that �� k (0; 0; E) =
� i~=� s(E; k) is a solution of Eq. (A.1) with unit eigenvalue. Using Eq. (A.2)
and the orthonormalization condition ( A.4) one then easily �nds Eq. (A.8).

(vi) The eigenfunctions � n
E; k have the parity properties:

� n =1
E; � k = � n =1

E; k (A.11)

� n
E; � k = � � n

E; k for n > 1: (A.12)

Proof. This is a consequence of the parity of the vertexUE
k ;k 0, in particular,

UE
� k ;� k 0 = UE

k ;k 0. Using Eq. (A.6) we have
P

n � n
E � n

E; k � n
E; k 0 =P

n � n
E � n

E; � k � n
E; � k 0, which can only be satis�ed if the eigenfunctions� n

E; k have a
well de�ned parity. The eigenfunction � n =1

E; k is given by Eq. (A.8) and it is even. In
addition, using Eqs. (A.2) and (A.8) in the orthonormalization condition ( A.4),
we have

R
dk

(2 � )d A(E; k) � n
E; k = 0 for n > 1. Which shows that � n

E; k are odd
functions of k.

Appendix A.3. Solution of the BSE

Note �rst that, if Eq. ( A.1) could be diagonalized with all eigenvalues di�erent from
one (� n

E 6= 1 for all n), it is straightforward to show, using Eq. (A.5), that we would
have � � 1

k ;k 0(0; 0; E) =
P

n [1=(1 � � n
E )]f k � n

k � n
k 0. In this case no di�usion would be

observed. As noticed above, however, the conservation of particle number, through
the Ward identity, imposes that there is one eigenvalue equal to one. As there is
no other conserved quantity in the system we are considering, we can assume that
the eigenvalue� = 1 is not degenerated and that there is a �nite gap between this
eigenvalue and the rest of the spectrum when (q; ! ) ! 0 [115, 116]. This suggests the
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following ansatz for the solution of the BSE (17)-(18) [see Eq. (20)], in the small (but
non-zero) q and ! limit:

� k ;k 0(q; !; E ) = f E; k
� 1

k (q; !; E )� 1
k 0(q; !; E )

� (q; !; E )
f E; k 0

+
X

� n
E 6=1

1
1 � � n

E
f E; k � n

E; k � n
E; k 0f E; k 0;

(A.13)

where � 1
k (q; !; E ) and 1 + � (q; !; E ) are solutions of the eigenequation

Z
dk0

(2� )d UE
k ;k 0 f k (q; !; E ) � 1

k 0(q; !; E )

=
�
1 + � (q; !; E )

�
� 1

k (q; !; E ): (A.14)

The latter are the �rst eigenvalue and eigenvector at small (q; ! ), and reduce to
Eqs. (A.7) and (A.8) when (q; ! ) = (0 ; 0), respectively. We then write f k (q; !; E ) =
f E; k + Fk (q; !; E ) the expansion of f k (q; !; E ). Making the ansatz � 1

k (q; !; E ) =P
n an (q; !; E )� n

E; k , we �nd

� (q; !; E ) =
X

n

an (q; !; E )
a1(q; !; E )

Z
dk

(2� )d � 0
E; k Fk (q; !; E ) � n

E; k : (A.15)

Finally, the coe�cients an (q; !; E ) are found by imposing that Eq. (A.13) solves
the BSE. After some algebra one �nds a1(q; !; E ) = 1 and an (q; !; E ) =

� n
E

1� � n
E

R
dk

(2 � )d � 0
E; k Fk (q; !; E ) � n

E; k , for n > 1.

Appendix A.4. On-shell approximation

We now proceed to the on-shell (weak disorder) approximation, and we neglect the
e�ect of disorder on the spectral function. Equation (A.2) becomes

f E; k �
� E; k̂

~
A0(k ; E ); (A.16)

where � E; k̂ is the on-shell scattering mean free time [� E; k̂ � � s(E; kE k̂ )], A0(k ; E ) =
2� � [E � � (k)] and � (k) are, respectively, the disorder-free particle spectral function and
dispersion relation. An explicit calculation of the small (q; ! ) expansion off k (q; !; E ),
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givesq

Fk (q; !; E ) =

(
i� 2

E; k̂

~2

�
~! � q � r k � (k)

�

+
2� 3

E; k̂

~3 ~!
�
q � r k � (k)

�
�

� 3
E; k̂

~3

�
q � r k � (k)

� 2

)

� A0(k ; E ) + O(! 2; q3; q2! ): (A.17)

Then, making use of the parity properties of the functions � n
E; k̂

[Eqs. (A.11) and

(A.12)], � E; k̂ (even function of k̂ ) and r k � (k) (odd function of k), we �nally

obtain � 1
k (q; !; E )f E; k = 2 � k (q; E)=

q
~h� � 1

E; k̂
i where  k is given by Eq. (56) and

� (q; !; E ) = 2 N0(E ) [i~! � ~q�D (E) �q] =~h� � 1
E; k̂

i with the di�usion tensor of Eq. ( 57).

The solution of the BSE is thus given by Eq. (52) with Eqs. ( 53) and (55). Note
that this expression for the di�usion constant is quite general (only the on-shell
approximation has been made), provided that the full irreducible vertex function
U is considered in the eigenequation (A.1). In Sec. 5.1 the Born and Boltzmann
approximations are made U = UB [see Eq. (58)].

Appendix B. Isotropic disorder

For disorder with isotropic correlation function, we de�ne, as in Ref. [62], p(k; � ) �
~C(kjk̂ � k̂

0
j) = ~C

�
2kj sin(�= 2)j

�
, where� is the angle between the unit vectorŝk and k̂

0

and k � j k j = jk0j. In this case, rotation invariance ensures that the eigenproblem (58)
is solved by cylindrical (2D) or spherical (3D) harmonics.

Appendix B.1. Two-dimensional case

In the 2D isotropic case, inserting the cylindrical harmonicsZ0 = 1, Z +1
l = cos(l� )

and Z � 1
l = sin( l� ) into Eq. ( 58), we �nd

� l;m
E =

R2�
0 d� p (kE ; � ) cos(l� )

R2�
0 d� p (kE ; � )

; (B.1)

where l � 0 and m 2 f� 1; +1 g are integer numbers. In particular, we
�nd � l =0

E = 1 in agreement with Eq. (A.7). They are doubly-degenerated
for l > 0 and the corresponding normalized eigenfunctions are proportional

q The small ( q; ! ) expansion of f k (q; !; E ) requires special attention in the on-shell approximation .
Let us consider for instance the �rst order term in ! . We �nd Fk (q; !; E ) � ~!

2 [f E; k Gy (E; k ) �
f E; k G(E; k )]. In the on-shell approximation this equation appears to g o as the square of a � -function,
and one has to handle this divergence correctly [ 86]: we assume that f E; k G(E; k ) � 2� c � (E � � (k )),
where the factor c is calculated by imposing that the integral over energy of f E; k G(E; k ) remains
invariant, i.e. c =

R dE
2� f E; k G(E; k ). With this method, we �nd f E; k G(E; k ) = i (� 2

E; k̂
=~2 )A 0 (k ; E )

and therefore Fk (q; !; E ) � ~! i (� 2
E; k̂

=~2 )A 0 (k ; E ), as in Eq. ( A.17). Following the same method, we

can calculate the other terms in Eq. ( A.17). Finally note that Eq. ( A.17) also assumes that � s(E; k )
is a smooth function of k , such that r k � s(E; k ) � 0.
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to the orthonormal cylindrical harmonics, with the prefactor det ermined by the
normalization condition ( A.4):

� l =0
E; k̂

= Z0(� )

s R2�
0 d� 0p(kE ; � 0)

�
; (B.2)

and

� l; � 1
E; k̂

= Z � 1
l (� )

s R2�
0 d� 0p(kE ; � 0)

�
: (B.3)

In the calculation of the di�usion constant, it is actually possible to see that only the
�rst term plus the l = 1 terms (with m = � 1; +1) in the summation of the right-hand
side of Eq. (57), contribute to the di�usion coe�cient. More precisely the on-she ll
scattering mean free time� E; k̂ does not depend onk̂ , � x (respectively � y ) is a 2� -
periodic and even (resp. odd) function of� , and Z +1

l (resp. Z +1
l ) is 2�=l -periodic and

even (resp. odd). Therefore, when performing the angular averaging of the product
� E; k̂ � i � n

E; k̂
in Eq. (57), one �nds that only the term with l = 1 and m = +1 (resp.

m = � 1) couples to � x (resp. � y ) and contribute to D x
B (resp. D y

B ). Then, inserting
Eqs. (B.1), (B.2) and (B.3) into Eq. ( 57), we �nd

DB (E ) =
~E

mN 0(E )
1

R2�
0 d� (1 � cos� ) p(kE ; � )

: (B.4)

This formula agrees with the result of Ref. [62], obtained by a di�erent approach.

Appendix B.2. Three-dimensional case

In the 3D isotropic case, proceeding in a similar way, we �nd that the eigenvalues of
Eq. (58) are given by

� l;m
E =

R�
0 d� sin � p (kE ; � ) Pl (cos� )

R�
0 d� sin � p (kE ; � )

; (B.5)

with the index l = 0 ; 1; :::; + 1 and m = � l; � l + 1 ; :::; + l and wherePl (cos� ) are the
Legendre polynomials. The eigenvalues are (2l +1)-degenerated and the corresponding
normalized eigenfunctions are propotional to orthonormal spherical harmonics, with
the prefactor determined by the normalization condition (A.4):

� l;m
E; k̂

= Y m
l (�; � )

s

2�
Z �

0
d� 0 sin� 0p(kE ; � 0); (B.6)

In the calculation of the di�usion constant, using the same type of symmetry
arguments as in the 2D case, we �nd that only the l = 1 (with m = � 1; 0; 1) terms
couple to � and contribute in the summation of Eq. (57). We thus �nd

D B (E ) =
2

3�
~E

mN 0(E )
1

R�
0 d� sin �

�
1 � cos�

�
p(kE ; � )

; (B.7)

which agrees with the expression found in Ref. [62].
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Figure B1. (Color online) Isotropic 3D speckle. Eigenvalues of Eq. (58)
(top row) for the isotropic 3D speckle with power spectrum gi ven by
Eq. (B.8). Topology of the main eigenvectors � n

E; k̂ contributing to D x
B

(bottom row), D y
B (2nd row) and D z

B (3rd row) [with the parametrization
k̂ = ( k̂ x ; k̂ y ; k̂ z ) � (sin � cos�; sin � sin �; cos� )], the red lines locate the
nodal lines. From left to right E = 6 :3 � 10� 3E � , E = 6 :3 � 10� 1E � and
E = 63E � .

Appendix B.3. Three-dimensional isotropic speckle

A simple model of 3D speckle with isotropic correlation properties, is found when
considering the light pattern obtained inside an integrating sphere lit by a laser beam
of wavevector kL . The real-space correlation function is given in Eq. (86) and the
associated power spectrum

~C(k) =
V 2

R � 2� 2

jk j
�(2 � � 1 � j k j) (B.8)

is isotropic. Although this isotropic model is unrealistic from an experimental point
of view, it is useful here in two respects. First, it bears the same divergence as
the anisotropic 3D models of disorder considered in Sec.3: ~C(k) / 1=jk j when
jk j ! 0. Second, several properties of this model are analytical and known [61, 62],
and therefore provides a test for our numerical methods.

As done previously, for the diagonalization of the integral operator (58) we use
27 � 27 points regularly spaced on thek-space shelljk j = kE . Some eigenfunctions and
eigenvalues of Eq. (58) are presented in Fig.B1. We indeed �nd spherical harmonics
[see Eq. (B.6)], and the eigenvalues� n

E agree well with theory [Eq. (B.5) with ~C
given by Eq. (B.8), not shown on the �gure]. We further incoporate these results
in Eq. (57). Figure B2 presents the numerical results for the Boltzmann di�usion
constant (red dots) which agree very well with the analytic formula (solid black line)
found when incorporating Eq. (B.8) into Eq. ( B.7). Note that we recover the same
asymptotic behaviours as for our anisotropic cases:D B (E ) / E for E=E � < 1=2 and
D B (E ) / E 5=2 for E=E � � 1=2. In particular, those tests show that the discretization
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Figure B2. (Color online) Boltzmann di�usion coe�cient for the isotropic
3D speckle con�guration of power spectrum given by Eq. ( B.8). The solid
black line is the theoretical prediction, red dots are numer ical results.

used here correctly treats thejk j ! 0 divergence.

Appendix C. Conductivity

Appendix C.1. Einstein relation

As presented in Sec.2.5, we expect � (! = 0) / D in the linear response regime.
Here we calculate� B (! = 0) in the Boltzmann approximation and verify this relation
explicitly, which enables us to �nd the proportionality factor in Eq. ( 32).

Let us �rst rewrite the Boltzmann di�usion tensor as

D i;j
B (E ) =

1
~N0(E )

D
� E; k̂ vi Jk ;j

E
; (C.1)

where Jk is the renormalized current vertex :

Jk

~
= � +

2�
~

X

� n
E 6=1

� n
E

1 � � n
E

D
� E; k̂

0� 0� n
E; k̂

0

E
� n

E; k̂
: (C.2)

We want to calculate the conductivity � B in the ladder approximation. We have to
evaluate

� B =
� �

+
� � 0� (C.3)
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where � is de�ned in Eq. ( 51). It reads

� i;j
B (E ) =

Z
dk

(2� )d vi f E; k vj + (C.4)

Z
dk

(2� )d

dk0

(2� )d vi f E; k � k ;k 0(0; 0; E)f E; k 0v0
j :

As � k ;k 0(0; 0; E) =
P

� n
E 6=1

� n
E

1� � n
E

� n
E; k̂

� n
E; k̂

0
r , and f E; k ' � E; k̂ A0(E; k)=~, one easily

�nds

� i;j
B (E ) =

2�
~

� D
� E; k̂ vi vj

E
+

2�
~

(C.5)

�
X

� n
E 6=1

� n
E

1 � � n
E

D
� E; k̂ vi � n

E; k̂

E D
� E; k̂ vj � n

E; k̂

E�
:

Therefore, we have� B = 2 �N 0(E )D B =~. We have thus veri�ed Einstein's relation for
the classical dc conductivity in anistropic disorder.

Appendix C.2. Current vertex renormalization

The DC conductivity � B in the Boltzmann approximation reads (see ap-
pendix Appendix C.1)

� i;j
B (E ) =

2�
~

�
� E; k̂ � i

Jk ;j

~

�
; (C.6)

where Jk , the renormalized vertex function, is given by Eq. (C.2). Diagrammatically
we can absorb this renormalization in one of the vertices as shown in Eq. (C.7). This
is a standard procedure for anisotropic scattering, which is presented for example in
Ref. [6].

�
+

�
� =

Jk =~
(C.7)

Appendix C.3. Weak-localization correction

Appendix C.3.1. The cooperon We calculate the bare cooperon correction, with
renormalized current vertices, Diag. (64) translates into

� � i;j
(X ) (!; E ) =

Z
dk

(2� )d

dk0

(2� )d

Jk ;i

~
f E; k X k ;k 0(0; !; E )f E; k 0

Jk 0;j

~
: (C.8)

Considering that the dominant contribution in the integral comes from Q ' k + k0 � 0
[see Eq (69)], and that f 2

E; k � 2(� E; k̂ =~)3A0(E; k) in the on-shell approximations, we

r Equation ( 51) gives � = U B [1 � G 
 Gy U] � 1 . The components � k ;k 0(0; 0; E ) can be found from
the results of appendix Appendix A .
s The same procedure as described in Sec. Appendix A.4 is used to obtain those expressions in the
on-shell approximation.
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get

� � i;j
(X ) (!; E ) = �

2
~N0(E )

�
Jk ;i Jk ;j

~2 � E; k̂

� Z
dQ

(2� )d

1
� i~! + ~Q � D B (E ) � Q

: (C.9)

Appendix C.3.2. Hikami contributions We now calculate the Hikami corrections [see
Diags. (65) and (66)]

� � i;j
(H 1 ) (!; E ) =

Z
dk

(2� )d

dk0

(2� )d

dk00

(2� )d

Jk ;i

~
f E; k UB k ;k 0G(E; k00) (C.10)

� X k + k 00
2 ;k 0+ k 00� k

2
(k00� k ; !; E )G(E; k0+ k00� k)f E; k 0

Jk 0;j

~
:

In the same way as before, and using the on-shell approximation formulas
G(E; k)f E; k � � i (� E; k̂ =~)2A0(E; k) and Gy(E; k)f E; k � i (� E; k̂ =~)2A0(E; k), we get
� � (H 1 ) ' � � (H 2 ) and

� � i;j
(H ) (!; E ) = � � i;j

(H 1 ) (!; E ) + � � i;j
(H 2 ) (!; E ) (C.11)

=
2

~N0(E )


 Jk ;i

~
� E; k̂

Z
dk0

(2� )d UB k ;k 0f E; k 0
Jk 0;j

~

�

�
Z

dQ
(2� )d

1
� i~! + ~Q � D B (E ) � Q

:

Appendix C.3.3. Corrected conductivity tensor We now consider the quantity Jk �R
dk 0

(2 � )d UB k ;k 0f E; k̂
0J k̂

0. Using the relation UB k ;k 0 =
P

� n
E 6=1 � n

E � n
E; k � n

E; k 0, and the
parities of the functions � n

E; k̂
[see Eqs. (A.11) and (A.12)], one can show that

Jk �
Z

dk0

(2� )d UB k ;k 0f E; k 0Jk 0 = ~� : (C.12)

Therefore the Hikami contributions renormalize one of the Jk =~ back to the bare
vertex � , and we have

� � i;j (!; E ) = � � i;j
(X ) (!; E ) + � � i;j

(H ) (!; E ) (C.13)

= �
2

~N0(E )


 Jk ;i

~
vj � E; k̂

� Z
dQ

(2� )d

1
� i~! + ~Q � D B (E ) � Q

;

which gives the �nal expression (70).
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