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Abstract. The macroscopic transport properties in a disordered poten tial,
namely di usion and weak/strong localization, closely dep  end on the microscopic
and statistical properties of the disorder itself. This dep endence is rich of
counter-intuitive consequences. It can be particularly ex ploited in matter wave

experiments, where the disordered potential can be tailore d and controlled,

and anisotropies are naturally present. In this work, we app ly a perturbative

microscopic transport theory and the self-consistent theo ry of Anderson
localization to study the transport properties of ultracol d atoms in anisotropic

2D and 3D speckle potentials. In particular, we discuss the a nisotropy of single-
scattering, di usion and localization. We also calculate a  disorder-induced shift
of the energy states and propose a method to include it, which amounts to
renormalize energies in the standard on-shell approximati on. We show that the
renormalization of energies strongly a ects the predictio n for the 3D localization

threshold (mobility edge). We illustrate the theoretical ndings with examples
which are revelant for current matter wave experiments, whe re the disorder
is created with a laser speckle. This paper provides a guidel ine for future
experiments aiming at the precise location of the 3D mobilit y edge and study
of anisotropic di usion and localization e ects in 2D and 3D

PACS numbers: 03.75.-b,05.60.Gg,67.85.-d,72.15.Rn
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1. Introduction

Transport in disordered media is a fascinatingly rich eld, which sparks a broad
range of phenomena such as Brownian motionl], electronic conductivity [2, 3],
superconductivity [4], superuid ows of “*He on Vycor substrates p], as well as
localization of classical (electromagnetic or sound) waves in denseedia [6, 7] and of
ultracold atoms in controlled disorder [8, 9, 10, 11, 12]. In the case of a matter particle
for instance, two regimes should be distinguished. In the classicakgime, where the
de Broglie wavelength is vanishingly small, transport leads to normal o anomalous
diusion [ 13 14]. The dynamics is characterized by the appearance of a percolation
transition, which separates a trapping regime { where the particle isbound in deep
potential wells { from a di usion regime { where the particle trajecto ry is spatially
unbounded [L5, 16]. In the quantum regime, the wave nature of the particle determines
its transport properties, in close analogy with those of a classical ave [17, 18]. In
this case, interference e ects can survive disorder averaging, égling to striking e ects
such as weak localization §], the related coherent back-scattering e ect L9, and
strong (Anderson) localization [20, 21, 22].

Localization shows a widely universal behaviour 23], but observable features
signi cantly depend on the details of the system. It shows a renewe interest in the
context of ultracold matter waves [8, 9, 10, 11, 12]. On the one hand, the microscopic
parameters in these systems are precisely known and, in many casetunable,
which paves the way to unprecedented direct comparison betweeexperiments and
theory [24, 25]. This is a great advantage of ultracold atoms, compared to traditianal
condensed-matter systems. On the other hand, these systenwser new situations,
which can induce original e ects [26] and provide new test-grounds in non-standard
disorder [27, 28, 29, 30, 31]. Major advances in this eld were the observation of
one-dimensional (1D) Anderson localization of matterwaves 32, 33] and studies of
the e ects of weak [34, 35, 36, 37, 38, 39, 40, 41, 42, 43] and strong [44, 45, 46, 47]
interactions in disordered gases. Presently, a major challenge is ¢hstudy of quantum
transport in dimensions higher than one. While localization is the dominant e ect
in one dimension §8, 49, higher dimensions show a richer phenomenology where
regimes of diusion, weak localization and Anderson localization can apear [23].
Recent experiments reported the observation of an Anderson &nsition in momentum
space using cold-atom kick-rotor setupsg0, 51, 52], study of classical di usion in two-
dimensional (2D) speckle potentials $3, 54], coherent back-scattering b5, 56], and
evidence of Anderson localization in noninteracting Fermi §7] and Bose p8] gases in
three-dimensional (3D) speckle potentials.

From a theoretical viewpoint, di usion and localization of noninterac ting matter
waves have been thoroughly studied for disordered potentials withzero-range
correlations [59, 60] and isotropic correlation functions [61, 62, 63, 64, 65, 66]. However,
transport experiments in dimensions higher than one are most ofte performed with
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speckle potentials which are anisotropic, either e ectively in 2D setps [(3, 54,
or for fundamental optical constraints in 3D [57, 58]. Moreover, correlations in
speckle potentials can be tailored in a broad range of con gurations[67], which
o0 ers scope for investigation of localization in nonstandard models édisorder [29, 30].
Taking into account anisotropic e ects is of fundamental importance because they can
strongly a ect coherent transport and localization properties. T his was demonstrated
in various stretched media B8, 69, 70, 71, 72, 73, 74, 75 76, 77, 78. Optical
disorder, relevant to ultracold-atom experiments b7, 58], can show signi cantly more
complex anisotropic correlation functions, the e ect of which has keen addressed only
recently [79].

In this paper, we study quantum transport and Anderson localizaton of matter
waves in 2D and 3D anisotropic speckle potentials. We rst introducethe basics of
quantum transport of matter waves in disordered media (Sec2) and the models of
disorder we focus on in 2D and 3D (Sec3). We then present a detailed description of
the theoretical framework pioneered in Refs. T5, 80], which intends to be pedagogical.
We study single-scattering (Sec.4), Boltzmann diusion (Sec. 5), and localization
(Sec.6), as a function of the particle energy, and discuss in particular thedi erent
anisotropies of these quantities. From a technical viewpoint, while he scattering
allows for analytic expressions as for isotropic models of disorde6%], di usion and
localization are more involved and require in general numerical diagoalization of a
certain operator. Some analytic expressions are however found isome limits for
anisotropic disorder. In Secs.4, 5 and 6, we focus on the 2D case, which contains
most of the anisotropy e ects discussed in the paper. The 3D caseare discussed in
the next sections, where we study the same quantities as above €8. 7). We also
show that energy-dependent quantities calculated in the usual ofshell approximation
should be renormalized in strong disorder, and propose a method tdo it. It does
not strongly alter the overall energy-dependence of the quanties calculated in the
previous sections, and in particular their anisotropies. However, itmay be important
when comparing to energy-resolved experimental measurementdMost importantly,
we show that it strongly a ects the calculation of the 3D mobility edge. Finally, we
summarize our results and discuss their impact on recent and futue experiments on
ultra-cold atoms in speckle potentials in the conclusion (Sec8).

2. Matter waves in disordered media

2.1. Basics of quantum transport

Before turning to a more formal description, it is worth recalling the basic picture
of coherent transport in a disordered medium, which is genuinely undrstood in
a microscopic approach 81, 80.. Consider a wave of momentumk and velocity
= r ¢ =~ [ (k) is the dispersion relation] propagating in a disordered medium. We
assume for the moment that the medium is isotropic and will drop this asumption
in the following sections. The wave propagation is governed by scatring from the
random impurities. Three typical energy-dependent length scalesan be identi ed,
which characterize three basic e ects induced by the disorder (se Fig. 1). First,
single scattering from impurities depletes thek-wave states, which can be seen as
quasiparticles in the disordered medium, with a nite life-time (k). Single scattering
hence de nes the rst length scale, namely the scattering mean-free path I, =
which characterizes the typical length travelled by the wave befoe it loses the memory
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Figure 1. (Color online) Schematic view of the coherent transport of a  matter
wave in a disordered medium, with special emphasis on the cha racteristic length
scales. The gure shows a trajectory of a particle (solid mul ticolor line) in a two-
dimensional disordered landscape (blue surface). Along it s trajectory, the wave
loses the memory of its phase (encoded in the various colors a long the trajectory)
on the characteristic length |5 (scattering mean-free path). Multiple scattering
then de ects the trajectory and the wave loses the memory of i ts direction on
the characteristic length g (transport mean-free path). Interference between
the multiple-scattering paths can nally cancel diusion ( strong or Anderson
localization). The wave then acquires an exponentially dec aying probability
pro le (orange-green surface) of characteristic length L, (localization length).

of its initial state, and primarily the memory of its initial phase. Then, multiple
scattering de nes the second length scale, namely théransport (Boltzmann) mean-
free path, |5, which characterizes the typical length travelled by the wave befoe it loses
the memory of its initial direction. In general, several scattering events are necessary
to signi cantly de ect the trajectories so that |z I,. The two length scales are found
to be equal only in the white-noise limit (if it exists), where the wavelength is smaller
than the typical size of the impurities. In this case the scattering isisotropic and
the wave loses the memory of its phase and initial propagation direédn at the same
time. Within the distance |, the transport crosses over from ballistic to di usive.
The average squared size of the wavepacket increases linearly in @nr2  2dD,t
with Dy = | ;=dthe Boltzmann di usion constant ( d is the space dimension)2, 3].
Finally, di usive transport allows the wave to return to its initial posit ion via loop
paths, and interference e ects enter the game. Each loop can b#aveled in one way
or the other, which generates two multiple-scattering paths alongwhich exactly the
same phase is accumulated during the successive scattering event This coherent
e ect holds for any speci c realization of the disordered potential and thus survives
disorder averaging. Moreover, since these two paths are in phasé gives rise to a
constructive interference of the matter wave, which signi cantly enhances its return
probability. This e ect induces coherent back-scattering and we& localization, which
leads to diusive transport with a reduced diusion coecient, D < D, [6]. For
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strong enough disorder, the di usion can completely cancel, an e et known as strong,
or Anderson, localization 22]. Then, the probability distribution of the wave decays
exponentially in space, hence de ning the third characteristic lengh, L . , the so-called
localization length.

The picture above shows that localization relies on two characterists of the
medium: coherence along the multiple-scattering paths and returnprobablity to the
origin. One then understands that the strength of localization shaild be governed by
the interference parameterkl; [82] (since the more the coherence length exceeds the
typical length of a loop path, the more signi cant interference terms are) and by the
dimension of spaced (since the return probability decreases whend increases). As a
matter of fact, in 1D and 2D, any state is localized, although disorde correlations may
lead to strong energy-dependence of the localization lengtt8B, 84, 28, 27]. In 1D, one
nds that L, |z so that diusion is strictly absent. In 2D, one nds I; <L ., and
di usion shows up at intermediate distances and times. In 3D, the reéurn probability
is nite and localization appears only for su ciently low values of kl;. A mobility
edge shows up fokl; 1, which separates localized states (fokl; . 1) from di usive
states (for klg & 1) [23, 85].

The microscopic description outlined above o ers a comprehensive ipture of
transport and localization e ects for coherent waves in disorderel media. The next
subsections give mathematical support to this picture within a formalism adapted to
anisotropic disorder.

2.2. Green functions

Consider a quantum particle in a given homogeneous underlying mediumand
subjected to some static randomness. Its dynamics is governedybthe single-
particle Hamiltonian H = Hg + V(r), where Hq is the disorder-free, translation-
invariant, Hamiltonian of the underlying medium, and V(r) is the time-independent
(conservative) disordered potential. Without loss of generality, the disordered
potential can be assumed to be of zero statistical averageV = 0. The evolution
of the wave function betweenty and t > t ¢ is determined by the retarded single-
particle propagator G(t;tg) exp[ iH (t to)=~] (t tp), where the Heaviside step
function ( t tp) accounts for temporal ordering. In the energy domaifi, G is the
retarded Green operator
G(E)= E H+i0" *; 1)

where E is the particle energy. It is the solution of the equation

G(E) = Go(E) + Go(E) V G(E); )

whereGp=(E Hg+i0") ! is the disorder-free retarded Green function associated
to the unperturbed Hamiltonian Hy.

2.3. Properties of the disordered medium

In a disordered medium, meaningful observable quantities corregmd to statistical
averages over realizations of the disorder. When averaging ovelisbrder realizations,

b Here we choose the zero of energies such that the disordered potential is of zero average, i.e. V = 0.
For any other choice of the energy reference all energies app earing below should be shifted by V/, i.e.
replace E by E V. R

¢ Here,we useG(E) — dG( )exp[iE =~].
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some quantities can be written in terms of the average Green funaon G(E), for
instance the spectral function (see below). The Born series of E(2), averaged over
the disorder, reads

G= Go + GV GoV Gy + GoV GyV GgV Gg + ::: (3)

since the rst order term, GoV Go, vanishes It is convenient to represent this equation
diagrammatically:

- - -

—_—— T et et el @ + (4

where a plain line is a Green function (grey forG, and black for G), the vertices (black
dots) are scattering events and the dashed lines recall that theyare correlated. The
Dyson equation B6]

G= Go + Gy G; (5)

with ( E) the self energy, can be developped in powers &f thanks to Eg. (3) so as
to determine . The average Green function then reads

G= G,! L. (6)
If the disorder is homogeneous, i.e. if its statistical properties aretranslation-
invariant [ 87], then the disorder-averaged Green function is diagonal irk-spacé'

G(E)ik% (2 )¢ (k  KYG(E; k)
S @)k Ky -
" E (k) (E;k)+io’
where (k) is the dispersion relation associated toHy and d the space dimension. In
addition, if the statistical properties of the disorder are isotropic, then G(E; k)
G(E; jkj).
This features an e ective homogeneous (i.e. translation-invarianj medium, which

contains all necessary information to determine the disorder avexge of any quantity
linear in G. It is the case of the spectral functionA(E; k) de ned by [81]:

2 kkj (E H)KI @) (k KOYA(E; k): (8)

It contains all the information about the spectrum of the disordered medium. Using
Eq. (1), it yields
A(E;k)= 2= G(E;k) : 9)
The spectral function can be interpreted (up to a numerical facbor) as the (normalized)
obability density for an excitation of momentum k to have energy E and
g—EA(E; k) = 1. It is also the unnormaliz%g probability, per unit energy, to nd
a particle of energyE with momentum k and %; A(E;k)=2 N (E), whereN (E)

is the density of states per unit volume. For a particle in disorder-free space, it is
given by Ap(E; k)=2 [E  (k)]. In the presence of disorder, Egs. () and (9) yield

2 E; k)

A(E; k) = :
(£ (k)  AE;k) + OE;k)?

(10)




CONTENTS 8

SecE

A(E,K)

K Ko ke

Figure 2. (Color online) Schematic representation of the spectral fu nction
A(E; k) of a particle of energy E = ~?kZ2=2m, as a function of the particle
momentum k. The vertical red line is the spectral function for the disor der
free particle Ao(E;k) = 2 [E (k)] with (k) = ~?k®=2m. In the
presence of disorder the spectral function is shifted and broadened (black
line).

with % and ©the real and imaginary parts of , respectively. As represented
schematically in Fig. 2, for a particle in free space [(k) = ~?k?=2m, where m is
the mass of the particle] with a weak disordered potential, the speital function

has a Lorentzian-like shape as a function ok. It is centered in ko, solution of
E (ko) UE;ko)=0. The quantity YE; ko) thus describes the shift in energy of
the free-particle modes when they are dressed by the disorder.He quantity °(E; k)

is the energy width of the spectral function, which de nes the scdtering mean free
time

S(E; k)= (11)

2 99E; k)’
or equivalently the scattering mean free pathl,(E; k) = j j (E; k). It accounts for the
depletion of the free particle mode atE = (k) due to scattering from the disordered
medium.

The spectral function, which contains all the information about the relative
weight, the energy, and the life time of the quasi-particles, will be tre key ingredient
in the following calculations. In addition, in ultracold atomic systems, a broad range
of energies are involved, but only the momentum distribution is usuallymeasured by
time-of- ight techniques. The spectral function relates the enagy distribution ( D;)
and the momentum distribution (D,) of the stationary particles in the disorder via

z dk
De(E) = WA(E; k)D. (k); (12)

Here jki is normalized so that ijmkj =1.
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which is normalized by R‘;—E D:(E) = 1. The exact calculation of the spectral
function requires the knowledge of the real and imaginary parts ofthe self energy

[see Eq. (10)], or, according to Eq. (8), the direct diagonalization of the disordered
Hamiltonian and an average over disorder realizations. This is, in genmal, a
complicated task, especially in dimensions larger than one and for ani¢ropic disorder.
In Secs.5 to 7, we work within the usual on-shell approximation [80], in which one
neglects the real-part of the self energy YE; k) and the structure of the spectral
function (see schematic dashed blue line in Fig2). In Sec. 7.4, we describe a method
to go beyond the on-shell approximation, which amounts to renornalizing the energies
in a self-consistent way 79].

2.4. Propagation of the Wigner function

Some quantities are not simply related to the averaged Green funan G and require
a more elaborate treatment. It is for instance the case of the sp#l density and the
momentum distribution. More generally, consider the time evolution of the one-body
density matrix (t) [81] or equivalently of the Wigner function [8§]

z D E
dq iqr q q
e + 4 a-.
W(r;Kk;t) 2 )de k > (t) k > (13)
R
The spatial density probability is given by n(r;t) = %W(r;k;t) and the
momentum distribution by D,(k;t) = dr W(r;k;t). It is fruitful to rewrite
Eg. (13) in a form indicating explicitly the initial conditions, using the relation
(t)= (t to)e M )= (t5)e"™ (t W)=~ \When averaging over the disorder, if
there is no correlations between the initial state and the disorderone nds [63]
z z ak®
W(r;k;ty= dr® Wwo(ro;ko) Fko(r %t to); (14)

where Wo(r; k) W(r; k;to) is the initial Wigner function and Fy.xo(R;t) is the
phase-space propagation kernel, de ned by (it > 0)

Z Z Z
dE d d~! . .
FacRi) 5o og 5o €0te " we@hE) ()
and
h. JG(E+)jkS Ihk?JGY(E )ik i (2)* (@ 99 wkwo(a;GE ); (16)
with k  k g=2,k® k° gq%=2,E E ~!=2,and(q,!) the Fourier conjugates

of the space and time variable$. As discussed above, disorder averaging features
a translational invariance in space so that Eq. (L5 depends only on the dierence
R =r Y% For the same reason, translational invariance, or equivalently mmentum
conservation, imposes that the sum of the in-going wavevectorsk¢ and k°) on one
hand, and out-going wavevectors k? and k ) on the other hand, are equal. It leads
to the condition on momentum transfer, g = q° in Eq. (16).

As can be seen in Eqgs. 4) and (15), the building block to describe wave
propagation in random media is the density propagator , which can be represented
as a four-point vertex with k and k° the left and right entries [see left-hand side

R
€ We use the Fourier transform fYq;!) drdtf (r;t)exp[ i(q r !t)].
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of Eq. (18)]. The skeleton of this vertex is made by retarded and advanced Gzen

functions (respectively G, represented by the top line, andGY, represented by the

bottom line). It contains all possible correlations between the scatering events of

these Green functions. Following the same approach as used for éhaverage eld

propagator G [leading to the Dyson equation )], the vertex = G GV is formally

constructed from the uncorrelated-average vertexc  GY. Without any approximation,
is then governed by the so-called Bethe-Salpeter equation (BSE)[81]

= G &+G G@'U ; a7)
represented diagrammatically as
K. k° K. K. kO
= + U (18)
k k° R k k°®

where U is the vertex function including all irreducible four-point scattering diagrams:

o o—p—e o’—,b—o-b-o-blo
| \\ ,’ | |
U = :+ W + : : + (29)
[ PN [ [
¢ E—a— —d

The rstterm in the BSE ( 17)-(18) describes uncorrelated propagation of the eld and
its conjugate in the e ective medium. The second term accounts fo all correlations
in the density propagation.

Analogously to Eqg. (6), the solution of the BSE (17)-(18) can be formally obtained

from the inverse, if it exists, of the four-point operator 1 G GYU' [89:
= G & (20)

More explicitly, the (k;k% component of a four-point vertex  which fullls
momentum conservation is o(q;!;E ), such that hk,;k°j jk2:k i (2 )9 (q
99 kxe(a;E ), and

k(@ BEE)=@2 ) (ko KY fi(a 5 E )Ukko(a; K E ); (21)

and o
fu(@;5E)  G(E+k:)GY(E 1k ) (22)

Therefore Eq. (20) reads
k(@ BE )= ho(d G E )fo(as KE ) (23)
' In this context, the inverse of an operator is de ned by R %; kik (4 LE) kll;ko(q; LE )=

@) (kKO
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and can be expressed as a geometric series

kko(@5E)=2 ) (ko KOfk(q;LE) (24)
+ fi(q;!;E YUkko(q; 5 E )fko(q; E )
dk
Wfk(q:!:E Yk, (0; 5 E ), (0, 5E )

Uk,:ko(a; 5 E )feo(as BE ) + 1
The operator  *(!;E ) can be expressed in terms of the eigenvectors and associated
eigenvalues of the operator (!; E ) which was used in Refs. T5, 90] to solve the BSE.
It then gives access, via Eq. 23) to , which is the quantity of interest [see Egs. ( 13)
to (19)].
In the following we will see that the intensity kernel has a di usion po le, which
takes the form
(qilE )= L AETAEK)
Kk 5 E )= SNE)iM ~qD(LE) g
where D is the so-called dynamic diusion tensor. The average spatial densit
distribution is then given @/

(25)

n(r;t) = %W(r;k;t)
ZdEZ
= 5 drPDo(r® E)P(r r%t tgjE) (26)

R o e "
where Do(r%E) = £55 A(E; k)Wo(r% k9 represents the initial joint position-
energy density andP(r r%t tojE) is the probability of quantum transport, i.e.
the probability for a particle of energy E originating from point r° at time tq to be
in r at t. It can be expressed thanks to Eqgs. 14), (15 and (25) as the space-time
Fourier Transform of the di usion pole 1=[i~I ~gD(!;E ) q]. In the long-time limit,
we will encounter two di erent situations. First, if lim ,, ¢D(!;E )= D(E) is a real
de nite positive tensor, the di usion pole of the intensity kernel ( 25) describes normal
di usion with the anisotropic di usion tensor D (E), and the probability of quantum

transport reads
e RD Y(E) R=4t

P(R;t!'1j] E)=p t): 27
( j E)=p (4t)ddeth(E)g( ) (27)
Second, ifD(;E) 0" il (E)inthe limit ! ! 0" with (E) a real positive

de nite tensor, the pole describes localization. It leads to exponetially localized
phase-space propagation kernel and probability of quantum trasport at long distance.
In 2D,

q
Ko R LiE) R

P(R;t!1j E)= (1) (28)

where K g is the modi ed Bessel function, and in 3D,
e P RL,(E)R
P(R;t!'1lj E)= g—— ( t): (29)
4 detfLioc(E)g R L. %(E) R

loc

In both 2D and 3D, the fonction P(R) decays exponentially over the cBaracteristic
length LY (E) along the eigenaxisu of the localization tensor Lo (E) (B).

loc

9 Note that Ko(x) e xP =2x for x 1.
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2.5. Conductivity and Einstein's relation

Finally, another quantity of interest for our problem { in parallel of t hose studied in
sections2.3and 2.4{ is the conductivity. In complete analogy to the usual conductivity

of charge in condensed-matter systems8p], we here de ne the conductivity tensor

in our system as proportional to the current-current correlation function, via the Kubo

formula” [6]:

y Z gk dkO i

i; . — . : : 0 L.

I (LE )= 2y E )" KiG(E KT PhkIGY(E )ik (30)
where ; = ~kj=m is the velocity along axisi. As the structure of Eqg. (30) is

reminiscent of the de nition of the four-point vertex [see Eq. ( 16)], calculations
of the conductivity tensor can also be represented diagrammatidéy. The skeleton

diagram, shown in Eq. (31), consists of the in and out-going velocities and °and of
a bubblemade of a retarded (top line) and an advanced (bottom line) Green dinction.

As for , the scattering events of the top and bottom lines can be correlated [see for
example Egs. (L8) and (19)].

(31)

Thanks to Einstein's classical argument, it was realized that, at themal
equilibrium, in a gas submitted to a force, the diusion and drift curre nts have to
be equal. This relation holds in general for quantum systems in the linar response
regime (see e.g. Ref.g1]). In particular, here we expect the DC conductivity and
di usion tensors to be proportional : (! =0) / D. Calculating (! =0) in the
Boltzmann and Born approximations for anisotropic disorder permits us to nd the
proportionality factor (see details in appendix Appendix C.1), which in our system
yields

= Lf(E)D: (32)

3. Disorder correlation function

Having recalled the general theory of quantum transport in disorcered media, we now
specify the framework of our study. We will consider ultracold matter waves in speckle
potentials as realized in several experiments9[l, 92, 93, 94, 95, 96, 32, 46, 47, 53, 57,
58].

In brief, a speckle pattern is created when a coherent light beam istene through
a diusive plate and focused by an optical lens of focal distancef (see Fig.3 and
Ref. [97]). At each point of its surface, the di usive plate imprints a random p hase
on the electric eld. The resulting electric eld in the right-hand side o f the lens
is then the summation of many complex independent random compomés, and is

. R )
" This corresponds to the more general de nition WLE )= 01 dte"™ Trf (E  H)j; (x;t)jj (x)g
(j is the current operator) where the correlations between G and GY have been dropped (see for
example Ref. [6]).
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Figure 3. (Color online) Schematic of the apparatus used to create an
optical speckle pattern. A laser beam is diracted by a groun d-glass plate
di user of pupil function 1, ( ), where ( x; y)spans the di user, which

imprints a random phase on the various light paths. The inten sity eld,

I (r), observed in the focal plane of a converging lens, is a specle pattern,
which creates a disordered potential V (r) for the atoms.

therefore a Gaussian random variable according to the central limittheorem. The
potential acting on the atoms is proportional to the intensity patt ern (i.e. the square
modulus of the electric eld). It is thus a spatially (non Gaussian) random variable.
It is mainly characterized by the two-point correlation function C(r) = V(r)V(0).
For a ne-grain di user, the two-point correlation function C(r) is determined by the
pupil function I, ( ) (i.e. the intensity pattern just after the di usive plate) [ 97]. For
Gaussian laser beams of waistai,, and plates with homogeneous transmission we

havel, ( x; y) = loe 2 Z¥W* J=9)) For the con guration of Fig. 3, in the paraxial
approximation, we nd

C(r) = Vicisp(Xy; 2) (33)
with .
h x2= , 2 ! ex y?= ?32/
eXp M p 1+4 z2= kyz
Gsp(XY;2) = —& q ; (34)

g
1+4z2= 2 1+4z%= 2
X y
Ky =4 f2=wi, and o,y = f=w 4, where | is the laser wavelength. Here
andy are the coordinates orthogonafgto the propagation axisz, and z = 0 corresponds
to the focal plane. We choseV; C(r =0) as de nition of the amplitude of the
disorder.

3.1. Anisotropic Gaussian speckle (2D)

If the atoms are conned in a 2D geometry by a strong trapping potential along z
centered onz = 0, they experience a disordered potential with correlation functon

I Here we assume that the diuser covers the full area lit by the  Gaussian beam. If it is not the
case, a cut-o has to be introduced in the pupil function, whi  ch results into some oscillations in the
wings of the correlation function. In experiments, if the di  usive plate is su ciently large, this e ect

is small, and we disregard it in the following.
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h i
C(xy) = VZoep(xy;0) = V2Zexp F(x2+ 2y?) , with » = 5, and =
2 x= 2y the con guration anisotropy factor. The Fourier transform give s the power
spectrum "

2 2 k2
Clk)= V& —exp  —L(ki+ 3) (35)

Without loss of generality, we assume that 1. When jKj 25t 2yt we get

C(k)" V2 4 and we recover the power spectrum of white noise disorder, the dn

relevant parameter beingV2 », - y- The power spectrum @5) is obtained by shining

an anisotropic Gaussian beam on the di usive plate. It also approximaely holds in

the case of Ref. $3] where a quasi-2D Bose gas of width, is subjected to a speckle
created by anisotropic Gaussian laser beam shone with an anglewith respect to the

plane of atoms, ifl, 2 k- Inthiscase ' 1=sin ( ' =6 for the experiment

of Ref. B3)).

3.2. Single speckle (3D)

In the 3D case, the disorder correlation function C(r) is given by Eq. (33) with
Wy = wy = w. The resulting speckle pattern has correlation lengths  in the
propagation axis (z) and - in the orthogonal plane (x;y). In general 4 > w,
and C(r) is elongated alongz . The corresponding disorder power spectrum reads

C(k) = VZersp(K) (36)
with
> 2 kK 2 > 1k Z%
ap()= Pte THe ! T W @7
jk2 ]

where k-, is the projection of k in the (ky;ky) plane. It is isotropic in the (k;ky)
plane but has a signi cantly di erent shape along the k; axis. In particular, it shows
a strong algebraic divergence wherk, = 0 and k2 + k§ I 0. It features absence
of white-noise limit, which re ects the long-range correlations of the potential . The
consequences of this property, obtained in the paraxial approxiration, will be further
discussed in the following.

4. Single-scattering

We now focus on the rst time scale introduced in Sec.2.1: The scattering mean free
time.

4.1. Scattering mean-free time

( E)= VGo(E)V: (38)
For homogeneous disordertkj ( E)jk% = (2 )4 (k k9 ( E; k) with
2 gk 0 0
(Ek)=  GaCk k 9 Go(E; k%; (39)

I We assume that the disorder extends to in nity. In experimen ts the speckle pattern has a nite
extension L, and the divergence is truncated at jkj 1=L. If the parameters are such that those
components play a role, the inhomogeneity of the disorder ha s to be taken into account.
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Figure 4. (Color online) On-shell scattering mean free time ¢ ¢

«(E;keR) [Eq. (42) for jkj = ke] along the Ky (solid red line) and Ky
directions (dotted blue line) for the 2D speckle potential d e ned in Sec. 3.1

with = 4. The solid black lines are the isotropic low-energy limit s
obtained for kg - 1 [Eq. (43)] and the high-energy limit obtained for
ke » [Eg. (44)]. The insets show the angular dependance of ¢ .

at two di erent energies [with the parametrization R (cos ; sin )]. The
points on the lines are color- and shape-coded to match thosein the insets.

where C(k) is the disorder power spectrum. Using Eq. (1) and the disorder-free
Green function, we thus have

- T 1 .
J(E; k)= > ek K9 kOjE, (40)
where 7 0
S % B (K9 (41)

represents the integration over thek-space shell de ned by (k) = E. In the following
we discuss anisotropic properties of the scattering time for the 2rase (the 3D cases
are presented in Sec7.1).

In the case of isotropic disorder [i.e.C(k k% = C(jk kY)] the scattering
time does not depend on the direction of the incoming wave vectok. In general,
the scattering is however anisotropic, i.e. the probability that the particle acquires a
direction k° depends on the direction ofk° relative to k. Isotropic scattering is found
only for -correlated disorder In the case of anisotropic disorder we are ietrested
in, not only the scattering depends on the relative direction ofk® and k, but it also
depends on the direction of the incoming wavek.

4.2. Anisotropic Gaussian speckle (2D)

Let us consider the 2D anisotropic speckle potential of geometridanisotropy factor
introduced in Sec.3.1. Replacing C(k) by Eq. (35) in Eq. (40) and using the disorder-
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free dispersion relation of the vacuum in Eq. 1), we obtain the scattering mean free
time
E ., 2

. > ; (42)
d e 2 (keR? Kki)Zg 77 (keR9 ky)?

where K k=jkj js the unit vector pointing in the direction of k, ¢ is the k-space
solid angle, ke 2mE=~ is the momentum associated to energ in free space and
E, ~2=m 2 is the correlation energy of the disorder. The scattering time ¢2) is
plotted in Fig. 4 as a function of energy along the two main axes, fojkj = k. and for
a xed geometrical anisotropy = 4. Let us discuss some limiting cases and use the
notation E:R «(E; kEQ).

In the low-energy limit, ke - 1, we have
!

~E , ~E 2

2
R ot s 42 K2+ L 40 43

gz
which is displayed in Fig. 4 (left-hand-side black lines). In this limit the de Broglie
wavelength of the particle (2=k ) exceeds the correlation lengths of the disorder

( »x and - ) and the speckle can be approximated by a white-noise (uncorrelad)

disordered potential. Equation (35) becomesC(k) ' V.2 = (see Sec3.l)and ..p is
isotropic, constant, and it only depends on the productV,2 ,, - y (up to corrections
of relative order E=E ).

In the opposite, high-energy limit, k: » , the de Broglie wavelength of the
particle is much smaller than the smallest correlation length of the diseder and the
particle behaves “classically’. SinceC(k) has a wider extension in theQy direction
than in the Ky direction (for > 1), there are more scattering channels for particles
travelling along x so that ..p < ER, More precisely, we nd

E, k§ a R2 + 2R2:

V2‘ - X + ' (44)
R

which is shown in Fig. 4 (rigBt-_hand-side black lines). In particular, we nd that in

the high-energy limit ..o/ = E.
It is also interesting to study the anisotropy factor of the scattering time

E;QI

Eilk (45)

S )
E;Qy

which is shown in Fig. 5 as a function of E=E , and . As already mentioned ..,
is isotropic in the white-noise limit, so that ' 1 for ke - 1 (left-hand-side red
line in Fig. 5). When increasing the energy, the scattering time rst increasesalong
the direction with the largest correlation length, i.e. the direction in which C(k) is
narrower (x for > 1). Therefore, s increases withE, for su ciently small values of

E=E ,, and we have s > 1. Using Eq. (43), an explicit calculation yields

E 2 1 E?2

+0 ——— (46)

SI:I'-'_E7 22 4E2

?

For ke » , using Eq. (44), we obtain

s - (47)
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Figure 5. (Color online) Anisotropy factor of the scattering time, s =

E:Ry = E;k,» @S @ function of E=E , and , for the 2D speckle potential of
Sec.3.1. Theredlines arethe low ( s ! 1) and high energy limits ( s ! 1)
[see Egs. @3) and (47)].

which shows that the anisotropy factor of scattering is proportional to the inverse of
the geometrical anisotropy (right-hand-side red line in Fig.5). Note that the classical
limit relation ( 47) is universal provided that the con guration anisotropy factor is well
de ned, i.e. that the disorder correlation function can be obtained by the anisotropic
homothety of an isotropic one,C(X;y) = Ciso(X; y ). In this high-energy limit, < 1
(contrary to the low-energy limit case). Therefore, for any valueof , ..p exibits an
inversion of anisotropy when the energy increases, typically aE  E .

As described in sectior?.3the scattering time is the width of the spectral function.
It can be measured in a 2D experiment such as that of Ref.5B8] by monitoring the
momentum distribution of an almost energy-resolved wavepacketg6]. To illustrate
this, a plot of the spectral function as a function of momentum andat xed energy
is shown in Fig. 6. In each direction K the spectral function peaks at 4 o= and
has a width proportional to 1= ;... The anisotropy of the scattering time is revealed
in the angle-dependence of both these quantities. It is more appant in the angular
dependence of the amplitude, which shows marked peaks. At low ergy, the maxima
are located on thek, axis, while at high energy, they are located on thek, axis, which
signals inversion of the scattering anisotropy.

5. Boltzmann di usion

We now turn to the behaviour of the spatial density in the incoherert di usive
regime, which is characterized by the Boltzmann di usion tensorDg(E). We rst
give an explicit formula for the di usion tensor, in the framework of t he usual on-shell
approximation, and then apply it to 2D disorder (3D cases are discused in Sec.7.2).
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Figure 6. (Color online) On-shell spectral function as a function of k for
the 2D speckle potential of Sec. 3.1, with Vs = 0:2E , and = 4. The
top row shows the full spectral function. The bottom row show s cuts along
the ky (solid red lines) and ky axis (dotted blue lines). The two columns
refer to di erent energies: E = E , (left) and E = 10E , (right), which

correspond to the dots and the squares in Fig 4, respectively.

5.1. Solution of the Bethe-Salpeter equation

In the independent scattering (Boltzmann) and weak disorder (Ban) approximation,
only the rsttermin Eq. ( 19) is retained and the irreducible vertex function U equals
the disorder structure factor [81]: U' Ug =V V and

Ukko(d: LE ) Y Uswo = Ck o K9); (48)

or equivalently

Ug = (49)

[ ]
|
|
|
|
)
Then, incorporating Eq. (48)-(49) into the BSE (17)-(18) and expanding it in series
of U, one nds

K k? Ky K k?
= + (50)
k K° e k k
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where the diuson reduces to ladder diagrams:

[ ] (o (o ey ]
|

|

) t

|

| |
: : + (51)
| |

¢ b—a—d ————d

It describes an in nite series of independent scattering events, Wich leads to Drude-
like di usion.

In appendix Appendix A, explicit calculations are detailed. In brief, in the long-
time (! ! 0) and large-distance {qj! 0) limit the vertex is the sum of a regular
term and a singular term [75, 9Q:

k(@ HE )= FR(@LE )+ (5e(0;0,E): (52)
The regular part is given by
X 1

rke;£|}<0(0;0;E): 1—”fE;k E:k E;kOfE;kO; (53)
n 61 E

wherefe;x  fx(q =0;! =0;E) [see Eq. 2] and g., ( g) are the eigenvectors
(eigenvalues) of an integral operator involving the disorder corr&ation function and*
fEk:
2 ke

(2 )
The regular part contributes to the nite time and nite distance pr opagation of
the density, which we disregard here. The existence of the singulgpart is a direct
consequence of the Ward identity 8] which expresses the conservation of particle
number, and which guarantees that one of the eigenvalues of Eq54) is equal to one,

n=l =1 (see appendixAppendix A). In the framework of the on-shell approximation,
such that (k)= (k% = E, in the long time and large distance limit (jgj;! ) ! 0, the
vertex is given by

Ckk K)fgwo Pro= B B (54)

2 k(9;E) «o(q;E)

M CHA-DE . 55
c(GEE )= NE) T + g Da(E) g 9
with Ngo(E) the disorder-free density of states, and
Ao(E; k 2i
ey = 20, 2L (56)
X E 0
n n H .
1 n ER E;Qm ER° g ROKIE
n g1 E
where Ag(E; k) =2 [E (k)] is the disorder-free spectral function. Equation 65)
shows that the vertex is dominated by the diusion pole (i~! ~gq Dg(E) q) .
k' This operator is in fact 1 , taken in the Born and Boltzmann approximations, where ha s been

introduced in paragraph 2.4.



CONTENTS 20

The Boltzmann di usion tensor Dg(E) has components 75|

- 1 D E
D% (E) = ) R 57
B( ) No(E) E;R 1] KjE ( )
2 X n D E D E
+ = E .n .n
_ 1 n ERT ER KiE E;R T ER KiE
n g1 E
where | = ~ki=m, .., J(E;keK) = ~=2 rC(kek  k%iyqe is the on-shell

scattering mean free time [see Eq.40)], and h::i e represents integration over the
k-space shell de ned by (k) = E [see Eqg. 41)]. The functions E-Q and the real-

valued positive numbers ¢ are the solutions of the integral eigenproblem $4), which
becomes, in the on-shell approximation (see appendiRppendix A),

o D

= eeChkeR k) Lo = E B (58)
normalized by 2- E:R E-Q ::1-(% ke = nm [79. It follows from Eq. (57) that

the incoherent (Boltzmann) diusion tensor Dg(E) is obtained from the two-point
disorder correlation function C(r), which determines ., [see Eq. ¢0)] as well as
E;Q and  [see Eg. 69)].

In the isotropic case (for details see appendiXAppendix B), Eq. (58) is solved
by the cylindrical, Z, 1 (2D; see appendix Appendix B) or spherical, Y,™, (3D)
harmonics, the same level harmonics [i.e. with the samé] being degenerate in g .
Then, it follows from the symmetries of the cylindrical/spherical harmonics that
only the rst term in Eq. ( 57) plus the p-level harmonics (le in 2D and Y{"
with m = 1;0;1 in 3D) couple to and contribute to Dg(E). Incorporating the
explicit formulas for E-Q and g [see Egs. B.1) to (B.7)], we then recover well-known

expressions for isotrobic disorder§1, 62, 63, 65].
In the anisotropic case, harmonics couple, and the " , are no longer

E;R
cylindrical/spherical harmonics.

5.2. Anisotropic Gaussian speckle (2D)

Consider again the 2D anisotropic speckle potential of Sec3.1. The rst step in
the calculation of Dg is to determine the eigenfunctions E-Q and the associated

eigenvalues ¢ of Eq. (58). We solve Eq. (68) numerically, by a standard algorithm of
diagonalization, with 2° = 512 points, regularly spaced on thek-space shelfjkj = k.
The diusion tensor is diagonal in the basis made by the symmetry axs of the
correlation function (35): fay; 0yQ0.

The eigenvalues and some eigenfunctions obtained numerically are®hn in Fig. 7
for various values ofE=E , . As discussed above, we nd 2! =1. For E E ,,
only the rst term in the right-hand side of Eq. ( 57) contributes to the di usion
tensor since all 1 are vanishingly small. When the energy increases, the values
of the coe cients [~ ! increase. It corresponds to an increase of the weight of the
terms associated to the orbitals withn > 1 in Eq. (57), and a priori all the orbitals
with n > 1 might have an increasing contribution. However, the symmetry poperties
of the functions E-k‘ cancel the contributions of most of them, and only the orbitals
with n =2 and 3 do contribute (see below).
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Figure 7. (Color online) Top row: Eigenvalues of Eq. ( 58) for the 2D

speckle potential of Sec.3.1 with = 4. Bottom row: Angular dependence
of the eigenfunctions E;Q for n = 1 (dashed black line), 2 (solid red line)

and 3 (dotted blue line). We use the parametrization K (cos ; sin ).
The di erent columns refer to di erent energies (indicated on top of the
gure).

In the low energy limit, one can develop Eq. B5) in powers of jkj. Up to order
O(E2= “E?), the rst three eigenfunctions are given by:

E h i 2
=1 —— 1+( 2 1k +0

£k 57 e (59)
with eigenvalue i =1;
2=k P34, 257 +0 4EE—22 (60)
with eigenvalue 2 = E=2E ,; and
2e= Ry P2+ 8, ZE? +0 é—z (61)

with eigenvalue & = E=2 2E ,, where B, and B3 are constant values that do
not intervene in the following. In this limit the numerical results agree very well
with the analytical ndings (which for clarity are not shown on Fig. 7). In the
very low energy limit, the disorder power spectrum becomes isotrojpg and constant,

C(k)" V2 3=, [see Sec3.1and Eq. (35)]. The orbitals E-Q are thus proportional

to the cylindrical harmonics, which are exact solutions of Eq. '68) in the isotropic case
(see appendixAppendix B, and use the parametrizationk, = cos and Qy =sin ). In

contrast to the isotropic case where the values of . are degenerated in a giveri-level,

here we nd that the degeneracy inside al level is lifted for any anisotropy 6 1

[see the values of és below Egs. 60) and (61)]. When the energy further increases,
the anisotropy plays a more important role and the harmonics are mee and more
distorted (see Fig.7). However their topology remains the same, and in particular the
number of nodal points and their positions are unchanged. In the dllowing, we thus
refer to Z, *-like orbitals.
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Figure 8. (Color online) Components of the diusion tensor: D} (soild
red line) and D} (dotted blue line) for the 2D speckle potential of
Sec. 3.1 with = 4. Solid black lines are limit values at small E=E ,
[Egs. (62) and (63)], with the isotropic white-noise limit D3 (E) = D} (E)
~EE ,=mV 2. Forlarge E=E , we nd Ds(E) E®2 (see text); a t
of the numerical data gives the prefactors D} = 4:43E572=V2E"}? and
DY = 1:24E52=V2E'}? (see dotted black lines). The inset shows the
transport anisotropy factor g = D5=DJ.

Incorporating the values of 7, E-k‘ and ¢ in Eg. (57), we can determine
the Boltzmann di usion tensor. Figure 8 shows the resulting eigencomponents of the
di usion tensor. In the low energy limit(E  E , ), using Egs. @3), (60) and (61), we
nd that the rst term in the right-hand side of Eq. ( 57) gives the leading contribution
to Dg(E) (of order E=E , ). This contribution is isotropic owing to the isotropy of .,
at low energy and of the underlying medium. At very low energy, in the white-noise
limit, we recover an isotropic diusion tensor DX(E) = DY(E) ~EE ,=mV 2.
The scaling D{'(E) / E is universal for 2D disorder in the white-noise limit (when
it exists). The Z;*-like orbital E-k‘ contributes to the next order of D} and the
Z, *-like orbital 3 , to D3. Up to order O(E®= °E? ), we obtain

~ E? E E2 924+13 E3
X = — ? + + = .
DB (E) m VRZ E ) E 2? 8 O 6E3? ) (62)
and E2 2 2 3
~ E E< 3°+9 E
DY(E)= — 2 + +0 — 63
=(E) mVvZ E , E 2? 8 6E3? ' 63)

which are displayed on Fig.8 (left-hand-side solid lines). When the energy increases,
the anisotropy rst comes from the anisotropic contribution of th e scattering time
g.¢» and from the lift of the degeneracy between 2 and 2. When the energy
further increases, the harmonics are distorted, { but their symnetries (i.e. periodicity
and parity) are preserved (see Fig.7). Hence, for the same reasons as in the isotropic



CONTENTS 23

6
5 L m
o AT
= g [ & cutatE=10E;, — ] X
1K N 50
60 _ 0 L L L L L L L L - 40
12345678910 A
50 X vy 30
| 20
10

Figure 9.  (Color online) Boltzmann transport anisotropy factor g =
D3=D} as a function of E=E , and for the 2D speckle potential of
Sec. 3.1. The inset shows the high energy asymptotic value (cut at
E = 10*E , ). The dotted red line in both the gure and the inset is

case (see appendiXppendix B) only the Z; L_like orbitals couple to  in Eq. (57) and
contribute to D, while the others don't. The associated { increase (see Fig7), the
weight of the second term in Eq. 67) increases, and the components of the di usion
tensor show a very di erent behavior in the largeE limit. For k. - , we found
e¢ | ke (see Sec4.2). In addition, we nd numerically a weak topological change
of the orbitals with energy for E=E , & 10?. Therefore the evaluation of Dg with
E is mainly determineq) by the normalization condition [see formula below Eq (57)],
which yields E;k\ /" 1= ke. Then, assuming the scaling 1 ¢ / 1=E, also veri ed

numerically, we obtain DU(E) / E®=2, which matches the numerical results (see dotted
black lines in Fig. 8). This scaling is similar to that found for isotropic disorder [62)].
As shown in Fig. 8, the change of slope between the low- and high-energy regimes is
di erent in the two directions. For this reason, the anisotropy factor of the di usion
tensor, g = DX=D} shows a nonmonotonous behaviour versug, with a marked peak
(see inset of Fig.8).

The Boltzmann transport anisotropy factor g is shown in Fig. 9 for various
con guration anisotropies . As it is well-known, the scattering and transport mean
free times are dierent quantities in correlated disorder, due to argle-dependent
scattering [99, 100 81]. In particular, in the 2D speckle we consider, we do not
nd any inversion of the anisotropy of the di usion, contrary to th e scattering time,
i.e. the componentD} (E) of the di usion tensor is always larger than the component
DZ(E). For large values ofE=E , , the Boltzmann transport anisotropy g reaches a
constant value (see the inset of Fig.8 for a cut at = 4), which increases with the
geometrical anisotropy (see inset of Fig.9). This asymptotic value is larger than
for small and smaller for larger . Therefore the anisotropy of the di usion in the
classical regime is not simply related to the con guration anisotropy
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The two distinct regimes found in the behaviour of Dg and the non-trivial
anisotropy e ects make the Boltzmann di usion regime in anisotropic 2D potentials
very interesting for future experiments. Those properties couldbe probed by imaging
directly the atoms in the 2D speckle (as in Ref. $3]) and controlling the width of the
atomic energy distribution.

6. Weak and strong localization

We now consider interference e ects, which lead to weak and strog localization.
We rst describe the quantum corrections (Sec.6), then the self-consistent theory
(Sec.6.1), and apply it to the 2D speckle potential (Sec.6.2). The 3D case, which
follows the same route, is discussed in Sec.3.

subsectionWeak localization correction

We calculate corrections to Boltzmann di usion by taking into account quantum
interference terms between the multiple-scattering paths. Thos interferences appear
when the correlated scattering events do not occur in the same der in the propagation
of the eld and its conjuguate. This is diagrammatically translated int o crossing
correlation lines as in the second term of Eq. 19) for example. In the weak scattering
regime only the two-point correlations are retained in the scatterirg diagrams and
the leading scale-dependent corrections to the classical condueity are given by the
maximally crossed diagrams 101, 75, 90, 6]: the cooperon [Eq. 64)] and the rst two
Hikami boxes [Egs. 65) and (66)].

(64)

(65)

(66)

+ i (67)

and
(68)
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is the renormalized vertex function (see appendixAppendix C.2).
Using time-reversal invariance P3, 102 98, 81], the cooperonX can be expressed
in terms of the diuson [de ned in Eq. ( 51)]

Xio(@EE )= o, g0, o (k+ KGLE): (69)

The di usion pole carried by inthelimit ( !; q)! 0 leads to a divergence oK when
I; k+ k%! 0. In appendix Appendix C.3 we translate those diagrams into equations,
and show that

LE) £ dQ 1 |
No(E) (2)* i~ +~Q Dg(E) Q

Using Einstein's relation (32) we then obtain the dynamic di usion tensor D (I;E ) =
Dg(E)+ D(};E ), with [79
z

D(LE) 1 dQ 1 _
Ds(E)  No(E) ()4 i~ +~Q Dg(E) Q

Note that the quantum corrections D (!; E ) do not explicitly depend on the disorder
[i.e. on C(k)], but only on the Boltzmann diusion tensor Dg(E) [75]. In other
words, in this approach, Boltzmann incoherent di usion sets a di using medium, which
contains all necessary information to compute coherent termis In particular, it follows
from Eq. (71) that the weak localization quantum correction tensor D (!; E ) has the
same eigenaxes and anisotropies as the Boltzmann di usion tensd g (E). Thus the
Bnisotropy can be removed by rescaling d'ﬁtances along the transpt eigenaxesu by

DU=D¥ (i.e. momenta are rescaled by Da=DY) with D&  detfDgg'™ the
geometric average of the Boltzmann di usion constants. Since D is always negative
inthe limit ! ! 0", the weak localization correction features slower di usion than the
one obtained from incoherent di usion. Equivalently, as long as the orrection (71) is
small, one can write

(LE)= (70)

(71)

Z
Dg(E) S 1 dQ 1

DBGE) ~ NoE) @) i< +-Q DsE) Q' (72)

which is the lowest-order term of a perturbative expansion of ¥D (!;E ).

6.1. Strong localization

The quantum interference correction (71) has been derived perturbatively and is
therefore valid as long as the correction itself is small. In order to etend this
approach and eventually describe the localization regime wher® vanishes, Vollhardt
and Wel e [ 102 98] proposed to self-consistently replaceDg(E) by the dynamic
di usion tensor D (!;E ) in the right-hand side of Eq. (72). For isotropic scattering
this procedure amounts to resumming more divergent diagrams tha the cooperon
(which contain a square of a di usion pole), thus contributing to localization [98, 80].
Generalizing this standard approach to anisotropic disorder yields
Ds 1 z dQ 1

— =1+ - :
D () No(E) ()¢ i~ +-Q D () Q

I This property is a consequence of the on-shell approximatio n.

(73)
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In dimensiond 2 the integral in the right-hand side of Eq. (73) features ultraviolet
divergence. Since the diusive dynamics is Fl3elevant only on length sdas larger
than the Boltzmann mean free pathl§(E) d m=2EDg(E) along each transport
eigenaxis, we regularize this divergence by setting an upper ellipsoitiaut-o of radii
1=l in the integral domain™. It corresponds to an isotropic cut-o in the space
rescaled according to the anisotropy factors oD g as described above.

6.2. Anisotropic Gaussian speckle (2D)

We now solve the self-consistent equationq3) for the inverse dynamic di usion tensor
in the 2D case. In the long time limit ! | 0", the unique solution of Eq. (73) is of the
foomD (;E) 0" i L2.(E), whereLc(E) is a real positive de nite tensor. As
described in Sec2.4, it leads to the exponentially decreasing propagation kernel Z8).
Solving Eq. (73) then yields the anisotropic localization tensor,

S

Lioc(E) = 15" (E)

De(E) _«kcize) 1=2
1 74
DrE) © (74)

where 1§'(E) dIO m=2E DZ(E). The eigenaxes of the localization tensor are thus
the same as those of the Boltzmann di usion tenS(H and its anisotrpy factor is the
square root of that of Dg(E), i.e. oc LX =L%. = &

We now apply the self-consistent theory to our running example: tke 2D
anisotropic speckle potential with correlation function (35). Including the results
for the Boltzmann di usion tensor Dg(E) obtained in Sec.5.2 into Eq. (74), we nd
the localization tensor Lo (E). Figure 10 presents the eigencomponents df ¢ in its
eigenbasisf 0y; 0yg as a function of energy, for a con guration anisotropy of = 4
and two di erent amplitudes of the disorder, V;=E , = 0:2 and 2. At low energy

(E E,;Vk;V2=E ,), using Egs. (62) and (63), we nd

. E3 32 Jp EE
LY (E)= » % — 1+ i
! V3 E, 2V.2
E (18 3)2+(18 3)
E, 16 2

E2 EZ EZEZ

g2 2VR2; V2 ' ;
where the upper sign holds for directionx, and the lower sign for direction vy.
Equation (75) corresponds to the solid black lines in Fig.10. As Dg is almost isotropic
for E=E , . 1 (see Fig.8), Lo is also almost isotropic in the whole range presented
in Fig. 10. Equation (75) describes an isotropic IocalizeBion tensor with an anisotropic
correction which is signicant only if Vxk=E , & 3%2= 2 1( 2for =4). At
higher energy, whenk:1g"(E) =2mD & (E)=~ & 1, we expect

P
2m D (E)D}(E) emD & (E)=-.

ke~
which is plotted as dotted black lines in Fig. 8. According to Egs. (62) and
(63) (retaining only the lowest-energy term), this regime appears forE=E , &

+ 0 (75)

L (E)" (76)

™ Although somewhat arbitrary the factor unity between the cu  t-o radius and 1 =I3 (E) is justi ed
by the agreement we nd with another approach in the isotropi ¢ case, provided that the real part of
the self energy is included, see Sec.7.4.2.
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Figure 10. (Color online) Components of the localization tensor L}, (solid
red line) and LY. (dotted blue line) for the 2D speckle potential of Sec. 3.1,
with =4 and Vkx = 0:2E , and 2E ,. The solid black lines are the
limiting behaviour for small values of E=E , [Eq. (75)] and the dotted
ones for high values ofE=E , [Eq. (76)]. The dashed grey lines indicate
typical values of the imaging resolution ( Lis) and the system size (Lsys)
in ultracold-atom experiments, see text at the end of Sec. 6.2.

(=2 )V:=E ,)2. When = 4 (as in Fig. 10), it gives E=E , & 0:015 for
Vr=E , =0:2andE=E , & L:5forV;=E , =2. As predicted by the scaling theory of
Anderson Localization [23] and explicitely seen in Eq. (76), the 2D localization length

increases exponentially at large energy (hence the limited energy nge in Fig. 10).

Therefore measuring it experimentally with ultracold atoms [54, 103 104 is very
challenging and can be done in a rather narrow energy window, in whicl. .. is larger
than the resolution of the imaging system () but smaller than the size of the
sample (Lsys). This isillustrated for » =0:25 m on Fig. 10 by the grey dashed lines
corresponding toLres * 15 mand Lsys © 2mm, which are typical values extracted
from Refs. b3, 58].

One can nally note that 2D speckle potentials bear a classical perdation
threshold at energy E;, ' Ve=2 [54]. In the classical regime (Ek < -4; 2y),
genuine Anderson localization has to be distinguished from classicatapping, which
happens forE < E ,. However, classical percolation is not relevant for the parametesy
used in Fig. 10. Indeed, forjVzj 2E , (as inthe gure) and for E < E ,, we have
E. j\kj=2 E ,,sothatk -, Kk >, =Kk » . 1, whichis not in the classical
regime.

7. Three-dimensional anisotropic disorder

In this section we apply the formalism introduced in Secs.4 to 6 to the 3D speckle
potential of Sec. 3.2 We discuss single-scattering (Sec7.1), Boltzmann di usion
(Sec.7.2) and localization (Sec.7.3) properties and the position of the mobility edge
(Sec.7.4).
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Figure 11.  (Color online) Scattering mean free time ., in the 3D case
[Eq. (77)] with = » =5:8 with jkj = ke , in the (Kx;Ky) plane (solid red
line) and along the K, direction (dotted blue line). The black lines are the

low-energy ke - 1, see Eqg. (79)] and the high energy [ke » 1, see
Eq. (80)] limits. Note that in both limits ., is anisotropic, although for

ke » 1, the anisotropy is very small, s ' 1:002. The insets show the
angular dependence of . at dierent energies [with = (Q;QZ)]. The
points on the lines are color- and shape-coded to match thosein the insets.

7.1. Single-scattering
Inserting Egs. (36) and (37) into Eq. (40), we nd the scattering mean free time

E?n (2 )2:kE?

(E k)= = ;
VE Td poersp(keR’ k)= 3

(77)

which is shown in Fig. 11 for jkj = ke [we use the de nition .p J(E; ke R)].
SinceC(k) is isotropic in the (k; ky) plane, ¢., only depends on the polar angle

betweenk and K, and not on the azimutal angle . We nd that the scattering
time is an increasing function of energy. It is also shorter for partites travelling along
the z direction ( ¢.p < g, ) for all values of E. As for the 2D case analyzed in

Sec.4.2, this is due to the wider extension ofC(k) in the plane (ky;ky), which o ers
more scattering channels to particles travelling alongz. In contrast to the 2D speckle
case however, .., shows no inversion of anisotropy.

In the low energy limit (ke » 1), g.¢ converges to a constant value. In
contrast to the 2D case, it signals the absence of a 3D white-noise lit'. This can be
attributed to the strong anisotropic divergence of C(k) when jkj! 0, which re ects
the long-range correlations of the disorder (see Se8.2). More precisely, forjkj - 1,

" In the case of a white-noise limitin 3D, the scattering time i s isotropic with the scaling ., / 1=p E
(i.e. Isg. p is constant). This can be found by inserting a constant  C(k) in Eq. ( 40).
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we have
1 k Zﬁ%
T, 7
- - e » 5
ap(k) ' P KeR)= I KE 78
Replacing this expression into Eq. {7) we then nd
p_
E, 4 (79)

56TV RS Ll R

which is independent of E. Equation (79) is plotted as solid black lines on the left-
hand side of Fig.11. Note that ., does not become strictly isotropic in this limit.
However, the residual anisotropy of the scattering time, found fom Eqg. (79 and
from the anisotropy of &K) in Eq. (78), is very small, and practically unobservable
(e, =eg, =~ 1002). When the energy increases, the scattering time in the
(x;y) plane is the rst to deviate signicantly from the low-energy behaviour at
E E,(=3 10 2E , for the parameters of Fig. 11), while the scattering time
in the z direction increases only atE E , . This can be understood again by the
narrower width of the power spectrum C(k) in the k, direction.

In the high-energy limit (ke - 1) the k-space shell integral of Eq. {7), which
is done on a sphere of radiuk: containing the origin, can be reduced to integrating
e1sp ON the plane which is tangent to the sphere at the origin. We then nd

p
~E ., » 4" k¢ o
E;R 2 2 22
VE & 202 @2 4 K2y
d d oe 4 pe ! z

(80)

2Q§+ 02
In particular, we nd .o = ~E , ke ?:ZVRzp T oee, = “E ke 5=V2  (both
shown as the right-hand-side solid black lines in Fig.11). The anisotropy of the
scattering then becomes signi cant for the parameters of Fig.11, .., =g =

" k=2 » in this limit. The high-energy scaling e | Ke, which was also found
in our 2D speckle, is quite universal: as long as the power spectrum ig aite integral
in all the planes (lines in 2D) crossing the origin, the procedure desded above can
be applied to Eq. (40). Then ., only depends on the dispersion relation (k) and,
in particular, it is independent of the space dimension.

7.2. Boltzmann di usion

The Boltzmann diusion is obtained, as in the 2D case analyzed previosly, by
solving Eqg. (58) numerically and incorporating the results into Eq. (57). For the
diagonalization of the integral operator (58) we use Z 27 = 128 128 points
regularly spaced on thek-space shelljkj = ke. We have studied several values of
the con guration anisotropy = >, which all show the same behaviour discussed
below.

The eigenvalues ¢ of Eq. (58) for di erent energies, as well as the topography
of the eigenvectors of Eq. $8) that dominate DX (bottom row), DY (2" row), and
DZ (3" row) are shown in Fig. 12 for = » = 5:8. Similarly as for the 2D case,
we fond that g decays from 1 to O whenn increases, more sharply for low energy.
The E;Q are topologically similar to the spherical harmonics at all energies, i.ethey
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Figure 12.  (Color online) Three dimensional case with =, = 5:8.
Eigenvalues of Eq. (58) at various energies indicated on the gure (top row).

Topography of the eigenvectors E; ¢ at the same energies, which mainly
contribute to DX (bottom row), DY (2™ row)and DZ (3" row) respectively
[with the parametrization K = (Rx;Ky;K;) (sin cos; sin sin; cos )].
The values of n are indicated on the gure, the red lines locate the nodal

lines. The points are color- and shape-coded to match those d Fig. 11.

show similar nodal surfaces, but the associated are not degenerated in a given
I-like level. More precisely, due to the cylindrical symmetry of the pover spectrum,
the value of 2 associated to theY,” "-like and Y, ™-like orbitals are the same for a
given m, but the degeneracy between the di erent values ofimj is lifted.

Figure 13(a) shows the resulting eigencomponents of the di usion tensor in he
3D case for (= », =5:8. Itis isotropic in the (X;y) plane, because of the cylindrical-

invariance of the correlation function C(k) around the axis K. For the same symmetry
reasons as in the isotropic case (see appendippendix B) and as in the 2D case, only
the p-level-like orbitals couple to . For k. » 1, we nd that DX¥ is dominated

by the rst term in Eq. ( 57) and DZ by the Y?-like orbital (n = 2 at all energies).

For k: » 1, the situation changes: whileD; is still dominated by the Y1°-Iike

orbital, DX is now dominated by the Y, -like orbitals and DY by the Y, -like orbitals

(respectivelyn =6 and 5 at E =50E , in Fig. 12) with a contribution of the Y, Llike

orbitals increasing with E. At high energy, we nd that the nodal lines of the Y; 1

like orbitals calculated numerically are displaced compared to the assmated spherical
harmonics. Therefore their contribution in Eq. (57) does not cancel out for symmetry
reasons. Those properties explain the main features dd g .

Firstly, we nd that the di usion tensor is larger along axis z (D% > D ;) for all
values of E [see Fig.13(a)], and the anisotropy of D g is thus reversed with respect to
that of ., (we recall that we found ., < p.p forany E, see Sec7s.1). This is
due to the fact that the (Y -like) orbitals contributing to DZ are associated to values
of 2 larger than those contributing to D;¥ (in Fig. 12, the " , are numbered by

E;R
decreasing eigenvalues).
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Figure 13.  (Color online) (a) Boltzmann di usion coe cients along the
transport eigenaxes (eigencomponents of Dg) for the 3D con guration
with = > = 5:8. The dotted lines are power-law ts (Dy / E ") to
the data in the low and high energy limits. The inset show the t ransport
anisotropy factor D3 =Dj” , and the crosses match those of the gight panel.
(b) Anisotropy factors g = DZ=D3” and . = Li. =Ly = Dz=Dy”
as a function of the con guration anisotropy = x=.,atE=E , =
6 10 %;6 10 ! and 60. The dotted line is a t of all the data which
gives g =0:59 +0:21 2.

Secondly, C(k) shows a strong anisotropic, infrared divergence in the paraxial
approximation (see Secs.3.2 and 7.1). Following-up with the scaling of eisp(k),
Eq. (78), used to show that . is independent of energy forke - 1, and inserting
it into Eq. ( 58) and the associated normalization, we nd that ¢ does not depend on
E,and [ . is of the form" n(Q)=IO ke. Then, all terms in Eq. (57) are topologically
unchanged and scale ag at low energy. The anisotropy ofDg thus persists down to
arbitrary low values of E and Dy / E, as observed in the left-hand side of Fig13(a)
for ke » 1(i.e. E E ,). This is another manifestation of the absence of white-
noise limit°. p_

Thirdly, for ke » 1, we found .o/~ E. Then, assuming weak topological
change of the orbitals and the scaling 1 £ / 1=E (con rmed numerically), we get
1,/ 1=k and Dg(E)/ E®°7. This scaling is con rmed in Fig. 13(a) by ts to the
datafor E  E , (right-hand-side dotted lines). Remarkably, in spite of the di erent
contributing terms in Eq. (57) at low and high values of E, the transport anisotropy

is nearly independent ofE with DZ2=D;” ' 10 [see inset of Fig13(a)].

We have repeated the same study for various values of the con gation
anisotropy, = = ». They all show a similar behaviour as a function of energy
as reported in Fig. 13(@) for = 5:8. In particular, we found the same scalings
with energy and a di usion anisotropy g = DZ=D,” that is nearly independent of
energy. In Fig. 13(b), we plot g versus for three values of the energy. We nd that
the di usion anisotropy monotonously increases with the con guration anisotropy, as
could be intuited. In order to guess a tting function for g, one may rely on a
simpli ed model of random walk in an anisotropic lattice of anisotropy factor . If
the transition time is governed by the travel duration between two wells, one expect

© A 3D white-noise limit would lead to the scaling Dg(E) / P E and an isotropic limit at low energy.

25
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g / . Ifitis governed by the trapping time, one expects g / 2. In our continuous
model of disorder, the situation may be expected to be somehow irtmediate. For
our considered range of , we nd thatthe t g =0:59 +0:21 ? reproduces well our
results as shown in Fig.13(b).

7.3. Localization

In order to analyze strong localization e ects, we now solve the seltonsistent
equation (73) for the 3D case in the long time limit (! ! 0). A threshold [Fnergy
E. (mobility edge) appears, solution of D&(E;)  detfDg(Ec)g*™® = ~= 3m .
For E < E., one nds D (LE) 0" il LZ,(E) for ! ! 0, where Lo (E)
is a real positive de nite tensor. It characterizes exponential lo@lization within
the propagation kernel (29) with the anisotropic localization tensor Lioc(E). The

localization tensor is diagonal in the same basis as the Boltzmann di u®n tensor

Dg. Explicitely, we have S
u — av Dllaj .
LIoc - Lloc ng ’ (81)

where L2 =detfL o (E)gl™ is the unique solution of

LaV h 2i LaV

I;j 1 §(kEI§V) = arctan I;j : (82)

B B
For E > E., D (I;E ) converges to a real de nite positive tensor when! ! 0.

It describes anisotropic normal di usive dynamics, characterizedby the propagation
kernel (27) where D (E) is replaced by the quantum-corrected di usion tensor

D (E) [imD (LE) , (83)

DB(E):

2
3m 2fDa(E)g’

As already mentionned in Sec.6 the behavior of Li,c and D is completely
determined by that of Dg in our approach. The anisotropies ofL,c(E) are the
square roots of those ofDg(E) [see Eq. 81)] and the anisotropies of D (E) are
the same as those ofDg(E) [see Eq. @3)]. Therefore, as for Dg, for the 3D
con guration, the anisotropy factors of Li,c and D are nearly independent ofE. The
localization anisotropy ,, = L2 =L is plotted versus the con guration anisotropy

loc

on Fig. 13(b). At low energy, using the scaling of DY (E) obtained previously we
predict LY (E) / DY=D& ‘?E3<2. \When E increases,LY (E) grows and nally

loc loc
diverges atE.. In the diusive regime the quantum corrections are signi cant only
close toE¢, while for higher values ofE, D (E)"' Dg(E). Therefore, in the high E

limit we have DY(E) / (Dg§=D&")E>2? as found previously (see Sec’.2).

7.4. About the 3D mobility edge

The self-consistent approach used above is expected to fairly debe the quantum
transport properties [75, 80, 62]. It gives some quantitative estimates consistent with
numerical calculations [L05 and experimental data [LO6, 56]. However it has two main
aws.
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On the one hand, it predicts that, just below the mobility edge, the localization
length diverges asL} (E)/ (Ec E) with =1 and, just above the mobility edge
E., the corrected di usion tensor increases aD"(E)/ (E E()® with s=1. Those
values of the critical exponents and s are consistent with the predictions= (d 2)
of the scaling theory 3, 107] and they are independent of the choice of cut-o that we
made. However, it is known, from advanced numerical calculations o the Anderson
model [108 109 and from experiments p2], that they are not correct. The correct
value of the critical exponents in 3D is = s=1:58 0:01 [108 109. In order to
reproduce this value, it seems necessary to take into account thigactal nature of the
wave functions at the critical point [110, which is beyond the self-consistent theory
of AL.

On the other hand, in contrast to critical exponents, the mobility edge, E. is a
non-universal quantity and should be determined from microscopictheory. In this
respect, the on-shell approximation is questionnable because it gects the strong
modi cation of the spectral function induced by the disorder. This renormalizes
energies and may thus strongly a ect the value ofE,.

7.4.1. Energy renormalization In order to improve the self-consistent method, one
could in principle use the more sophisticated approach of Ref.105, which does
incorporate the spectral function, and provides values ofE. in agreement with
numerical calculations in the Anderson model. For continuous disordr, one may rely
on the approach of Refs. §0, 64], which has been applied to several standard models of
disorder. However, since we are interested in continuous disorded potentials with ne
and anisotropic structures, these methods are hardly practicake. From a numerical
point of view, estimates of necessary ressources seem out of geat-day possibilities.
In order to overcome this issue, we have proposed in Ref7§] an alternative method
based on the assumption that the leading term missing in the on-shekpproximation
is the real part of the self energy,

dk® c(k kY
2) E Ko

AE;k) P (84)
where P is the Cauchy principal value, see Eq.39). A quasi-particle of momentum k
has an energyE, solution of E (k) %E; k) = 0. Here, we incorporate YE; k)
into the theory self-consistently and by averaging, in rst approximation, its k-angle
dependence. It amounts to replace the on-shell prescription by(k)= E® E ( E)
with 1 z

( E) T d g %E; k): (85)

(k)=E ( E)

Within this approach, all previous quantities [ ((k);Dg;Lioc;D ] are now regarded as
functions of E%instead of E. It does not change the overall energy dependence of the
quantities discussed above, but may be important for direct compéson to energy-
resolved experimental measurements. In the following we concertte on the 3D
mobility edge E.. Itis the solution of E.  ( E¢) = E?, whereE{ is determined using
the on-shell approach and can be regarded as an energy shift, Wich renormalizes
the energies.

7.4.2. Isotropic disorder Here, we validate the above approach by a direct
comparison to an alternative method applicable toisotropic disorder. Consider a
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Figure 14. (Color online) Comparison of the mobility edges as calculat ed
with the SCBA method (the full black squares are the results o btained
by A. Yedjour and B. van Tiggelen in Ref. [ 64], that we reproduce here),
with the on-shell method ( E2, red crosses) and with the renormalized self-
consistent approach (corrected Ec, thick blue circles), for an isotropic 3D

speckle potential. When comparing to Fig. 8 of Ref. [64], note that in

Ref. [64] the reference of energy is the minimum value of the disorder and
that we have the correspondencesE = E =2 and U = V2.

speckle disorder obtained inside an integrating sphere lit with a laser éam, the real-
space correlation function of which reads§2, 64]

s \2
cn = vz U= (86)
(irji=")
with the correlation length. The associated power spectrum (see ap-

pendix Appendix B) is isotropic and bears the same infrared divergence as the
anisotropic model of 3D disorder considered in this work as well as ber con gu-
rations [79]: C(k) / 15kj whenjkj! 0. Figure 14 shows the on-shell mobility edge
EQ calculated as in Sec.7.3 (see also Ref. §2), the renormalized mobility edge E.
calculated by our method (see Sec7.4.1), and the mobility edge found using the self-
consistent Born approximation (SCBA) in Ref. [64]. As it is clearly seen in Fig. 14,
the disorder-induced modi cation of the spectral function plays a major role for the
prediction of the mobility edge. While the on-shell mobility edge, E?, is above the
statistical average of the potential (Vv = 0 for our choice of energy reference), the
corrected mobility edge, E., as calculated either by the method of Ref. §4] or by our
self-consistent renormalized approach, is below the statistical aarage of the potential.
In addition, we nd that the renormalized self-consistent approach predicts values of
E. in very good agreement (within 5 7%) with those of Ref. [p4]. These results
support our method to estimate E..

7.4.3. Anisotropic disorder We now apply our method to anisotropic disorder in the
3D single-speckle con guration. The mobility edge is found by searcimg the root of
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Figure 15. (Color online) Angular dependence of %Ec; kEgQ) (thin solid
lines) for the 3D single-speckle for = » =5:8 [with = (K;K;)], and for
di erent values of Vi (indicated on the gure). The horizontal solid blue

line is the mean value and the dashed blue lines represent thestandard
deviation around the mean, both calculated over the K-solid angle.
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Figure 16.  (color online) On-shell (E?) and renormalized (E.) mobility
edges versus the disorder amplitude V; for the 3D (single-speckle) case
with K= 2 = 5:8.

the self-consistent equation 85). Note that the averaging of the angular dependence
of %in Eq. (85) is justied a posteriori by the weak K-angle variations of ° found
around its mean value atE. (with standard deviations less than 10 15%). This is
illustrated in Fig. 15, which presents the angular variations obtained numerically in
the calculation of ( E.), for typical values of \; and for an anisotropy of = , =5:8.
The on-shell E2) and renormalized (E.) mobility edges are shown in Fig.16. As
for isotropic disorder, it is eye-catching that the shift of the energy states completely
changes the behavior of the mobility edge. While the on-shell mobility ége, E?, is
above the statistical average of the potential, the renormalized robility edge, Ec, is
below. This behaviour seems very robust for 3D speckle disorder.t lwas found for
isotropic 3D speckles (see Ref6l] and Sec.7.4.2), as well as other models of speckle

potentials with structured correlations [79].
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8. Conclusions

Disordered potentials with nite-range correlations are often characterized by a
counter-intuitive and interesting behaviour [32, 28, 29, 25, 30, 79]. These are directly
related to the microscopic statistical properties of the potential, hallmarked by the
disorder correlation function. In this paper we have focused on aisotropy e ects
in 2D and 3D correlated disorder. We have quantitatively studied the transport
and localization of matter waves by using mesoscopic transport thery [81] and a
standard on-shell self-consistent perturbative approachq5]. The latter, rst pioneered
by Vollhardt and Welfe [ 102 98], remains the most powerful, quantitative, microscopic
approach to Anderson localization in dimension higher than one d > 2), in spite of
the unavoidable problem of describing the physics inside the critical egion ind > 2.
Within this approach, we have characterized incoherent di usion, quantum corrected
di usion and localization tensors versus the particle energy and foad rich di usion
and localization properties. We have supported the general thegr with application
to speckle potentials in 2D and 3D.

In the 2D case, we have considered an anisotropic Gaussian corrétm function
as used in Refs. 53, 54]. The energy-dependences of relevant quantities are studied:
For E  E ,, in the white-noise limit, we nd ., / 1 for the scattering time and
Dg/ E for thepB_oltzmann di usion tensor, which are both isotropic. For E E .,
we nd g/ EandDg/ ES52. As a general rule, the anisotropy of the disorder
(), of the scattering time ( ) and of Boltzmann di usion ( g) are all di erent. The
scattering time shows an inversion of anisotropy from s > 1 (for > 1) at low energy
to ¢ =1= (< 1)athighenergy. In contrast, the transport anisotropy is always g > 1
(for > 1) but shows a strongly nonmonotonic behaviour as a function of eergy with
a marked maximum atE  E , . The anisotropy of localization is simply the square
root of that of transport. For typical experimental parameter s, we found that it is
very small in observable regimes, except for very strongly anisotpic disorder. So far,
experiments have only studied the classical regimebB, 54] and our study o ers scope
for future studies of quantum transport and localization in 2D spedle potentials.

In the 3D case we have considered the strongly anisotropic correiian function
of speckle potentials obtained with a single laser. Here, the energyependence of
relevant quantities are the following: For E E,,we nd ./ 1andis slighty
anisotropic, while Dg / E and is signi cantly anisotropic, which is due to anisotropic
suppresBi@ of the white-noise limit in the model we used. FoE E.,,we nd

ex /' E and Dg / E®%, both being anisotropic. We have also analyzed the
anisotropy of transport as a function of the con guration anisotropy. We found that
it is almost independent of the energy, and has a the behaviourg = 0:59 +0:21 2.
In our approach, the anisotropy of the localization tensor is the sgare root of that
of the Boltzmann di usion tensor. We have also studied the behaviou of the 3D
mobility edge. To do so, we have extended the on-shell approach drproposed a way
to renormalize energies. We have found a striking agreement of ounethod with the
more involved method based on SCBA developed in Re6f] for isotropic disorder. The
e ect of renormalizing energies does not alter the overall energy ependence of the
quantities discussed above, but may be important for direct compéson to energy-
resolved experimental measurements. As regards the mobility eédg we have found
that the renormalization of energies has both a quantitative and qualitative impact.
In particular, we nd that, as for isotropic disorder, the renorma lized mobility edge is
below the average value of the disorder.
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Finally, our results and method may provide a guide line to future expegiments
investigating the so-far unexplored e ect of anisotropy in quantum transport of matter
waves. In the case of ultracold atoms, to which our study directly gplies, the
transport properties can be probed by direct imaging of the atomsand control of
the energy. First experimental studies of Anderson localization of3D matter waves
in anisotropic speckle potentials have been reporteds[7, 58]. Our study is directly
relevant to these experiments. For a detailed comparison of theatical predictions
and experimental observations, see Ref7B]. In addition, the e ects discussed in this
manuscript can be expected for other kinds of waves and/or othemodels of disorder,
and are particularly relevant to new systems where the disorder awelations can be
controlled [10, 57, 58, 67, 112, 113 114].
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Appendix A. Intensity kernel

In this section we show the step-by-step calculation of the long-tine and large-distance
limit of the intensity kernel given by Egs. (52), (53) and (55) and the di usion tensor

Eq. (57).
As explained in Sec.2.4, the solution of the Bethe-Salpeter equation (7)-(18)
can be obtained by inverting the operator 1 G GYU [see Eq. @0)]. To this
aim, we diagonalize the operatorG GY U in the (q;! ) = (0 ;0) limit. We thus solve
z

dko E n —_ n n
Wuk;kOfE;ko Ek°T E Eik (A1)

where UkE;ko = Uxxo(g = 0;! =0;E) and fe.x = G(E; k)GY(E; k) [see Eq. @2) for
g=0and! =0].
Appendix A.1. Preliminary remark

First, let us notice that we have

J(E; k
fe k= ¥

A(E; k); (A.2)

where A(E; k) is the spectral function de ned in Eq. (9) and .(E; k) is the scattering
mean free time de ned in Eq. (11).

Appendix A.2. Properties of Eq. (A.1)

The main properties of Eq. (A.1) and of its eigenfuctions are listed below:
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(i) The eigenvalues ¢ and the eigenvectors t., of Eq. (A.1) are real.

Proof. By multiplying Eq. ( A.1) by GY(E; k), we obtain

z dk®

a3 M CEK) Ee= EOEK) &y (A3)

whereM E,o  GY(E; k) UE, 0 G(E; k9. The latter is Hermitian since GY(E; k)
G(E; k) and Uk .o is real and symmetric. Therefore all the eigenvalues § are
real. By taking the complex conjugate of Eq. (A.3), dividing by G(E; k) and
comparing it to Eq. (A.1), we obtain that the functions ., are real.

If U,Eko is positive-de nite, the eigenvalues g are positive. In particular,
this is always true in the Born approximationP,  When UkE;ko is symmetric

and positive-de nite, we can write it as UkEko = %Qk;koodkooQIw;ko, where
de > 0 and Q |s an (prthogonal operat@r For any vector of components
Xk, we have (2 )d z )kaMkkoxkO = @ )ddkjykj > 0, where yg
erGY(E k9xkoQyok . It shows that Mk .o IS positive de nite. Its eigenvalues
e are therefore positive. O

(i) The eigenvectors ., can be chosen to satisfy the orthonormalization condition

de

WfE;k Bk Ek= nmm: (A.4)

Proof. This is an immediate consequence of the fact that, according to
Eqg. (A.3), the functions GY(E;k) g., are eigenfunctions of the Hermitian
operator M &, . O

(iii) The eigenvectors g., satisfy the completeness relation

X
fek B Bo=2)? (kKO (A.5)

n

Proof. This follows from the fact that the eigenfuntions GY(E; k) g.¢ of the
matrix MkE;ko, Eqg. (A.3), form a complete basis. O

(iv) The irreducible vertex function UEko can be expressed as

UkE;k°: E rI%;k E;ko: (A-G)
n

Proof. We multiply both terms of Eq. (A.1) by E.,0 and sum overn. Equation
(A.6) is recovered by using the completeness relation EqA(5). O

P In this case, UkE o= C(k k9 is symmetric and positive-de nite. This latter property i s assured

for any disordered potential by the fact that the power spect rum C(k), being the Fourier Transform
of the autoconvolution product of the potential, is positiv e for any k.
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(v) The most important property of Eq. ( A.1) is that one of the eigenvalues is

Bt =1 (A7)
and the corresponding eigenvector is proportional to the inversecattering mean
free time:

_ p— JE:K)] T
1 =g LE . (A8)
WA(E; K)[ <(E; k)] *
Proof. This is a direct consequence of the Ward identity 98]:
k(Q;LE ) = 2 Ucko(d;5E ) Gr(a; L E ), (A.9)

where  «(q;%E )= ( E+«;kse) Y(E ;k )and Gg(q;E )= G(E+;k+)
GY(E ;k ). For (q;!)=(0;0) it becomes
Z

0
k(0;0;E) = dk

@)
When comparing Eq. (A.10) to Eq. (A.1), we obtain that k(0;0;E) =

= (E; k) is a solution of Eq. (A.1) with unit eigenvalue. Using Eq. (A.2)
and the orthonormalization condition (A.4) one then easily nds Eq. (A.8). O

Uk wofE: K k(0;0,E): (A.10)

(vi) The eigenfunctions ., have the parity properties:

o= B (A.11)
K = £k for n> 1 (A.12)

m> m>

Proof. This is a consequence of the parity of the vertng<Uk ko, in particular,
B5% «w = Ugw.  Using Eq. (A6) we have PR

n
« kO
n E B k g xo Whichcan only be satis ed if the eigenfanctions Ei' Iiwave a
well de ned parity. The eigenfunction Eﬂ} is given by Eq. (A.8) and itis even. In
addition, ﬁsmg Egs. (A. 2) and (A.8) in the orthonormalization condition ( A.4),
we have (2 )d A(E;k) g =0 for n> 1. Which shows that g., are odd

functions of k. O

Appendix A.3. Solution of the BSE

Note rst that, if Eq. ( A.1) could be diagonalized with all eigenvalues di erent from
one ( g2 61 forall n), F;t is straightforward to show, using Eq. (A.5), that we would
have . ko(0 O;E) = 2 [1=(1 g)lfk § Ro. In this case no diusion would be
observed. As noticed above, however, the conservation of pacle number, through
the Ward identity, imposes that there is one eigenvalue equal to one As there is
no other conserved quantity in the system we are considering, weann assume that
the eigenvalue =1 is not degenerated and that there is a nite gap between this
eigenvalue and the rest of the spectrum whend;! ) ! 0 [115 11€. This suggests the
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following ansatz for the solution of the BSE (17)-(18) [see Eq. 0)], in the small (but
non-zero)q and ! limit:

HOQ;LE ) fo(a E)

@il E )= Lo @LE) &
X 1 n n
+ 1—nfE;k Ek EkofEko
n 61 E
(A.13)
where %(g;!;E)and 1+ (q;!;E ) are solutions of the eigenequation
dko E - 1 o ]-
Wuk;kOfk(q--:E ) k(d:LE)
= 1+ (;5E) Ko LE): (A.14)

The latter are the rst eigenvalue and eigenvector at small @;! ), and reduce to

Egs. (A.7) and (A.8) when (q;! ) = (0;0), respectively. We then write f, (q;;E ) =

]‘:E;k + F(q;!1;E ) the expansion of fi(q;!;E ). Making the ansatz i(q;;E ) =
nan(Q;5E ) g, we nd

X - Z
(;LE )= a(@hE) - dk ik Fr(a:LE) B (A.15)

a(q;LE) (2 )

Finally, the coe cients a,(q;!;E ) are found by imposing that Eq. (A.13) solves
the E. After some algebra one nds a;(q;;E) = 1 and a,(q;LE) =

T o ek F(@LE) Ry forn> 1

Appendix A.4. On-shell approximation
We now proceed to the on-shell (weak disorder) approximation, ad we neglect the
e ect of disorder on the spectral function. Equation (A.2) becomes

fe K ET;QAo(k; E); (A.16)

where ., is the on-shell scattering mean free time [¢., «(E; keK)], Ao(k;E) =
2 [E (k)]and (k) are, respectively, the disorder-free particle spectral functio and
dispersion relation. An explicit calculation of the small (q;! ) expansion off « (q;!; E ),
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gives'
(i
F@BE)= S5 g ®
2 3 3 )
t a0 Harc!
Ao(k;E)+ O( %% P! ): (A17)

Then, making use of the parity properties of the functions E;k‘ [Egs. (A.11) and
(A.12)], g.¢ (even function of R) a(:r]]d r « (k) (odd function of k), we nally
obtain L(q;LE )fex =2 «(q;E)= ~h E;lﬁ where ¢ is given by Eqg. (56) and

(;5E )=2No(E)[i~! ~q D(E) q]=h e 1&' with the di usion tensor of Eq. ( 57).

The solution of the BSE is thus given by Ed. 62) with Egs. (53) and (55). Note
that this expression for the diusion constant is quite general (ony the on-shell
approximation has been made), provided that the full irreducible vetex function
U is considered in the eigenequation 4.1). In Sec. 5.1 the Born and Boltzmann

approximations are made U = Ug [see Eq. £9)].

Appendix B. Isotropic disorder

For disorder with isotropic correlation function, we de ne, as in Ref. [62], p(k; )

C(ka on) = C 2kjsin(=2)j , where is the angle between the unit vectorKk and QO
andk j kj = jk3. In this case, rotation invariance ensures that the eigenproblem%8)
is solved by cylindrical (2D) or spherical (3D) harmonics.

Appendix B.1. Two-dimensional case

In the 2D isotropic case, inserting the cylindrical harmonicsZg = 1, Z|+1 = cos(l )
and Z, ' =sin(l ) into Eq. (58), we nd

R 4 bk
. £; ) COs
:,Em ) P\zp( ) (l ); (B.l)
o dp(ke; )
where | 0 and m 2 f 1;+1g are integer numbers. In particular, we
nd E° = 1 in agreement with Eq. (A.7). They are doubly-degenerated

E
for | > 0 and the corresponding normalized eigenfunctions are proportical

9 The small (q;! ) expansion of fi (q;!;E ) requires special attention in the on-shell approximation
Let us consider for instance the rst order termin  !. We nd Fy(q;E ) %[f E: ka(E; k)
fe: K G(E; k)]. In the on-shell approximation this equation appears to g o as the square of a -function,
and one has to handle this divergence correctly [ 86]: we assume that fg. «G(E; k) 2c¢ (E (k)),
where the factor q?is calculated by imposing that the integral over energy of fg. G(E; k) remains
invariant, i.e. ¢ = l;—Efg;ké(E; k). With this method, we nd g G(E; k) = i( é Q=~2)Ao(k;E)
and therefore Fy (g;E ) ~li ( é Q:~2)Ao(k; E), as in Eq. (A.17). Following the sarﬁe method, we
can calculate the other terms in Eq. ’( A.17). Finally note that Eq. ( A.17) also assumes that s(E; k)
is a smooth function of k, such that r  <(E; k) O.
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to the orthonormal cylindrical harmonics, with the prefactor determined by the
normalization condition (A.4):

S

) 2 d op(ke; 9
0= Zo() L (B.2)

and s

I{2
. d %(ke; 9
I,.Ql — Z| l( ) 0 :

i (B.3)

In the calculation of the di usion constant, it is actually possible to see that only the
rst term plus the | =1 terms (with m = 1;+1) in the summation of the right-hand
side of Eq. (67), contribute to the diusion coe cient. More precisely the on-she Il
scattering mean free time ., does not depend ork, (respectively ) isa 2 -
periodic and even (resp. odd) function of , and Z|+l (resp. Z|+1) is 2 =I -periodic and
even (resp. odd). Therefore, when performing the angular avexging of the product
ER E;k‘ in Eq. (57), one nds that only the term with | =1 and m = +1 (resp.
m = 1) couples to x (resp. y) and contribute to DX (resp. D). Then, inserting
Egs. (B.1), (B.2) and (B.3) into Eq. (57), we nd

£ _ 1 _
mNo(E)r\O2 d (1 cos)p(ke; )

Dg(E) = (B.4)

This formula agrees with the result of Ref. p2], obtained by a di erent approach.

Appendix B.2. Three-dimensional case
In the 3D isotropic case, proceeding in a similar way, we nd that the @genvalues of
Eq. (58) are given by

R .
km _ 0 dRS'n p(ke; )Pi(cos )
- o d sin p(ke; ) '

(B.5)

with the index 1 =0;1;::;;+1 andm= I, |+1;::;+] and whereP,(cos ) are the
Legendre polynomials. The eigenvalues are (2 1)-degenerated and the corresponding
normalized eigenfunctions are propotional to orthonormal spheical harmonics, with
the prefactor determined by the normalization condition (A.4):

S —z

M= Y™ ) 2 dOsin Op(ke; O; (8.6)
’ 0

In the calculation of the diusion constant, using the same type of sgymmetry
arguments as in the 2D case, we nd that only thel = 1 (with m = 1;0;1) terms
couple to and contribute in the summation of Eq. (57). We thus nd

2 ~E 1

Ds(E)= — R
+(E) 3 MNo(E) ,d sin 1 cos p(ke; )

; (B.7)

which agrees with the expression found in Ref.g2].
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Figure B1.  (Color online) Isotropic 3D speckle. Eigenvalues of Eq. (58)
(top row) for the isotropic 3D speckle with power spectrum gi ven by
Eq. (B.8). Topology of the main eigenvectors E;Q contributing to D3}
(bottom row), DY (2™ row) and DZ (3" row) [with the parametrization

R = (Kx;Ry;Kz)  (sin cos; sin sin ; cos )], the red lines locate the
nodal lines. From left to right E =6:3 10 °E ,E =6:3 10 'E and
E =63E .

Appendix B.3. Three-dimensional isotropic speckle

A simple model of 3D speckle with isotropic correlation properties, is dund when
considering the light pattern obtained inside an integrating sphere litby a laser beam
of wavevectork, . The real-space correlation function is given in Eq. 86) and the
associated power spectrum

V2 22
ikj

C(k) = @ ik (B.8)
is isotropic. Although this isotropic model is unrealistic from an expeiimental point
of view, it is useful here in two respects. First, it bears the same digrgence as
the anisotropic 3D models of disorder considered in Sec3: C(k) / 1=jkj when
jkj ! 0. Second, several properties of this model are analytical and kwn [61, 62],
and therefore provides a test for our numerical methods.

As done previously, for the diagonalization of the integral operato (58) we use
27 27 points regularly spaced on thek-space sheljkj = k.. Some eigenfunctions and
eigenvalues of Eq. $8) are presented in Fig.B1. We indeed nd spherical harmonics
[see Eg. B.6)], and the eigenvalues ¢ agree well with theory [Eq. (B.5) with C
given by Eq. (B.8), not shown on the gure]. We further incoporate these results
in Eq. (57). Figure B2 presents the numerical results for the Boltzmann di usion
constant (red dots) which agree very well with the analytic formula (solid black line)
found when incorporating Eq. (B.8) into Eq. (B.7). Note that we recover the same
asymptotic behaviours as for our anisotropic casesD;(E) / E for E=E < 1=2 and
D.(E)/ E5%2for E=E 1=2. In particular, those tests show that the discretization
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Figure B2.  (Color online) Boltzmann di usion coe cient for the  isotropic
3D speckle con guration of power spectrum given by Eq. ( B.8). The solid
black line is the theoretical prediction, red dots are numer ical results.

used here correctly treats thejkj! 0 divergence.

Appendix C. Conductivity

Appendix C.1. Einstein relation

As presented in Sec.2.5 we expect (! = 0) / D in the linear response regime.
Here we calculate (! =0) in the Boltzmann approximation and verify this relation
explicitly, which enables us to nd the proportionality factor in Eq. ( 32).

Let us rst rewrite the Boltzmann di usion tensor as

1 D E
D;J (E) = W(E) E;Qvi‘]k;j X (Cl)
where Ji is the renormalized current vertex :
D E
Jk 2 X E 0 .
T YT Tp eR e EE (C2)
n 61

We want to calculate the conductivity ; in the ladder approximation. We have to
evaluate

. = + (C.3)
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where is de ned in Eq. (%1). It reads

gj (E)= WVifE;ij + (C.4)
dk  dk°
(2 )d (2 )d VifE;k k;kO(O;O;E)fE;kOVjO:
P n
As .xo(0;0,E) = el T Bp ppovandfe ' g Ao(E; k)=~ one easily
nds b ' £
2 2
g (E)= — efViVi + — (C.5)
X n D E D E
n n
n ERVI g ERVI ER
n 61

Therefore, we have ; =2 N o(E)Dg = We have thus veri ed Einstein's relation for
the classical dc conductivity in anistropic disorder.

Appendix C.2. Current vertex renormalization

The DC conductivity 5 in the Boltzmann approximation reads (see ap-
pendix Appendix C.1)

2 Jkj
_ E;Q i—J ; (CG)

J(B)=

where Jy, the renormalized vertex function, is given by Eq. (C.2). Diagrammatically
we can absorb this renormalization in one of the vertices as shown indg (C.7). This
is a standard procedure for anisotropic scattering, which is presged for example in
Ref. [6].

(C.7)

Appendix C.3. Weak-localization correction

Appendix C.3.1. The cooperon We calculate the bare cooperon correction, with
renormalized current vertices, Diag. ©€4) translates into

z
i dk  dk® Jy;
oo (GE) = :

Jyo
2) @) —f ek X ko(0; K E ) g0

€. (C.8)

Considering that the dominant contribution in the integral comes fromQ ' k+k® 0
[see Eq 69)], and that f2.,  2( c.,=")%Ao(E; k) in the on-shell approximation®, we

" Equation (51) gives =U g[l G GYU] . The components k:k0(0; 0;E) can be found from
the results of appendix Appendix A .

S The same procedure as described in Sec. Appendix A.4 is used to obtain those expressions in the
on-shell approximation.
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get

2 Jk;i\]k;j z dQ 1

(o (BB )= No(E) ~ 2 =f  (2)7 i1 +-Q Ds(E) Q

(C.9)

Appendix C.3.2. Hikami contributions We now calculate the Hikami corrections [see
Diags. (65) and (66)]

dk  dk® dk® Jk.
(2 )42 )4 (2 )d

T ek U koG (E; k% (C.10)
Jio;

(Hl)( E)=

X0 o, 10« (K% ki LE )G(E; KO+ k% k)fg; o
2 ' 2

In the same way as before, and using the on-shell approximation fmulas
G(E; K)fe: i( E;(<\=~)2A0(E; k) and GY(E; k)fe.x i E;Q=~)2A0(E; k), we get
(H) ' (Hp) and

UhGE)= A (E)+ L (LE) (C11)
2 Iy dk® Jko
" No(E) — ek g el
dQ 1

@) i< +-Q Ds(E) Q

ﬁppendlx C.3.3. Corrected conductivity tensor We nq_w c0n5|der the quant|ty Jk

(2—)cr Us - kofE podpo.  Using the relation Uy ko = 061 E B g and the
parities of the functions " . [see Egs. fA.11) and (A.12 ,one can show that
E; Kk
z
dk® _
Jx W Usi;kof E;k0dko = ~ - (C.12)

Therefore the Hikami contributions renormalize one of the Jy=~ back to the bare
vertex , and we have

TGE)E LG GE) L (E) (C.13)
_ 2 i, dQ 1 .
T No(E) ~ T ER (2)8 i1 +~Q Dg(E) Q'

which gives the nal expression (70).
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