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The macroscopic transport properties in a disordered potential, namely diffusion and weak/strong
localization, closely depend on the microscopic and statistical properties of the disorder itself. This
dependence is rich of counter-intuitive consequences. It can be particularly exploited in matter
wave experiments, where the disordered potential can be tailored and controlled, and anisotropies
are naturally present. In this work, we apply a perturbative microscopic transport theory and the
self consistent theory of Anderson localization to study the transport properties of ultracold atoms
in anisotropic 2D and 3D speckle potentials. We show that structured correlations can induce
rich effects, such as anisotropic suppression of the white-noise limit and inversion of the transport
anisotropy. We also calculate a disorder-induced shift of the energy states and propose a method
to include it, which amounts to renormalize energies in the standard on-shell approximation. We
show that the renormalization of energies strongly affects the prediction for the 3D localization
threshold (mobility edge). We illustrate the theoretical findings with examples which are revelant
for current matter wave experiments, where the disorder is created with a laser speckle. This paper
is a detailed version of [Europhys. Lett. 99, 50003 (2012)] and represents a guideline for future
experiments aiming at the precise location of the 3D mobility edge and study of anisotropy diffusion
and localization effects in 2D and 3D.

PACS numbers: 03.75.-b,05.60.Gg,67.85.-d,72.15.Rn
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I. INTRODUCTION

Transport in disordered media is a fascinatingly rich
field, which sparks a broad range of phenomena such
as Brownian motion [1], electronic conductivity [2, 3],
superconductivity [4], superfluid flows of 4He on Vycor
substrates [5], as well as localization of classical (electro-
magnetic or sound) waves in dense media [6, 7] and of ul-
tracold atoms in controlled disorder [8–12]. In the case of
a matter particle for instance, two regimes should be dis-
tinguished. In the classical regime, where the de Broglie
wavelength is vanishingly small, transport leads to nor-
mal or anomalous diffusion [13, 14]. The dynamics is
characterized by the appearance of a percolation tran-
sition, which separates a trapping regime – where the
particle is bound in deep potential wells – from a dif-
fusion regime – where the particle trajectory is spatially
unbounded [15, 16]. In the quantum regime, the wave na-
ture of the particle determines its transport properties,
in close analogy with those of a classical wave [17, 18].
In this case, interference effects can survive disorder av-
eraging, leading to striking effects such as weak localiza-
tion [6], the related coherent back-scattering effect [19],
and strong (Anderson) localization [20–22].
Localization is ubiquituous in wave physics. It shows a

widely universal behaviour [23], but observable features
significantly depend on the details of the system. It shows
a renewed interest in the context of ultracold matter
waves [8–12]. On the one hand, the microscopic param-
eters in these systems are precisely known and, in many
cases, tunable, which paves the way to unprecedented di-
rect comparison between experiments and theory [24, 25].
This is a great advantage of ultracold atoms, compared
to traditional condensed matter systems. On the other
hand, these systems offer new situations, which can in-
duce original effects [26] and provide new test-grounds
in non-standard disorder [27–31]. Major advances in this
field were the observation of one-dimensional (1D) An-
derson localization of matterwaves [32, 33] and studies
of the effects of weak [34–43] and strong [44–47] inter-
actions in disordered gases. Presently, a major chal-
lenge is the study of quantum transport in dimensions
higher than one. While localization is the dominant ef-
fect in one dimension [48, 49], higher dimensions show a
richer phenomenology where regimes of diffusion, weak
localization and Anderson localization can appear [23].
Recent experiments reported the observation of an An-
derson transition in momentum space using cold-atom
kick-rotor setups [50–52], study of classical diffusion in
two-dimensional (2D) speckle potentials [53, 54], coher-
ent back-scattering [55, 56], and evidence of Anderson
localization in noninteracting Fermi [57] and Bose [58]
gases in three-dimensional (3D) speckle potentials.

From a theoretical viewpoint, diffusion and localiza-
tion of noninteracting matter waves have been thoroughly
studied for disordered potentials with zero-range correla-
tions [59, 60] and isotropic correlation functions [61–66].

However, transport experiments in dimensions higher
than one are most often done with speckle poten-
tials which are anisotropic, either effectively in 2D se-
tups [53, 54], or for fundamental optical constraints
in 3D [57, 58]. Moreover, correlations in speckle po-
tentials can be tailored in a broad range of configu-
rations [67], which offers scope for investigation of lo-
calization in nonstandard models of disorder [29, 30].
Taking into account anisotropic effects is of fundamen-
tal importance because they can strongly affect coherent
transport and localization properties. This was demon-
strated for electrons in MOSFETs [68], diffusion-wave
spectroscopy [69], biomedical imaging [70], and light in
liquid crystals [71, 72], in phosphides [73], or in micro-
cavities [74]. While the above systems are well described
by models of disorder made with isotropic impurities em-
bedded in anisotropic media [75, 76] or stretched scatter-
ers embedded in isotropic media [77, 78], optical disorder,
relevant to ultracold-atom experiments [57, 58], can show
significantly more complex anisotropic correlation func-
tions. The effect of the latter is much less known, and
has been addressed only recently [79].

In this paper, we study quantum transport and Ander-
son localization of matter waves in 2D and 3D anisotropic
speckle potentials. We first introduce the basics of
quantum transport of matter waves in disordered me-
dia (Sec. II) and the models of disorder we focus on
in 2D and 3D (Sec. III). We then present a detailed
description of the theoretical framework pioneered in
Refs. [75, 80], which intends to be pedagogical. We
study single-scattering (Sec. IV), Boltzmann diffusion
(Sec. V), and localization (Sec. VI), as a function of the
particle energy, and discuss in particular the different
anisotropies of these quantities. From a technical view-
point, while the scattering allows for analytic expressions
as for isotropic models of disorder [62], diffusion and lo-
calization are more involved and require in general nu-
merical diagonalization of a certain operator. Some an-
alytic expressions are however found in some limits for
anisotropic disorder. In Secs. IV, V and VI, we focus
on the 2D case, which contains most of the anisotropy
effects discussed in the paper. The 3D cases are dis-
cussed in the next sections, where we study the same
quantities as above (Sec. VII). We then show that energy-
dependent quantities calculated in the usual on-shell ap-
proximation should be renormalized in strong disorder,
and propose a method to do it (Sec. VIII). Although it
does not strongly alter the overall energy-dependence of
the quantities calculated in the previous sections, it may
be important when comparing to energy-resolved exper-
imental measurements. Most importantly, we show that
it strongly affects the calculation of the 3D mobility edge.
Finally, we summarize our results and discuss their im-
pact on recent and future experiments of ultra-cold atoms
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Figure 1. (Color online) Schematic view of the coherent trans-
port of a matter wave in a disordered medium, with special
emphasis on the characteristic length scales. The figure shows
a trajectory of a particle (solid multicolor line) in a two-
dimensional disordered landscape (blue surface). Along its
trajectory, the wave looses the memory of its phase (encoded
in the various colors along the trajectory) on the characteris-
tic length ls (scattering mean-free path). Multiple scattering
then deflects the trajectory and the wave looses the memory of
its direction on the characteristic length lB (transport mean-
free path). Interference between the multiple-scattering paths
can finally cancel diffusion (strong or Anderson localization).
The wave then acquires an exponentially decaying probabil-
ity profile (orange-green surface) of characteristic length Lloc

(localization length).

in speckle potentials in the conclusion (Sec. IX).

II. MATTER WAVES IN DISORDERED MEDIA

A. Basics of quantum transport

Before turning to a more formal description, it is worth
recalling the basic picture of coherent transport in a dis-
ordered medium. The basic ingredients are genuinely
understood in a microscopic approach [80, 81]. Consider
a wave of momentum k and velocity υ propagating in
a disordered medium [82]. Let us also assume, for the
moment, that the medium is isotropic. We will drop this
assumption in the following sections. The wave prop-
agation is governed by scattering from the random im-
purities. Three typical energy-dependent length scales
can be identified [83], which characterize three basic ef-
fects induced by the disorder (see Fig. 1). First, single
scattering from impurities depletes the k-wave states,
which can be seen as quasiparticles in the disordered
medium, with a finite life-time τs(k). Single scattering
hence defines the first length scale, namely the scattering
mean-free path, ls = υτs, which characterizes the typi-
cal length travelled by the wave before it is looses the

memory of its initial state, and primarily the memory of
its initial phase. Then, multiple scattering defines the
second length scale, namely the transport (Boltzmann)
mean-free path, lB, which characterizes the typical length
travelled by the wave before it looses the memory of its
initial direction. In general, several scattering events are
necessary to significantly deflect the trajectories so that
lB ≥ ls. The two length scales are found to be equal only
in the white-noise limit (if it exists), where the wave-
length is smaller than the typical size of the impurities
and the scattering is isotropic. In this case the wave
looses the memory of its phase and initial propagation
direction at the same time. Within the distance lB, the
transport crosses over from ballistic to diffusive. The av-
erage squared size of the wavepacket increases linearly
in time, r2 ∼ 2DBt with DB = υlB/d the Boltzmann
diffusion constant (d is the space dimension) [2, 3]. Fi-
nally, diffusive transport allows the wave to return to its
initial position via loop paths, and interference effects
enter the game. Each loop can be traveled in one way or
the other, which generates two multiple-scattering paths
along which exactly the same phase is accumulated dur-
ing the successive scattering events. This coherent effect
holds for any specific realization of the disordered poten-
tial and thus survives disorder averaging. Moreover, since
these two paths are in phase, it gives rise to a construc-
tive interference of the matter wave, which significantly
enhances its return probability. This effect induces co-
herent back-scattering and weak localization, which leads
to diffusive transport with a reduced diffusion coefficient,
D∗ < DB [6]. For strong-enough disorder, the diffusion
can completely cancel, an effect known as strong, or An-
derson, localization [22]. Then, the probability distri-
bution of the wave decays exponentially in space, hence
defining the third characteristic length, Lloc, the so-called
localization length.

The picture above shows that localization relies on
two characteristics of the medium: coherence along the
multiple-scattering paths and return probablity to the
origin. One then understands that the strength of local-
ization should be governed by the interference parame-
ter klB [84] (since the more the coherence length exceeds
the typical length of a loop path, the more significant
interference terms are), and by the dimension of space d
(since the return probability decreases when d increases).
As a matter of fact, in 1D and 2D, any state is localized,
although disorder correlations may lead to strong energy-
dependence of the localization length [27, 28, 85, 86]. In
1D, one finds that Lloc ∼ lB so that diffusion is strictly
absent. In 2D, one finds lB < Lloc, and diffusion shows up
at intermediate distances and times. In 3D, the return
probability is finite and localization appears only for suf-
ficiently low values of klB. A mobility edge shows up for
klB ∼ 1, which separates localized states (for klB . 1)
from diffusive states (for klB & 1) [23, 48, 87].

The microscopic description outlined above offers a
comprehensive picture of transport and localization ef-
fects for coherent waves in disordered media. In the
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next subsections we will give mathematical support to
this picture, and extend it using a formalism adapted to
anisotropic disorder.

B. Green functions

Consider a quantum particle in a given homogeneous
underlying medium and subjected to some static ran-
domness. Its dynamics is governed by the single-particle
Hamiltonian

H = H0 + V (r), (1)

where H0 is the disorder-free, translation-invariant,
Hamiltonian of the underlying medium, and V (r) is
the time-independent (conservative) disordered poten-
tial. For a particle in free space, which we will mainly
consider below, the underlying medium is the vacuum,

and H0 = − ~
2

2m∇2. Without loss of generality, the disor-
dered potential can be assumed to be of zero mean value,
V = 0 [88]. The evolution of the wave function between
t0 and t > t0 is determined by the retarded single-particle
propagator

G(t, t0) ≡ e−iH(t−t0)/~ Θ(t− t0), (2)

where the Heaviside step function Θ(t− t0) accounts for
temporal ordering. In the energy domain [89], G is the
retarded Green operator

G(E) =
(

E −H + i0+
)−1

, (3)

where E is the particle energy. It is the solution of the
equation

G(E) = G0(E) +G0(E)V G(E), (4)

where G0 = (E −H0 + i0+)
−1

is the disorder-free re-
tarded Green function associated to the unperturbed
Hamiltonian H0.

C. Properties of the disordered medium

The calculation of any observable quantity is specific
to the particular realization of the disorder. Therefore,
meaningful quantities correspond to statistical averages
over realizations of disordered potentials. When aver-
aging over disorder realizations, some quantities can be
written in terms of the average Green function G(E),
for instance the spectral function (see below). The Born
series of Eq. (4), averaged over the disorder, reads

G = G0 +G0V G0V G0 +G0V G0V G0V G0 + ... (5)

where the first order term G0V G0 drops owing to our
choice of energy reference, V = 0. It is convenient to
represent this equation diagrammatically:

= + + + ...

(6)

where a plain line is a Green function (grey for G0 and
black for G), the vertices (black dots) are scattering
events and the dashed lines recall that they are corre-
lated. One can write the Dyson equation [90]

G = G0 +G0ΣG, (7)

where Σ(E) is the self energy and can be developped in
powers of V thanks to Eq. (5) [91]. The Dyson equation
is formally solved by

G =
(

G−1
0 − Σ

)−1
. (8)

Translation-invariant operators are conveniently writ-
ten in momentum representation [92], where they are di-
agonal. For instance, the disorder-free retarded Green
function reads

〈k|G0(E)|k′〉 ≡ (2π)dδ(k− k′)G0(E,k)

=
(2π)dδ(k− k′)

E − ǫ(k) + i0+
, (9)

where ǫ(k) is the dispersion relation associated to H0

[〈k|H0|k′〉 ≡ (2π)dδ(k− k
′)ǫ(k)] and d the space dimen-

sion. For an isotropic underlying medium, ǫ(k) and the
Green function G0(E,k) depend only on the modulus of
k, k ≡ |k|. If the disorder is homogeneous, i.e. if its
statistical properties are translation-invariant [93], then
the disorder-averaged Green function is also diagonal in
k-space:

〈k|G(E)|k′〉 ≡ (2π)dδ(k− k′)G(E,k)

=
(2π)dδ(k− k′)

E − ǫ(k)− Σ(E,k) + i0+
. (10)

In addition, if the statistical properties of the disorder
are isotropic, then G(E,k) ≡ G(E, k).
This features an effective homogeneous (i.e.

translation-invariant) medium, which contains all
necessary information to determine the disorder average
of any quantity linear in G. It is the case of the spectral
function A(E,k) defined by [81]:

2π〈k|δ(E −H)|k′〉 ≡ (2π)dδ(k− k′)A(E,k). (11)

It contains all the information about the spectrum of the
disordered medium. Using Eq. (3), it yields

A(E,k) = −2ℑ
[

G(E,k)
]

. (12)

The spectral function can be interpreted (up to a nu-
merical factor) as the (normalized) probability density
for an excitation of momentum k to have energy E and
∫

dE
2π A(E,k) = 1. It is also the unnormalized proba-

bility, per unit energy, to find a particle of energy E
with momentum k and

∫

dk
(2π)d

A(E,k) = 2πN(E), where

N(E) is the density of states per unit volume. For a
particle in disorder-free space, it is given by A0(E,k) =
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Figure 2. (Color online) Schematic representation of the spec-
tral function A(E,k) of a particle of energy E, as a function
of the particle momentum k. The vertical red line is the
spectral function for the disorder free particle A0(E,k) =
2πδ [E − ǫ(k)] with ǫ(k) = ~

2k2/2m. In the presence of dis-
order the spectral function is shifted and broadened (black
line). The standard on-shell approximation consists in ne-
glecting the energy shift related to the real part of the particle
self energy and the structure of the spectral function (dashed
blue line).

2πδ [E − ǫ(k)]. In the presence of disorder, Eqs. (10) and
(12) yield

A(E,k) =
−2Σ′′(E,k)

(

E − ǫ(k)− Σ′(E,k)
)2

+Σ′′(E,k)2
, (13)

with Σ′ and Σ′′ the real and imaginary parts of Σ re-
spectively. As represented schematically in Fig. 2, for a
particle in free space [ǫ(k) = ~

2k2/2m] with a weak disor-
dered potential [Σ(E,k) weakly depends on the momen-
tum], the spectral function has a Lorentzian-like shape
as a function of k. It is centered in k0, solution of
E − ǫ(k0)− Σ′(E,k0) = 0. The quantity Σ′(E,k0) thus
describes the shift in energy of the free-particle modes
when they are dressed by the disorder. The quantity
Σ′′(E,k) is the energy width of the spectral function,
which defines the scattering mean free time

τs(E,k) = − ~

2Σ′′(E,k)
, (14)

or equivalently the scattering mean free path ls(E,k) =
|υ|τs(E,k). It accounts for the depletion of the free par-
ticle mode at E = ǫ(k) due to scattering from the disor-
dered medium. Therefore the spectral function contains
all the information about the relative weight, the energy,
and the lifetime of the quasi-particles, i.e. the particles
dressed by the disordered medium, which on average de-
fine an effective medium.

The spectral function will be a key element at each
step of the following calculations, where we will compute
quantities that depend on the energy E. In addition, in
ultracold atomic systems, a broad range of energies are
involved, but only the momentum distribution is usu-
ally measured by time-of-flight techniques. The spectral
function relates the energy distribution (DE) and the mo-
mentum distribution (Dk) of the stationary particles in
the disorder via

DE(E) =

∫

dk

(2π)d
A(E,k)Dk(k), (15)

which is normalized by
∫

dE
2π DE(E) = 1. The exact cal-

culation of the spectral function requires the knowledge
of the real and imaginary parts of the self energy Σ [see
Eq. (13)], or, according to Eq. (11), the direct diago-
nalization of the disordered Hamiltonian and an average
over disorder realizations. This is, in general, a compli-
cated task, especially in dimensions larger than one and
for anisotropic disorder. In the following (see part IV)
we will calculate the self energy by employing a pertur-
bation theory and retaining only the first order (Born
approximation) in Eq. (5) or (6). In Secs. V to VII,
we work within the usual on-shell approximation [80],
in which one neglects the real-part of the self energy
Σ′(E,k) and the structure of the spectral function (see
schematic dashed blue line in Fig. 2). In Sec. VIII, we
describe a method to go beyond the on-shell approxima-
tion, which amounts to renormalizing the energies in a
self-consistent way [79].

D. Propagation of the Wigner function

Some quantities are not simply related to the averaged
Green function G and require a more elaborate treat-
ment. It is for instance the case of the spatial density
and the momentum distribution. More generally, con-
sider the time evolution of the one-body density matrix
ρ(t) [81] or equivalently of the Wigner function [94]

W (r,k, t) ≡
∫

dq

(2π)d
eiq·r

〈

k+
q

2

∣

∣

∣
ρ(t)

∣

∣

∣
k− q

2

〉

. (16)

The spatial density probability is given by n(r, t) =
∫

dk
(2π)d W (r,k, t) and the momentum distribution by

Dk(k, t) =
∫

drW (r,k, t). It is fruitful to rewrite
Eq. (16) in a form indicating explicitly the initial con-
ditions, making use of the relation ρ(t) = Θ(t −
t0)e

−iH(t−t0)/~ρ(t0)e
+iH(t−t0)/~. When averaging over

disorder, if there is no correlations between the initial
state and the disorder, one finds [63]

W (r,k, t) =

∫

dr′
∫

dk′

(2π)d
W0(r

′,k′)Fk,k′(r−r′; t−t0),

(17)
where W0(r,k) ≡ W (r,k, t0) is the initial Wigner func-
tion and Fk,k′(R; t) is the phase-space propagation ker-
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nel, defined by (if t > 0)

Fk,k′(R; t) ≡
∫

dE

2π

∫

dq

(2π)d

∫

d~ω

2π

eiq·R e−iωt Φk,k′(q, ω, E), (18)

and

〈k+|G(E+)|k′
+〉〈k′

−|G†(E−)|k−〉 (19)

≡ (2π)dδ(q− q′)Φk,k′(q, ω, E),

with k± ≡ k ± q/2, k′
± ≡ k′ ± q′/2, E± ≡ E ± ~ω/2,

and (q, ω) the Fourier conjugates of the space and time
variables [95]. As discussed above, disorder averaging fea-
tures a translational invariance in space and introduces
an effective medium for the expanding wave. As a di-
rect consequence, Eq. (18) depends only on the differ-
ence R = r − r′, which expresses the equivalence of all
points in space. For the same reason, translational invari-
ance, or equivalently momentum conservation, imposes
that the sum of the in-going wavevectors (k+ and k′

−)

on one hand, and out-going wavevectors (k′
+ and k−) on

the other hand, are equal. It leads to the condition on
momentum transfer: q = q′ in Eq. (19).
As can be seen in Eqs. (17) and (18), the building

block to describe wave propagation in random media is
the density propagator Φ, which can be represented as
a four-point vertex with k± and k′

± the left and right
entries [see left-hand side of Eq. (21)]. The skeleton of
this vertex is made by a retarded and an advanced Green
functions (respectively G, represented by the top line,
and G†, represented by the bottom line). It contains
all possible correlations between the scattering events of
these Green functions. Following the same approach as
used for the average field propagator G [leading to the

Dyson equation (7)], the vertex Φ = G⊗G† is formally

constructed from the uncorrelated-average vertexG⊗G†.
Without any approximation, Φ is then governed by the
so-called Bethe-Salpeter equation (BSE) [81]

Φ = G⊗G† +G⊗G† UΦ (20)

represented diagrammatically as

k−

k+

k′
−

k′
+

Φ =

k+

k−

+

k+

k− k′
−

k′
+

U Φ (21)

where U is the vertex function including all irreducible
four-point scattering diagrams:

U = + + + ... (22)

The first term in the BSE [Eq. (20) or (21)] describes
uncorrelated propagation of the field and its conjugate

in the effective medium. The second term accounts for
all correlations in the density propagation.
Analogously to Eq. (8), the solution of the BSE (20)-

(21) can be formally obtained from the inverse, if it ex-

ists [96], of the four-point operator Λ ≡ 1−G⊗G† U [97]:

Φ = Λ−1 G⊗G†. (23)

More explicitly, the (k,k′) component of a four-
point vertex Λ which fulfills momentum conserva-
tion is Λk,k′(q, ω, E), such that 〈k+,k

′
−|Λ|k′

+,k−〉 ≡
(2π)dδ(q− q′)Λk,k′(q, ω, E), and

Λk,k′(q, ω, E) = (2π)dδ(k − k
′)

− fk(q, ω, E)Uk,k′(q, ω, E), (24)

and

fk(q, ω, E) ≡ G(E+,k+)G†(E−,k−). (25)

Therefore Eq. (23) reads

Φk,k′(q, ω, E) = Λ−1
k,k′(q, ω, E)fk′(q, ω, E), (26)

and can be expressed as a geometric series

Φk,k′(q, ω, E) = (2π)dδ(k − k′)fk(q, ω, E)

+fk(q, ω, E)Uk,k′(q, ω, E)fk′(q, ω, E)

+

∫

dk1

(2π)d
fk(q,ω, E)Uk,k1(q, ω, E)fk1

(q, ω, E)

×Uk1,k′(q, ω, E)fk′(q, ω, E) + ...

Note that the operator Λ−1(ω,E) can be expressed in
terms of the eigenvectors and associated eigenvalues of
the operator Λ(ω,E). The calculation of the eigenvec-
tors of the operator Λ(ω,E) is the basic idea followed in
Refs. [75, 98] to solve the BSE. It then gives access, via
Φ, which is the quantity of interest, to the time depen-
dence of the Wigner function [see Eqs. (16) to (18)], and
of the spatial density in particular.
In the following we will see that the intensity kernel Φ

has a diffusion pole, which takes the form

Φk,k′(q, ω, E) =
1

2πN(E)

A(E,k)A(E,k′)

i~ω − ~q·D(ω,E)·q (27)

where D is the so-called dynamic diffusion tensor. The
average spatial density distribution is then given by

n(r, t) =

∫

dk

(2π)d
W (r,k, t)

=

∫

dE

2π

∫

dr′ D0(r
′, E)P (r− r′, t− t0|E)(28)

where D0(r
′, E) =

∫

dk′

(2π)d A(E,k′)W0(r
′,k′) represents

the initial joint position-energy density and P (r− r′, t−
t0|E) is the probability of quantum transport, i.e. the
probability for a particle of energy E originating from
point r′ at time t0 to be in r at t. It can be expressed
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thanks to Eqs. (17), (18) and (27) as the space-time
Fourier Transform of the diffusion pole 1/[i~ω − ~q ·
D(ω,E)·q].
In the long-time limit, we will encounter two differ-

ent situations. First, if limω→0 D(ω,E) = D(E) is a
real definite positive tensor, the diffusion pole of the in-
tensity kernel (27) describes normal diffusion with the
anisotropic diffusion tensor D(E). We then find

P (R, t → ∞|E) =
e−R·D−1(E)·R/4t

√

(4πt)d det {D(E)}
Θ(t). (29)

Second, if D(ω,E) ∼ 0+ − iωΛ(E) in the limit ω → 0+

with Λ(E) a real positive definite tensor, the pole de-
scribes localization. It leads to exponentially localized
phase-space propagation kernel and probability of quan-
tum transport at long distance. In 2D,

P (R, t → ∞|E) =

K0

(

√

R · L−2
loc(E) ·R

)

2π det{Lloc(E)} Θ(t) (30)

where K0 is the modified Bessel function, and in 3D,

P (R, t → ∞|E) =
e−

√
R·L−2

loc
(E)·R

4π det{Lloc(E)}
√

R · L−2
loc(E) ·R

Θ(t).

(31)
In both 2 and 3D, the fonction P (R) decays exponen-
tially [99] over the characteristic length Lu

loc(E) along the

eigenaxes u of the localization tensor Lloc(E) ≡
√

Λ(E).

E. Conductivity and Einstein’s relation

Finally, another quantity of interest for our problem
– in parallel of those studied in sections II C and IID
– is the conductivity. In complete analogy to the usual
conductivity of charge in condensed matter systems [90],
we here define the conductivity tensor σ in our system as
proportional to the current-current correlation function,
via the Kubo formula [6, 100]:

σi,j(ω,E) = (32)
∫

dk

(2π)d
dk′

(2π)d
ℜ
[

υi〈k|G(E+)|k′〉υ′
j〈k′|G†(E−)|k〉

]

,

where υi = ~ki/m is the velocity along axis i. As the
structure of Eq. (32) is reminiscent of the definition of
the four-point vertex Φ [see Eq. (19)], calculations of the
conductivity tensor can also be represented diagrammat-
ically. The skeleton diagram, shown in Eq. (33), consists
of the in and out-going velocities υ and υ

′ and of a bubble
made of a retarded (top line) and an advanced (bottom
line) Green function. As for Φ, the scattering events of
the top and bottom lines can be correlated [see for ex-
ample Eqs. (21) and (22)].

υ υ
′

(33)

Thanks to Einstein’s classical argument, it was real-
ized that, at thermal equilibrium, in a gas submitted to
a force, the diffusion and drift currents have to be equal.
This relation holds in general for quantum systems in the
linear response regime (see e.g. Ref. [81]). In particular,
here we expect the DC conductivity and diffusion ten-
sors to be proportional : σ(ω = 0) ∝ D. More precisely,
calculating σB(ω = 0) in the Boltzmann and Born ap-
proximations for anisotropic disorder permits us to find
the proportionality factor (see details in appendix C 1).
In our system, we have

σ =
2πN0(E)

~
D. (34)

III. DISORDER CORRELATION FUNCTION

Having recalled the general theory of quantum trans-
port in disordered media, we now specify the frame-
work of our study. In the following, we will consider
ultracold matter waves as realized in several experiments
[32, 46, 47, 53, 54, 57, 58, 101–106]. In our case, the
underlying (disorder-free) medium is the vacuum, and
ǫ(k) = ~

2k2/2m.

The models of disorder we will consider belong to the
class of speckle potentials, which are particularly suited
for ultracold atoms for they can be controlled [10, 12, 67].
In brief, a speckle pattern is created when a coherent
light beam is shone through a diffusive plate (D) and fo-
cused by an optical lens of focal distance f (see Fig. 3
and Ref. [107]). At each point of its surface, the diffu-
sive plate imprints a random phase on the electric field.
The resulting electric field in the right-hand side of the
lens is then the summation of many complex indepen-
dent random components, and is therefore a Gaussian
random variable according to the central limit theorem.
The potential acting on the atoms is proportional to the
intensity pattern (i.e. the square modulus of the electric
field). It is thus a spatially random variable, but it is not
Gaussian. However, thanks to the underlying Gaussian
process for the electric field, the correlations of V (r) at
any order can be obtained from the two-point correla-
tion function of the electric field [28]. Here we consider
weak disorder and, as we will see, the two-point correla-
tion function of V (r), C(r) = V (r)V (0), is sufficient to
characterize the disorder in this case (we recall that we
have chosen the zero of energy such that V = 0).

For a fine-grain diffuser, the two-point correlation func-
tion C(r) is determined by the pupil function ID(ρ) (i.e.
the intensity pattern just after the diffusive plate) [107].
In the following we will consider anisotropic Gaussian
laser beams of waists wx,y and plates with homogeneous

transmission, so that ID(ρx, ρy) = I0e
−2(ρ2

x/w
2
x+ρ2

y/w
2
y).

For the configuration of Fig. 3, in the paraxial approxi-
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Figure 3. (Color online) Schematic of the apparatus used to
create an optical speckle pattern. A laser beam is diffracted
by a ground-glass plate diffuser (D) of pupil function ID(ρ),
where ρ ≡ (ρx, ρy) spans the diffuser, which imprints a ran-
dom phase on the various light paths. The intensity field,
I(r), observed in the focal plane of a converging lens, is a
speckle pattern, which creates a disordered potential V (r) for
the atoms.

mation, we find

C(r) = V 2
R
c1sp(x, y, z) (35)

with

c1sp(x, y, z) =
exp

[

− x2/σ⊥
2
x

1+4z2/σ‖
2
x

]

√

1 + 4z2/σ‖
2
x

exp

[

− y2/σ⊥
2
y

1+4z2/σ‖
2
y

]

√

1 + 4z2/σ‖
2
y

,

(36)
σ‖x,y

= 4λLf
2/πw2

x,y and σ⊥x,y = λLf/πwx,y where λL

is the laser wavelength. Here x and y are the coordi-
nates orthogonal to the propagation axis z, and z = 0
corresponds to the focal plane. It should be noted from
Eq. (36) that the correlation properties in the (x, y) plane
strongly depend on the value of z. We have chosen
VR ≡

√

C(r = 0) as definition of the amplitude of the
disorder.
In the following we will consider various cases in 2D

and 3D that all derive from this configuration.

A. Anisotropic Gaussian speckle (2D)

If the atoms are confined in a 2D geometry by a strong
trapping potential along z centered on z = 0, they expe-
rience a disordered potential with correlation function

C(x, y) = V 2
R c1sp(x, y, 0) = V 2

R exp
[

− 1
σ2
⊥
(x2 + ξ2y2)

]

,

with σ⊥ = σ⊥x and ξ = σ⊥x/σ⊥y the configuration
anisotropy factor [108]. The Fourier transform [95] gives
the power spectrum

C̃(k) = V 2
R π

σ2
⊥

ξ
exp

[

−σ2
⊥

4
(k2x +

k2y
ξ2

)

]

. (37)

Without loss of generality, we assume in the paper that

ξ ≥ 1. When |k| ≪ σ⊥
−1
x , σ⊥

−1
y , we get C̃(k) ≃ V 2

R
π

σ2
⊥

ξ

and we recover the power spectrum of a white noise dis-
order, the only relevant parameter being V 2

R σ⊥xσ⊥y.
The power spectrum (37) is obtained by shining an

anisotropic Gaussian beam on the diffusive plate. It also
approximately holds in the case of Ref. [53] where a quasi-
2D Bose gas of width lz is subjected to a speckle created
by an isotropic Gaussian laser beam shone with an angle
θ with respect to the plane of atoms, if lz ≪ σ⊥ ≪ σ‖.
In this case ξ ≃ 1/ sin θ (θ ≃ π/6 for the experiment of
Ref. [53]).

B. Single speckle (3D)

In Ref. [57] a 3D disorder is obtained by a single
isotropic Gaussian laser beam of waist w (so-called single-
speckle configuration). The disorder correlation function
C(r) is given by Eq. (35) with wx = wy = w. The re-
sulting speckle pattern is significantly anisotropic. It has
correlation lengths σ‖ in the propagation axis (z) and σ⊥

in the orthogonal plane (x, y). In general 4f > w, and
C(r) is elongated along z (for instance σ‖/σ⊥ ≃ 5.8 in
Ref. [57]). The corresponding disorder power spectrum
reads [95]

C̃(k) = V 2
R c̃1sp(k) (38)

with

c̃1sp(k) = π3/2 σ⊥σ‖
√

k2x + k2y

e−
σ2
⊥
4 (k2

x+k2
y)e

− 1
4

( σ‖
σ⊥

)2 k2
z

k2
x+k2

y .

(39)
It is isotropic in the (kx, ky) plane but has a significantly
different shape along the kz axis. This can be seen in
Fig. 4(a): A typical iso-value surface of C̃(k) is wheel-

shaped, and its cuts in planes containing k̂z are shaped
like ”8” figures. It also shows a strong algebraic diver-
gence when kz = 0 and k2x + k2y → 0. It features absence
of white-noise limit, which reflects the long-range correla-
tions of the potential. The consequences of this property,
obtained in the paraxial approximation, will be further
discussed in the following.

C. Orthogonally crossed speckles (3D)

In Ref. [58], the disorder results from the crossing of
two orthogonal speckle fields, propagating along the z
and x axes, respectively. The polarizations and the fre-
quencies of the two lasers can be chosen such that the two
beams are fully incoherent (so-called incoherent-speckles
configuration) or mutually coherent (so-called coherent-
speckles configuration, case of Ref. [58]).

1. Fully incoherent case

In the incoherent-speckles case the 3D-correlation
function in real space and the corresponding power spec-
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Figure 4. (Color online) Disorder power spectrum C̃(k) for the (a) single-speckle, (b) incoherent-speckles, and (c) coherent-
speckles cases [Eqs. (38), (40), and (41)] with the parameters of Refs. [57, 58] (σ‖/σ⊥ ≃ 5.8, and for (c) λL/σ⊥ ≃ 2.16).

The functions C̃(k) are represented as iso-value surfaces (at 2V 2
Rσ3

⊥) and cuts in the planes defined by the symmetry axes:
{ûx, ûy, ûz} for (a) and {ûX ≡ (ûx−ûz)/

√
2, ûY ≡ ûy , ûZ ≡ (ûx+ûz)/

√
2} for (b) and (c).

trum C̃(k) are given by the sum of two orthogonally-
oriented spectra, similar to that of the single-speckle case,
so that

C̃(k) = (VR/2)
2 [c̃1sp(kx, ky, kz) + c̃1sp(kz , ky, kx)] ,

(40)
where c̃1sp(k) is given by Eq. (39). Therefore, as shown

in Fig. 4(b), a typical iso-value surface of C̃(k) is the
superposition of two crossed wheel-shaped spectra.

2. Fully coherent case

In the coherent-speckles case the 3D-correlation func-
tion in real space and the corresponding power spectrum
C̃(k) are the same as for the incoherent-speckles case,
plus a coherence term. We then have

C̃(k) = (VR/2)
2[c̃1sp(kx, ky, kz) + c̃1sp(kz , ky, kx)

+2c̃coh(kx, ky, kz)] (41)

where c̃1sp(k) is given by Eq. (39), c̃coh(k) is the Fourier
transform of

ccoh(r) =
√

c1sp(x, y, z)× c1sp(z, y, x)

×
(1 + 4 xz

σ2
‖

) cos[φ(r)] + 2x−z
σ‖

sin[φ(r)]
√

1 + 4z2/σ2
‖

√

1 + 4x2/σ2
‖

and φ(r) = 2π
λL

(x − z) − z
σ2
⊥σ‖

x2+y2

1+4z2/σ2
‖

− x
σ2
⊥σ‖

z2+y2

1+4x2/σ2
‖

,

where c1sp(r) is given by Eq. (36) with wx = wy = w.
The latter term mainly creates two broad structures

(bumps), centered on the k̂X ≡ (k̂x − k̂z)/
√
2 axis [see

Fig. 4(c)]. For the parameters of Ref. [58], σ‖/σ⊥ ≃ 5.8
and λL/σ⊥ ≃ 2.16, these bumps are located at kX ≃
±3.8σ−1

⊥ .

IV. SINGLE-SCATTERING

We now focus on the first time scale introduced in
Sec. II A: The scattering mean free time.

A. Scattering mean-free time

In order to calculate the scattering mean free time,
defined previously in Eq. (14), we retain only the low-
est order contribution to the self-energy (Born approxi-
mation). Within this approximation, the Born series of
Eqs. (5)-(6) is truncated after the first two terms, which,
according to Eq. (8), yields

Σ(E) = V G0(E)V . (42)

For homogeneous disorder, 〈k|Σ(E)|k′〉 = (2π)dδ(k −
k′)Σ(E,k) with

Σ(E,k) =

∫

dk′′

(2π)d
C̃(k − k′′)G0(E,k′′), (43)

where C̃(k) is the disorder power spectrum (Fourier
transform of the correlation function [95]). Using
Eq. (14) and the disorder-free Green function, Eq. (9),
we thus have

τs(E,k) =
~

2π

1
〈

C̃(k− k′)
〉

k′|E

, (44)

where

〈

...
〉

k′|E
=

∫

dk′

(2π)d
... δ

[

E − ǫ(k′)
]

(45)

represents the integration over the k-space shell defined
by ǫ(k) = E. Equation (44) allows one to determine the
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Figure 5. (Color online) On-shell scattering mean free time

τE,k̂ ≡ τs(E, kE k̂) [Eq. (46) for |k| = kE ] along the k̂x

(solid red line) and k̂y directions (dotted blue line) for the
2D speckle potential defined in Sec. III A with ξ = 4. The
solid black lines are the isotropic low-energy limit obtained
for kEσ⊥ ≪ 1 [Eq. (47)] and the high-energy limit obtained
for kEσ⊥ ≫ ξ [Eq. (48)]. The insets show the angular depen-
dance of τE,k̂ at two different energies [with the parametriza-

tion k̂ ≡ (cos θ, sin θ)]. The points on the lines are color- and
shape-coded to match those in the insets.

scattering time from the two-point correlation function
of the disorder. In the following we discuss anisotropic
properties of the scattering time for the 2D case (the 3D
cases are presented in Sec. VIIA).

In the case of isotropic disorder [i.e. C̃(k−k′) = C̃(|k−
k′|)] the scattering time does not depend on the direction
of the incoming wave vector k. In general, the scattering
is however anisotropic: C̃(|k−k′|) = C̃(|k−k′′|) and the
probability that the particle acquires a direction k′ or k′′

after the single-scattering event are different. Isotropic
scattering is found for δ-correlated disorder, which is a
key model of disordered metals. In this case, each scatter-
ing event leads to the complete loss of the initial momen-
tum direction k. In the case of anisotropic disorder we
are interested in, not only the scattering is anisotropic,
but it also depends on the direction of the incoming wave
k.

B. Anisotropic Gaussian speckle (2D)

Let us consider the 2D anisotropic speckle poten-
tial of geometrical anisotropy factor ξ introduced in
Sec. III A. Replacing C̃(k) by Eq. (37) in Eq. (44) and
using the disorder-free dispersion relation of the vacuum
in Eq. (45), we obtain the scattering mean free time

τs(E,k) =
~Eσ⊥

V 2
R

2ξ

∫

dΩ
k̂
′ e−

σ2
⊥
4 (kE k̂′

x−kx)2e
−

σ2
⊥

4ξ2
(kE k̂′

y−ky)2
,

(46)

where k̂ ≡ k/|k| is the unit vector pointing in the direc-

tion of k, Ω
k̂
is the k-space solid angle, kE ≡

√
2mE/~ is

the momentum associated to energy E in free space and
Eσ⊥

≡ ~
2/mσ2

⊥ is the correlation energy of the disorder.
The scattering time (46) is plotted in Fig. 5 as a function
of energy along the two main axes, for |k| = kE and for a
fixed geometrical anisotropy ξ = 4. We use the notation

τE,k̂ ≡ τs(E, kE k̂). Let us discuss some limiting cases.

In the low-energy limit, kEσ⊥ ≪ 1, we have

τE,k̂ =
~Eσ⊥

V 2
R

ξ

π
+

~E

4πV 2
R

[

ξ +
2

ξ
+ 2

(

ξk̂2x +
k̂2y
ξ

)

+ O

(

E2

ξ4E2
σ⊥

)]

, (47)

which is displayed in Fig. 5 (left-hand side black lines).
In this limit the de Broglie wavelength of the parti-
cle (2π/kE) exceeds the correlation lengths of the dis-
order (σ⊥x and σ⊥y) and the speckle can be approxi-
mated by a white-noise (uncorrelated) disordered poten-

tial. More precisely, Eq. (37) becomes C̃(k) ≃ V 2
R
π

σ2
⊥

ξ

(see Sec. III A) and τE,k̂ is isotropic, constant, and it only

depends on the product V 2
R σ⊥xσ⊥y (up to corrections of

relative order E/Eσ⊥
).

In the opposite, high-energy limit, kEσ⊥ ≫ ξ, the de
Broglie wavelength of the particle is much smaller than
the smallest correlation length of the disorder. The par-
ticle then behaves ‘classically’. Since C̃(k) has a wider

extension in the k̂y direction than in the k̂x direction (for
ξ > 1), there are more scattering channels for particles
travelling along x so that τE,k̂x

< τE,k̂y
. More precisely,

we find

τE,k̂ ≃ ~Eσ⊥

V 2
R

kEσ⊥√
π

√

k̂2x + ξ2k̂2y, (48)

which is shown in Fig. 5 (right-hand side black lines). In
particular, we find that in the high-energy limit τE,k̂ ∝√
E.
It is also interesting to study the anisotropy factor of

the scattering time

ξs ≡
τE,k̂x

τE,k̂y

, (49)

which is shown in Fig. 6 as a function of E/Eσ⊥
and ξ.

As already mentioned τE,k̂ is isotropic in the white-noise

limit, so that ξs ≃ 1 for kEσ⊥ ≪ 1 (left-hand side red line
in Fig. 6). When increasing the energy, the scattering
time first increases along the direction with the largest
correlation length, i.e. the direction in which C̃(k) is nar-
rower (x for ξ > 1). Therefore, ξs increases with E, for
sufficiently small values of E/Eσ⊥

, and we have ξs > 1.
Using Eq. (47), an explicit calculation yields

ξs ≃ 1 +
E

Eσ⊥

ξ2 − 1

2ξ2
+O

(

E2

ξ4E2
σ⊥

)

. (50)
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Figure 6. (Color online) Anisotropic factor ξs = τE,k̂x
/τE,k̂y

as a function of E/Eσ⊥ and ξ, for the 2D speckle potential of
Sec. III A. The red lines are the low (ξs → 1) and high energy
limits (ξs → 1

ξ
) [see Eqs. (47) and (51)].

For kEσ⊥ ≫ ξ, using Eq. (48), we obtain

ξs ≃
1

ξ
, (51)

which shows that the anisotropy factor of scattering is
proportional to the inverse of the geometrical anisotropy
(right-hand side red line in Fig. 6). Note that the clas-
sical limit relation (51) is universal provided that the
configuration anisotropy factor is well defined i.e. that
the disorder correlation function can be obtained by the
anisotropic homothety of an isotropic one, C(x, y) =
Ciso(x, ξy). In this high-energy limit, ξs < 1 (contrary
to the low-energy limit case). Therefore, for any value of
ξ, τE,k̂ exibits an inversion of anisotropy when the energy

increases, typically at E ∼ Eσ⊥
.

As described in section II C the scattering time is the
width of the spectral function. It can be measured in a
2D experiment such as that of Ref. [53] by monitoring
the momentum distribution of an almost energy-resolved
wavepacket [66]. To illustrate this, a plot of the spectral
function as a function of momentum and at fixed energy
is shown in Fig. 7. In this plot the scattering time is
calculated in the Born approximation (as above), and we
have neglected the real part of the self-energy Σ′(E,k) in

Eq. (13). In each direction k̂ the spectral function peaks
at 4τE,k̂/~ and has a width proportional to 1/τE,k̂. The

anisotropy of the scattering time is revealed in the angle-
dependence of both these quantities. It is more apparent
in the angular dependence of the amplitude, which shows
marked peaks. At low energy, the maxima are located
on the kx axis, while at high energy, they are located
on the ky axis, which signals inversion of the scattering
anisotropy.
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Figure 7. (Color online) On-shell spectral function as a
function of k for the 2D speckle potential of Sec. III A,
VR = 0.2Eσ⊥ , and ξ = 4. The top row shows the full spec-
tral function. The bottom row shows cuts along the kx (solid
red lines) and ky axis (dotted blue lines). The two columns
refer to different energies: E = Eσ⊥ (left) and E = 10Eσ⊥

(right), which correspond to the dots and the squares in Fig 5,
respectively.

V. BOLTZMANN DIFFUSION

We now turn to the behaviour of the spatial density in
the incoherent diffusive regime, which is characterized by
the Boltzmann diffusion tensor DB(E). We first give an
explicit formula for the diffusion tensor, in the framework
of the usual on-shell approximation, and then apply it to
2D disorder (3D cases are discussed in Sec. VII B).

A. Solution of the Bethe-Salpeter equation

In the independent scattering (Boltzmann) and weak
disorder (Born) approximation, only the first term in
Eq. (22) is retained and the irreducible vertex function
U equals the disorder structure factor [81]: U ≃ UB =
V ⊗ V and

Uk,k′(q, ω, E) ≃ UBk,k′ = C̃(k− k′), (52)

or equivalently

UB = . (53)

Then, incorporating Eq. (52)-(53) into the BSE (20)-(21)
and expanding it in series of U, one finds

k−

k+

k′
−

k′
+

Φ =

k+

k−

+

k+

k′
−

k−

k′
+

Γ (54)
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where the diffuson Γ reduces to ladder diagrams:

Γ = + + + ... (55)

It describes an infinite series of independent scattering
events, which leads to Drude-like diffusion.
In appendix A, explicit calculations are detailed. In

brief, in the long-time (ω → 0) and large-distance (|q| →
0) limit the vertex Φ is the sum of a regular term and a
singular term [75, 98]:

Φk,k′(q, ω, E) = Φsing
k,k′(q, ω, E) + Φreg

k,k′(0, 0, E). (56)

The regular part is given by

Φreg
k,k′(0, 0, E) =

∑

λn
E
6=1

1

1− λn
E

fE,kφ
n
E,kφ

n
E,k′fE,k′ , (57)

where fE,k ≡ fk(q = 0, ω = 0, E) [see Eq. (25)] and
φn
E,k (λn

E) are the eigenvectors (eigenvalues) of an integral
operator involving the disorder correlation function and
fE,k [109]:

∫

dk′

(2π)d
C̃(k− k

′) fE,k′ φn
E,k′ = λn

Eφ
n
E,k. (58)

The regular part contributes to the finite time and finite
distance propagation of the density which we disregard
here. The singular part is more interesting. Its existence
is a direct consequence of the Ward identity [110] which
expresses the conservation of particle number, and which
guarantees that one of the eigenvalues of Eq. (58) is equal
to one λn=1

E = 1 (see appendix A). In the framework of
the on-shell approximation, such that ǫ(k) = ǫ(k′) = E,
in the long time and large distance limit (|q|, ω) → 0, the
vertex Φ is given by

Φsing
k,k′(q, ω, E) =

2π

~N0(E)

γk(q, E) γk′(q, E)

−iω + q·DB(E)·q (59)

with N0(E) the disorder-free density of states, and

γk(q, E) =
A0(E,k)

2π

{

1− 2πi

~
(60)

×
∑

λn
E
6=1

λn
E

1− λn
E

τE,k̂φ
n
E,k̂

〈q · υ′τ
E,k̂

′φn
E,k̂

′〉k′|E

}

,

where A0(E,k) = 2πδ[E− ǫ(k)] is the disorder-free spec-
tral function. Equation (59) shows that the vertex Φ
is dominated by the diffusion pole (i~ω − ~q ·DB(E) ·
q)−1. The Boltzmann diffusion tensor DB(E) has com-
ponents [75]

Di,j
B
(E) =

1

N0(E)

{

〈

τE,k̂ υi υj

〉

k|E
(61)

+
2π

~

∑

λn
E
6=1

λn
E

1−λn
E

〈

τE,k̂υiφ
n
E,k̂

〉

k|E

〈

τE,k̂υjφ
n
E,k̂

〉

k|E

}

,

where υi = ~ki/m, τE,k̂ ≡ τs(E, kE k̂) = ~/2π〈C̃(kE k̂ −
k′)〉k′|E is the on-shell scattering mean free time [see
Eq. (44)], and 〈...〉k|E represents integration over the k-
space shell defined by ǫ(k) = E [see Eq. (45)]. The func-
tions φn

E,k̂
and the real-valued positive numbers λn

E are

the solutions of the integral eigenproblem (58), which be-
comes, in the on-shell approximation (see appendix A),

2π

~

〈

τ
E,k̂

′C̃(kE k̂− k′)φn
E,k̂

′

〉

k′|E
= λn

E φn
E,k̂

, (62)

normalized by 2π
~

〈

τE,k̂φ
n
E,k̂

φm
E,k̂

〉

k|E
= δn,m [75]. It fol-

lows from Eq. (61) that the incoherent (Boltzmann) dif-
fusion tensor DB(E) is obtained from the two-point dis-
order correlation function C(r), which determines τE,k̂

[see Eq. (44)] as well as φn
E,k̂

and λn
E [see Eq. (62)].

In the isotropic case (for details see appendix B),
Eq. (62) is solved by the cylindrical (2D) or spherical
(3D) harmonics Y m

l , the same level harmonics [i.e. with
the same l] being degenerate in λn

E . Then, it follows
from the symmetries of the cylindrical/spherical harmon-
ics that only the first term in Eq. (61) plus the p-level
harmonics (Z±1

1 in 2D and Y m
1 with m = −1, 0, 1 in 3D;

the cylindrical harmonics Z±1
l are defined in appendix B)

couple to υ and contribute to DB(E). Incorporating the
explicit formulas for φn

E,k̂
and λn

E [see Eqs. (B1) to (B7)],

we then recover well-known expressions for isotropic dis-
order [61–63, 65].
In the anisotropic case, harmonics couple, and the φn

E,k̂

are no longer cylindrical/spherical harmonics. Then the
calculation of the diffusion tensor requires first the diag-
onalization of the integral operator (62) whose solutions
are then incorporated in Eq. (61). In the following, this
is done numerically for an anisotropy factor relevant to
current matter-wave experiments.

B. Anisotropic Gaussian speckle (2D)

Consider again the 2D anisotropic speckle potential of
Sec. III A. The first step in the calculation of DB is to de-
termine the eigenfunctions φn

E,k̂
and the associated eigen-

values λn
E of Eq. (62). We solve Eq. (62) numerically, by

a standard algorithm of diagonalization, with 29 = 512
points, regularly spaced on the k-space shell |k| = kE .
The diffusion tensor is diagonal in the basis made by the
symmetry axes of the correlation function (37): {ûx, ûy}.
The eigenvalues and some eigenfunctions obtained nu-

merically are shown in Fig. 8 for various values of E/Eσ⊥
.

As discussed above, we find λn=1
E = 1. For E ≪ Eσ⊥

,
only the first term in the right-hand side of Eq. (61) con-
tributes to the diffusion tensor since all λn>1

E are vanish-
ingly small. When the energy increases, the values of the
coefficients λn>1

E increase. It corresponds to an increase
of the weight of the terms associated to the orbitals with
n > 1 in Eq. (61), and a priori all the orbitals with
n > 1 might have an increasing contribution. However,
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Figure 8. (Color online) Top row: Eigenvalues of Eq. (62).
Bottom row: Angular dependence of the eigenfunctions φn

E,k̂

for n = 1 (dashed black line), 2 (solid red line) and 3 (dotted

blue line). We use the parametrization k̂ ≡ (cos θ, sin θ) for
the 2D speckle potential of Sec. III A with ξ = 4. The different
columns refer to different energies (indicated on top of the
figure).

we find that, the symmetry properties of the functions
φn
E,k̂

cancel the contributions of most of them, and only

the orbitals with n = 2 and 3 do contribute (see below).
In the low energy limit, one can develop Eq. (37) in

powers of |k|. Up to order O(E2/ξ4E2
σ⊥

), the first three
eigenfunctions are given by:

φ1
E,k̂

= 1− E

2ξ2Eσ⊥

[

1 + (ξ2 − 1)k̂2x

]

+O

(

E2

ξ4E2
σ⊥

)

,

(63)
with eigenvalue λ1

E = 1;

φ2
E,k̂

= k̂x

[√
2 +B2

E

ξ2Eσ⊥

]

+O

(

E2

ξ4E2
σ⊥

)

(64)

with eigenvalue λ2
E = E/2Eσ⊥

; and

φ3
E,k̂

= k̂y

[√
2 +B3

E

ξ2Eσ⊥

]

+O

(

E2

ξ4E2
σ⊥

)

(65)

with eigenvalue λ3
E = E/2ξ2Eσ⊥

, where B2 and B3

are constant values that do not intervene in the follow-
ing. In this limit the numerical results agree very well
with the analytical findings (which for clarity are not
shown on Fig. 8). In the very low energy limit, the dis-
order power spectrum becomes isotropic and constant,
C̃(k) ≃ V 2

R πσ
2
⊥/ξ, [see Sec. III A and Eq. (37)]. The

orbitals φn
E,k̂

are thus proportional to the cylindrical

harmonics, which are exact solutions of Eq. (62) in the
isotropic case (see appendix B, and use the parametriza-

tion k̂x = cos θ and k̂y = sin θ). In contrast to the
isotropic case where the values of λn

E are degenerated
in a given l-level, here we find that the degeneracy inside
a l level is lifted for any anisotropy ξ 6= 1 [see the val-

ues of λ2,3
E below Eqs. (64) and (65)]. When the energy

further increases, the anisotropy plays a more important
role and the harmonics are more and more distorted (see
Fig. 8). However their topology remains the same, and
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Figure 9. (Color online) Components of the diffusion ten-
sor: Dx

B (soild red line) and Dy
B (dotted blue line) for the

2D speckle potential of Sec. III A and ξ = 4. Solid black
lines are limit values at small E/Eσ⊥ [Eqs. (66) and (67)],
with the isotropic white-noise limit Dx

B(E) = Dy
B(E) ∼

~ξEEσ⊥/mπV 2
R . For large E/Eσ⊥ we find DB(E) ∼ E5/2

(see text); a fit of the numerical data gives the prefactors

Dx
B = 4.43E5/2/V 2

RE
1/2
σ⊥ and Dy

B = 1.24E5/2/V 2
RE

1/2
σ⊥ (see

dotted black lines). The inset shows the transport anisotropy
factor ξB = Dx

B/D
y
B.

in particular the number of nodal points and their posi-
tions are unchanged. In the following, we thus refer to
Z±1
l -like orbitals.
Incorporating the values of λn

E , φn
E,k̂

and τE,k̂ in

Eq. (61), we can determine the Boltzmann diffusion ten-
sor. Figure 9 shows the resulting eigencomponents of the
diffusion tensor. In the low energy limit (E ≪ Eσ⊥

), us-
ing Eqs. (47), (64) and (65), we find that the first term
in the right-hand side of Eq. (61) gives the leading con-
tribution to DB(E) (of order E/Eσ⊥

). This contribution
is isotropic owing to the isotropy of τE,k̂ at low energy

and of the underlying medium. At very low energy, in
the white-noise limit, we recover an isotropic diffusion
tensor Dx

B(E) = Dy
B(E) ∼ ~ξEEσ⊥

/mπV 2
R . The scaling

Du
B
(E) ∝ E is universal for 2D disorder in the white-

noise limit (when it exists). The Z+1
1 -like orbital φ2

E,k̂

contributes to the next order of Dx
B and the Z−1

1 -like or-
bital φ3

E,k̂
to Dy

B. Up to order O(E3/ξ6E3
σ⊥

), we obtain

Dx
B(E) =

~

m

E2
σ⊥

V 2
R

[

ξE

πEσ⊥

+
E2

πE2
σ⊥

9ξ2 + 3

8ξ
+O

(

E3

ξ6E3
σ⊥

)]

,

(66)
and

Dy
B(E) =

~

m

E2
σ⊥

V 2
R

[

ξE

πEσ⊥

+
E2

πE2
σ⊥

3ξ2 + 9

8ξ
+O

(

E3

ξ6E3
σ⊥

)]

,

(67)
which are displayed on Fig. 9 (left-hand side solid lines).
When the energy increases, the anisotropy first comes
from the anisotropic contribution of the scattering time
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Figure 10. (Color online) Boltzmann transport anisotropy
factor ξB = Dx

B/D
y
B as a function of E/Eσ⊥ and ξ for the

2D speckle potential of Sec. III A. The inset shows the high
energy asymptotic value (cut at E = 104Eσ⊥). The dotted
red line in both the figure and the inset is ξ.

τE,k̂, and from the lift of the degeneracy between λ2
E

and λ3
E . When the energy further increases, the harmon-

ics are distorted, – but their symmetries (i.e. periodicity
and parity) are preserved (see Fig. 8). Hence, for the
same reasons as in the isotropic case (see appendix B)
only the Z±1

1 -like orbitals couple to υ in Eq. (61) and
contribute to DB while the others don’t. The associated
λn
E increase (see Fig. 8), the weight of the second term in

Eq. (61) increases, and the components of the diffusion
tensor show a very different behavior in the large-E limit.
For kEσ⊥ ≫ ξ, we found τE,k̂ ∝ kE (see Sec. IVB). In

addition, we find numerically a weak topological change
of the orbitals with energy for E/Eσ⊥

& 102. Therefore
the evaluation of DB with E is mainly determined by
the normalization condition [see formula below Eq. (61)],
which yields φn

E,k̂
∝ 1/

√
kE . Then, assuming the scal-

ing 1 − λn
E ∝ 1/E, also verified numerically, we obtain

Du
B(E) ∝ E5/2, which matches the numerical results (see

dotted black lines in Fig. 9). This scaling is similar
to that found for isotropic disorder [62]. As shown in
Fig. 9, the change of slope between the low- and high-
energy regimes is different in the two directions. For
this reason, the anisotropy factor of the diffusion tensor,
ξB = Dx

B/D
y
B shows a nonmonotonous behaviour versus

E, with a marked peak (see inset of Fig. 9).

The Boltzmann transport anisotropy factor ξB is
shown in Fig. 10 for various geometrical anisotropies ξ.
As it is well-known, the scattering and transport mean
free times are different quantities in correlated disorder,
due to angle-dependent scattering [81, 111, 112]. In par-
ticular, in the 2D speckle we consider, we do not find
any inversion of the anisotropy of the diffusion, con-
trary to the scattering time, i.e. the component Dx

B
(E)

of the diffusion tensor is always larger than the compo-
nent Dy

B(E). For large values of E/Eσ⊥
, the Boltzmann

transport anisotropy ξB reaches a constant value (see the
inset of Fig. 9 for a cut at ξ = 4), which increases with
the geometrical anisotropy ξ (see inset of Fig. 10). This
asymptotic value is larger than ξ for small ξ and smaller
for larger ξ. Therefore the anisotropy of the diffusion in
the classical regime is not simply related to the spatial
anisotropy.
The two distinct regimes found in the behaviour of DB

and the non-trivial anisotropy effects make the Boltz-
mann diffusion regime in anisotropic 2D potentials very
interesting for future experiments. Those properties
could be probed by imaging directly the atoms in the
2D speckle (as in ref. [53]) and controlling the width of
the atomic energy distribution.

VI. WEAK AND STRONG LOCALIZATION

Having discussed the incoherent (Boltzmann) trans-
port properties, we now consider interference effects,
which lead to weak and strong localization. We first
describe the quantum corrections (Sec. VIA), then the
self-consistent theory (Sec. VIB), and apply it to the 2D
speckle potential (Sec. VIC). The 3D cases, which follow
the same route, are discussed in Sec. VIIC.

A. Weak localization correction

We calculate corrections to Boltzmann diffusion by
taking into account quantum interference terms between
the multiple-scattering paths. Those interferences ap-
pear when the correlated scattering events do not occur
in the same order in the propagation of the field and
its conjuguate. This is diagrammatically translated into
crossing correlation lines as in the second term of Eq. (22)
for example. In the weak scattering regime only the two-
point correlations are retained in the scattering diagrams
and the leading scale-dependent corrections to the clas-
sical conductivity are given by the maximally crossed di-
agrams [6, 75, 98, 113]: the cooperon [Eq. (68)] and the
first two Hikami boxes [Eqs. (69) and (70)].

∆σ(X) =
Jk/~ Jk′/~

X (68)

∆σ(H1) =
Jk/~ Jk′/~

X (69)

∆σ(H2) =
Jk/~ Jk′/~

X (70)



15

where the cooperon X is the sum of maximally crossed
diagrams

X = + + + ...

(71)

and

Jk/~
(72)

is the renormalized vertex function (see appendix C 2).
Using time-reversal invariance [23, 81, 110, 114, 115],

the cooperon X can be expressed in terms of the diffuson
Γ [defined in Eq. (55)]

Xk,k′(q, ω, E) = Γ k−k′

2 + q

2 ,
k′−k

2 + q

2

(k + k′, ω, E). (73)

The diffusion pole carried by Γ in the limit (ω,q) →
0 leads to a divergence of X when ω,k + k

′ → 0. In
appendix C 3 we translate those diagrams into equations,
and show that

∆σ(ω,E) = − σB(E)

πN0(E)

∫

dQ

(2π)d
1

−i~ω + ~Q ·DB(E) ·Q .

(74)
Using Einstein’s relation (34) we then obtain the dy-
namic diffusion tensor D∗(ω,E) = DB(E) + ∆D(ω,E),
with [75]

∆D(ω,E)

DB(E)
= − 1

πN0(E)

∫

dQ

(2π)d
1

−i~ω + ~Q ·DB(E) ·Q .

(75)
Note that the quantum corrections ∆D(ω,E) do not ex-

plicitly depend on the disorder [i.e. on C̃(k)], but only
on the Boltzmann diffusion tensor DB(E) [75]. In other
words, in this approach, Boltzmann incoherent diffusion
sets a diffusing medium, which contains all necessary in-
formation to compute coherent terms [116]. In particu-
lar, it follows from Eq. (75) that the weak localization
quantum correction tensor ∆D(ω,E) has the same eige-
naxes and anisotropies as the Boltzmann diffusion ten-
sor DB(E). Thus the anisotropy can be removed by
rescaling distances along the transport eigenaxes u by
√

Du
B
/Dav

B
(i.e. momenta are rescaled by

√

Dav
B
/Du

B
) with

Dav
B ≡ det{DB}1/d the geometric average of the Boltz-

mann diffusion constants. Since ∆D is always negative
in the limit ω → 0+, the weak localization correction
determines slower diffusion than the one obtained from
incoherent diffusion. Equivalently, as long as the correc-
tion (75) is small, one can write

DB(E)

D∗(ω,E)
= 1+

1

πN0(E)

∫

dQ

(2π)d
1

−i~ω + ~Q ·DB(E) ·Q ,

(76)
which is the lowest-order term of a perturbative expan-
sion of 1/D∗(ω,E).

B. Strong localization

The quantum interference correction (75) has been de-
rived perturbatively and is therefore valid as long as the
correction itself is small, i.e. for DB(E) − D∗(ω,E) ≪
DB(E). In order to extend this approach and eventually
describe the localization regime where D∗ vanishes, Voll-
hardt and Wölfle [110, 114] proposed to self-consistently
replace DB(E) by the dynamic diffusion tensor D∗(ω,E)
in the right-hand side of Eq. (76). For isotropic scatter-
ing this procedure amounts to resumming more divergent
diagrams than the cooperon (which contain a square of a
diffusion pole), thus contributing to localization [80, 110].
Generalizing this standard approach to anisotropic dis-
order yields

DB

D∗(ω)
= 1 +

1

πN0(E)

∫

dQ

(2π)d
1

−i~ω + ~Q ·D∗(ω) ·Q
.

(77)
In dimension d ≥ 2 the integral in the right-hand side of
Eq. (77) features ultraviolet divergence, i.e. in the limit
|Q| → +∞. Since the diffusive dynamics is relevant
only on length scales larger than the Boltzmann mean
free path luB(E) ≡ d

√

m/2EDu
B(E) along each transport

eigenaxis, we regularize this divergence by setting an up-
per ellipsoidal cut-off of radii 1/luB in the integral domain.
It corresponds to an isotropic cut-off in the space rescaled
according to the anisotropy factors of DB as described
above.

C. Anisotropic Gaussian speckle (2D)

We now solve the self-consistent equation (77) for the
inverse dynamic diffusion tensor in the 2D case [110, 114].
In the long time limit ω → 0+, the unique solution of
Eq. (77) is of the form D∗(ω,E) ∼ 0+−iωL2

loc(E), where
Lloc(E) is a real positive definite tensor. As described in
Sec. II D, it leads to the exponentially decreasing prop-
agation kernel (30). Solving Eq. (77) then yields the
anisotropic localization tensor,

Lloc(E) = lavB (E)

√

DB(E)

Dav
B (E)

(

eπkE lavB (E) − 1
)1/2

(78)

where lavB (E) ≡ d
√

m/2EDav
B (E). The eigenaxes of the

localization tensor are thus the same as those of the
Boltzmann diffusion tensor and its anisotropy factors are
the square root of those of DB(E), i.e. ξloc ≡ Lx

loc
/Ly

loc =√
ξB.
We now apply the self-consistent theory to our run-

ning example: the 2D anisotropic speckle potential with
correlation function given by Eq. (37). Including the re-
sults for the Boltzmann diffusion tensor DB(E) obtained
in Sec. VB into Eq. (78), we find the localization tensor
Lloc(E). Figure 11 presents the eigencomponents of Lloc

in its eigenbasis {ûx, ûy} as a function of energy, for a
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Figure 11. (Color online) Components of the localization ten-
sor Lx

loc (solid red line) and Ly
loc (dotted blue line) for the 2D

speckle potential of Sec. III A, with ξ = 4 and VR = 0.2Eσ⊥

and 2Eσ⊥ . The solid black lines are the limiting behaviour for
small values of E/Eσ⊥ [Eq. (79)] and the dotted ones for high
values of E/Eσ⊥ [Eq. (80)]. The dashed grey lines indicate
typical values of the imaging resolution (Lres) and the system
size (Lsys) in ultracold-atom experiments, see text at the end
of Sec. VI C.

geometrical anisotropy of ξ = 4 and two different ampli-
tudes of the disorder VR/Eσ⊥

= 0.2 and 2. At low energy
(E ≪ Eσ⊥

, VR, V
2
R /Eσ⊥

), using Eqs. (66) and (67), we
find

Lx,y
loc

(E) = σ⊥

E3
σ⊥

V 3
R

ξ3/2

π

2E

Eσ⊥

[

1 +
ξEEσ⊥

2V 2
R

+
E

Eσ⊥

(18± 3)ξ2 + (18∓ 3)

16ξ2

+ O

(

E2

ξ4E2
σ⊥

,
E2

ξ2V 2
R

,
E2E2

σ⊥

V 4
R

)]

, (79)

where the upper sign holds for direction x, and the
lower sign for direction y. Equation (79) corresponds
to the solid black lines in Fig. 11. As DB is almost
isotropic for E/Eσ⊥

. 1 (see Fig. 9), Lloc is also al-
most isotropic in the whole range presented in Fig. 11.
Equation (79) describes an isotropic localization tensor
with an anisotropic correction which is significant only

if VR/Eσ⊥
& ξ3/2/

√

ξ2 − 1 (≃ 2 for ξ = 4). At higher
energy, when kE l

av
B (E) = 2mDav

B (E)/~ & 1, we expect

Lu
loc(E) ≃ σ⊥

2

kEσ⊥

m
√

Dav
B
(E)Du

B
(E)

~
eπmDav

B (E)/~,

(80)
which is plotted as dotted black lines in Fig. 9. Ac-
cording to Eqs. (66) and (67) (retaining only the
lowest-energy term), this regime appears for E/Eσ⊥

&
(π/2ξ)(VR/Eσ⊥

)2. When ξ = 4 (as in Fig. 11), it gives
E/Eσ⊥

& 0.015 for VR/Eσ⊥
= 0.2 and E/Eσ⊥

& 1.5
for VR/Eσ⊥

= 2. As predicted by the scaling theory
of Anderson Localization [23] and explicitely seen in

Eq. (80), the 2D localization length increases exponen-
tially at large energy (hence the limited energy range in
Fig. 11). Therefore measuring it experimentally with ul-
tracold atoms [54, 117, 118] is very challenging and can
be done in a rather narrow energy window, in which Lloc

is larger than the resolution of the imaging system (Lres)
but smaller than the size of the sample (Lsys). This is il-
lustrated for σ⊥ = 0.25µm on Fig. 11 by the grey dashed
lines Lres ∼ 15µm and Lsys ∼ 2mm, which are typical
values extracted from Refs. [53, 58].

VII. THREE-DIMENSIONAL DISORDER WITH
STRUCTURED CORRELATIONS

In this section we apply the formalism introduced
in Secs. IV to VI to the 3D speckle potentials
of Secs. III B and III C. We discuss single-scattering
(Sec. VIIA), Boltzmann diffusion (Sec. VII B) and local-
ization (Sec. VIIC) properties, successively for the single-
speckle and orthogonally-crossed-speckles configurations.
We recall that those systems are relevant for ultracold
atoms experiments. In particular our configurations ap-
ply to Ref. [57] (single-speckle) and Ref. [58] (coherent
orthogonally-crossed speckles), respectively. This section
can be viewed as a detailed version of Ref. [79].

A. Single-scattering

1. Single speckle configuration (3D)

Let us first consider the single-speckle case. Inserting
Eqs. (38) and (39) into Eq. (44), we find the scattering
mean free time

τs(E,k) =
~Eσ⊥

V 2
R

(2π)2/kEσ⊥
∫

dΩ
k̂
′ c̃1sp(kE k̂

′ − k)/σ3
⊥

, (81)

which is shown in Fig. 12 for |k| = kE [as for the 2D case
of Sec. IVB we define the on-shell scattering mean free

time τE,k̂ ≡ τs(E, kE k̂)]. Since C̃(k) is isotropic in the

(kx, ky) plane, τE,k̂ only depends on the polar angle θ

between k and k̂z and not on the azimutal angle φ. We
find that the scattering time is an increasing function of
energy. It is also shorter for particles travelling along the
z direction (τE,k̂z

< τE,k̂{x,y}
) for all values of E. As

for the 2D case analyzed in Sec. IVB, this is due to the
wider extension of C̃(k) in the plane (kx, ky), which offers
more scattering channels to particles travelling along z.
In contrast to the 2D speckle case however, τE,k̂ shows

no inversion of anisotropy.
In the low energy limit (kEσ⊥ ≪ 1), τE,k̂ converges to

a constant value. In contrast to the 2D case, it signals
the absence of a 3D white-noise limit [119]. This can be

attributed to the strong anisotropic divergence of C̃(k)
when |k| → 0 which reflects the long-range correlations of
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Figure 12. (Color online) Scattering mean free time τE,k̂ in

the 3D single-speckle case [Eq. (81)] with |k| = kE for the

parameters of Fig. 4, in the (k̂x, k̂y) plane (solid red line) and

along the k̂z direction (dotted blue line). The black lines are
the low-energy [kEσ⊥ ≪ 1, see Eq. (83)] and the high energy
[kEσ⊥ ≫ 1, see Eq. (84)] limits. Note that in both limits τE,k̂

is anisotropic, although for kEσ⊥ ≪ 1, the anisotropy is very
small, ξs ≃ 1.002. The insets show the angular dependence
of τE,k̂ at different energies [with the parametrization k̂ =

(k̂x, k̂y , k̂z) ≡ (sin θ cos φ, sin θ sin φ, cos θ)]. The points on
the lines are color- and shape-coded to match those in the
insets.

the disorder (see Sec. III B). More precisely, for |k|σ⊥ ≪
1, we have

c̃1sp(k) ≃ π3/2σ⊥σ‖

|k| c̃(k̂) = π3/2σ⊥σ‖

|k|
e
− 1

4

( σ‖
σ⊥

)2 k̂2
z

k̂2
x+k̂2

y

√

k̂2x + k̂2y

.

(82)
Replacing c̃1sp in Eq. (81) we then find

τE,k̂ =
~Eσ⊥

V 2
R

4
√
π

∫

dΩ
k̂
′ c̃(k̂

′ − k̂)
, (83)

which is independent of E. Equation (83) is plotted as
solid black lines on the left-hand side of Fig. 12. Note
that τE,k̂ does not become strictly isotropic in this limit.

However, the residual anisotropy of the scattering time,

found from Eq. (83) and from the anisotropy of c̃(k̂)
in Eq. (82), is very small, and practically unobservable
(τE,k̂{x,y}

/τE,k̂z
≃ 1.002). When the energy increases,

the scattering time in the (x, y) plane is the first to
deviate significantly from the low-energy behaviour at
E ∼ Eσ‖

(= 3× 10−2Eσ⊥
for the parameters of Fig. 12),

while the scattering time in the z direction increases only
at E ∼ Eσ⊥

. This can be understood again by the nar-

rower width of the power spectrum C̃(k) in the kz direc-
tion.
In the high-energy limit (kEσ⊥ ≫ 1) the k-space shell

integral of Eq. (81), which is done on a sphere of radius

kE containing the origin, can be reduced to integrating
c̃1sp on the plane which is tangent to the sphere at the
origin. We then find

τE,k̂ ≃ ~Eσ⊥

V 2
R

σ⊥

σ‖

4
√
πkEσ⊥

∫

dκdκ′ e−
κ2 k̂2

z+κ′2

4 e
− 1

4

( σ‖
σ⊥

)2 κ2(k̂2
x+k̂2

y)

κ2k̂2
z+κ′2√

κ2k̂2
z+κ′2

.

(84)
In particular, we find τE,k̂{x,y}

= ~Eσ⊥
kEσ⊥/2V

2
R

√
π,

τE,k̂z
= ~Eσ⊥

kEσ
2
⊥/V

2
R
πσ‖ (both shown as the right-

hand side solid black lines in Fig. 12). The anisotropy of
the scattering then becomes significant for the parame-
ters of Fig. 12, τE,k̂{x,y}

/τE,k̂z
=

√
πσ‖/2σ⊥ in this limit.

The high-energy scaling τE,k̂ ∝ kE , which was also found

in our 2D speckle, is quite universal: as long as the power
spectrum is of finite integral in all the planes (lines in 2D)
crossing the origin, the procedure described above can be
applied to Eq. (44). Then τE,k̂ only depends on the dis-

persion relation ǫ(k) and, in particular, it is independent
of the space dimension.

2. Orthogonally-crossed speckles (3D)

We now consider the case of two orthogonally crossed
speckle fields, that can be either mutually incoherent
or coherent, and whose power spectrum are given by
Eqs. (40) and (41) respectively. The 3D on-shell scatter-
ing mean free time [Eq. (44) with |k| = kE ] is presented
in Fig. 13 in both configurations.
The power spectrum of the incoherent-speckles case

is made of two orthogonally-oriented spectra, similar to
that of the single-speckle case. As a consequence, its scat-
tering time [see Fig. 13(a)] is qualitatively similar to the
single-speckle one. It shows two disctinct regimes: τE,k̂

constant at low energy and τE,k̂ ∝
√
E at high energy.

Note that even though the directions X and Z are equiv-

alent, τE,k̂ has a dependence in Θ = (k̂, k̂Z) and in ϕ (the

azimutal angle in the (kX , kY ) plane) because the corre-
lation fonction does not show rotation invariance around
any axis. As an example τE,k̂{x,z}

is also presented on

Fig. 13(a). Note also that the anisotropy between the di-

rections of minimal (k̂{x,z}) and maximal (k̂Y ) scattering
times is reduced compared to the single-speckle case.
In the coherent-speckles case, the power spectrum

is the incoherent one plus a coherence term that cre-

ates two additional bumps centered on the k̂X axis [at
kX ≃ ±3.8σ−1

⊥ for our parameters, see Fig. 4]. As al-
ready mentionned, the scattering time (taken on-shell)

in the Born approximation samples C̃(k) on a k-space

shell of radius kE centered in kE k̂ [see Eq. (44)]. There-
fore we recover the incoherent-speckles case at low en-
ergy. The bumps play a role for 2kEσ⊥ & 3.8, i.e. for
E & 1.8Eσ⊥

. They offer more scattering channels to
the particle travelling along Y and Z, making the cor-
responding scattering times drop below the values ob-
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Figure 13. (Color online) Scattering mean free time τE,k̂ in

the 3D incoherent (top) and coherent- (bottom) speckles cases
for the parameters of Fig. 4, along the symmetry axes of
the correlation functions (see Fig. 4), k̂X ≡ (k̂x − k̂z)/

√
2

(solid red line), k̂Y ≡ k̂y (dotted blue line), and k̂Z ≡
(k̂x+ k̂z)/

√
2 (dashed gray line) directions. The solid black

lines are the low-energy limits obtained for kEσ⊥ ≪ 1 and
the high energy limits obtained for kEσ⊥ ≫ 1 [see Eq. (85)].
The insets show the angular dependance of τE,k̂ at differ-

ent energies [with the parametrization k̂ = (k̂X , k̂Y , k̂Z) ≡
(sin Θ cosϕ, sin Θ sinϕ, cos Θ)]. Note that this parametriza-
tion differs from that of Fig. 12 because the symmetry axes
of C̃(k) are different. The points on the lines are color- and
shape-coded to match those in the insets.

tained in the coherent case [see Fig. 13(b)]. This leads
to an inversion of the anisotropy of the scattering time
with energy: τE,k̂X

< τE,k̂Y
, τE,k̂Z

at low energy and

τE,k̂X
> τE,k̂Y

, τE,k̂Z
at high energy.

At low energy (kEσ⊥ ≪ 1) the absence of white-noise
limit and the scaling of c̃1sp(k) presented in Eq. (82)
gives, as for the single-speckle configuration, a constant
slightly anisotropic scattering time in both cases (the
term c̃coh(k) present in the coherent case being negli-
gible), with a very small anisotropy. When E increases,
the scattering time in all directions deviates from the
low-energy behaviour around E ∼ Eσ‖

(= 3 × 10−2Eσ⊥

for the parameters of Fig. 13). In the high-energy regime
(kEσ⊥ ≫ 1 for the incoherent and kEσ⊥ ≫ 3.8 for the
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Figure 14. (Color online) Single-speckle case. Eigenvalues of
Eq. (62) at various energies indicated on the figure (top row).
Topography of the eigenvectors φn

E,k̂
, at the same energies,

which mainly contribute to Dx
B (bottom row), Dy

B (2nd row)

and Dz
B (3rd row) respectively [with the parametrization k̂ =

(k̂x, k̂y, k̂z) ≡ (sin θ cos φ, sin θ sinφ, cos θ)]. The values of n
are indicated on the figure, the red lines locate the nodal
lines. The points are color- and shape-coded to match those
of Fig. 12.

coherent case) we have

τE,k̂ =
~Eσ⊥

V 2
R

(2π)2kEσ⊥

∫

dκdκ′ C̃

(

κk̂z , κ′, κ
√

k̂2x + k̂2y

)

/V 2
R
σ⊥

,

(85)
which is displayed as the solid black lines on the right-
hand side of Fig. 13.

B. Boltzmann diffusion

Let us now analyze Boltzmann diffusion in our 3D
speckle potentials. It is obtained, as in the 2D case an-
alyzed previously by solving Eq. (62) numerically and
incorporating the results in Eq. (61). For the diagonal-
ization of the integral operator (62) we use 27 × 27 =
128 × 128 points regularly spaced on the k-space shell
|k| = kE [120].

1. Single-speckle (3D)

The eigenvalues λn
E of Eq. (62) for different energies,

as well as the topography of the eigenvectors of Eq. (62)
that dominate Dx

B
(bottom row), Dy

B (2nd row), and Dz
B

(3rd row) are shown in Fig. 14. We find (similarly as for
the 2D speckle potential) that the φn

E,k̂
are topologically

similar to the spherical harmonics at all energies, i.e. they
show similar nodal surfaces, but the associated λn

E are
not degenerated in a given l-like level. More precisely,
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Figure 15. (Color online) Boltzmann diffusion coefficients
along the transport eigenaxes (eigencomponents of DB) for
the single-speckle configuration and for the parameters of
Fig. 4. The dotted lines are power-law fits (Du

B ∝ Eγu) to
the data in the low and high energy limits. The inset show
the transport anisotropy factor Dz

B/D
x,y
B .

due to the cylindrical symmetry of the power spectrum
[see Fig. 4(a)], the value of λn

E associated to the Y +m
l -

like and Y −m
l -like orbitals are the same for a given m,

but the degeneracy between the different values of |m| is
lifted.
Figure 15 shows the resulting eigencomponents of the

diffusion tensor in the single-speckle case. It is isotropic
in the (x, y) plane, because of the rotation-invariance of

the correlation function C̃(k) around the axis k̂z. For
the same symmetry reasons as in the isotropic case (see
appendix B) and as in the 2D case, only the p-level-like
orbitals couple to υ. For kEσ⊥ ≪ 1, we find that Dx,y

B is
dominated by the first term in Eq. (61) and Dz

B
by the

Y 0
1 -like orbital (n = 2 at all energies). For kEσ⊥ ≫ 1, the

situation changes: while Dz
B
is still dominated by the Y 0

1 -
like orbital,Dx

B is now dominated by the Y +1
1 -like orbitals

and Dy
B by the Y −1

1 -like orbitals (respectively n = 6 and
5 at E = 50Eσ⊥

in Fig. 14) with a contribution of the
Y ±1
3 -like orbitals increasing with E [121]. Let us discuss

the main features of DB.
Firstly, as already discussed for the 2D case, the trans-

port and scattering mean free times can be very different
quantities in correlated disorder, and, in particular the
anisotropy of DB can be very different from that of τE,k̂.

Here we find that the diffusion tensor is larger along axis
z (Dz

B > Dx,y
B ) for all values of E (see Fig. 15), and the

anisotropy of DB is thus reversed with respect to that of
τE,k̂ (we recall that we found τE,k̂z

< τE,k̂{x,y}
for any

E, see Sec. VIIA). This is due to the fact that the (Y 0
1 -

like) orbitals contributing to Dz
B are associated to values

of λn
E larger than those contributing to Dx,y

B (in Fig. 14,
the φn

E,k̂
are numbered by decreasing eigenvalues)

Secondly, C̃(k) shows a strong anisotropic, infrared di-
vergence in the paraxial approximation (see Secs. III B

and VIIA). Following-up with the scaling of c̃1sp(k),
Eq. (82), used to show that τ

k̂,E is independent of en-

ergy for kEσ⊥ ≪ 1, and inserting it into Eq. (62) and the
associated normalization, we find that λn

E does not de-

pend on E, and φn
E,k̂

is of the form ϕn(k̂)/
√
kE . Then, all

terms in Eq. (61) are topologically unchanged and scale
as E at low energy. The anisotropy of DB thus persists
down to arbitrary low values of E and Du

B
∝ E, as ob-

served in the left-hand side of Fig. 15 for kEσ⊥ ≪ 1 (i.e.
E ≪ Eσ⊥

). This is another manifestation of the absence
of white-noise limit [122].

Thirdly, we found τE,k̂ ∝
√
E, and assuming weak

topological change of the orbitals and the scaling 1−λn
E ∝

1/E (confirmed numerically), we get φn
E,k̂

∝ 1/kE and

Du
B(E) ∝ E5/2. This scaling is confirmed in Fig. 15 by

fits to the data for E ≫ Eσ⊥
(right-hand side dotted

lines). This scaling was also found in our 2D example
and for isotropic 3D speckle disorder (see Ref. [62] and
appendix B). Remarkably, in spite of the different con-
tributing terms in Eq. (61) at low and high values of E,
the transport anisotropy is nearly independent of E with
Dz

B
/Dx,y

B ≃ 10 [see inset of Fig. 15].

2. Orthogonally-crossed speckles (3D)

Let us turn to the crossed-speckles configurations,
whose diffusion coefficients are plotted in Fig. 16. Note
first that in both the incoherent- and coherent-speckles
configurations we recover the same general properties
as for the single-speckle case, in particular the reversed
anisotropies of scattering (τE,k̂{X,Z}

< τE,k̂Y
) and diffu-

sion (DX,Z
B > DY

B ), the anisotropic suppression of the
white-noise limit, and the scaling of the diffusion coef-
ficients at low [Du

B(E) ∝ E] and high [Du
B(E) ∝ E5/2]

energy (see left- and right-hand dotted lines in Fig. 16).
Here however, the transport eigenaxes are the bisectors
{X̂, Ẑ} = (x̂∓ ẑ)/

√
2 and the axis Ŷ = ŷ, which are sym-

metry axes for both correlation functions (see Fig. 4).
In the incoherent-speckles case [Fig. 16(a)], DB is

isotropic in the (X,Z) plane, even though the correlation
function and the scattering time are not. This is due to
the topology of C̃(k) which bears four symmetry axes in

this plane (k̂x, k̂z, k̂X and k̂Z) [123]. We find that the
φn
E,k̂

contributing to the diffusion tensor are distorted

compared to the single-speckle case but the number of
nodal lines and their positions are still reminiscent of the
Y m
1 spherical harmonics. In the end, the behaviour of

the diffusion tensor is very similar to the single-speckle
one and DX

B ≃ DZ
B > DY

B . The transport anisotropy is
nearly constant, but significantly reduced with respect to

the single-speckle case, DX,Z
B /DY

B
≃ 1.8.

In the coherent-speckles configuration [Fig. 16(b)], as
long as 2kEσ⊥ ≪ 3.8, the behavior of DB(E) is gov-

erned by the central structure of C̃(k) since, in the on-
shell Born approximation, a particle of energy E probes
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Figure 16. (Color online) Components of the diffusion tensor:
DX

B (solid red line), DY
B (dashed gray line) and DZ

B (dotted
blue line) for the 3D incoherent- (top) and coherent- (bottom)
speckles cases. The dotted lines are power-law fits (Du

B ∝
Eγu) to the data in the low and high energy limits. The insets
show the transport anisotropy factors DX

B /DY
B and DZ

B /DY
B .

C̃(k) inside the k-space sphere of radius 2kE centered at
the origin. In this regime the coherent- and incoherent-
speckles are very similar. The most interesting effect
appears for 2kEσ⊥ & 3.8 (i.e. E & 1.8Eσ⊥

), when the

bumps of C̃(k) contribute to scattering and transport.
The scattering time τE,k̂ becomes highly anisotropic [see

Fig. 13(b)] and the orbital dominating DX
B

is distorted
compared to the incoherent case. As a result, DX

B is re-
duced and the corresponding anisotropy factor drops by
a factor of ≃ 4. This effect happens to be strong enough
to lead to the inversion of the transport anisotropy and
we find DX

B < DY
B < DZ

B for E & 1.8Eσ⊥
[see inset of

Fig. 16(b)].

C. Localization

In order to analyze strong localization effects, we now
solve the self-consistent equation (77) for the 3D case
in the long time limit (ω → 0). A threshold en-
ergy Ec (mobility edge) appears, solution of Dav

B (Ec) ≡
det{DB(Ec)}1/3 = ~/

√
3πm. For E < Ec, one finds

D∗(ω,E) ∼ 0+ − iωL2
loc(E) for ω → 0, where Lloc(E)

is a real positive definite tensor. As in 2D, it character-
izes exponential localization within the propagation ker-
nel (31) with the anisotropic localization tensor Lloc(E).
The localization tensor is diagonal in the same basis as
the Boltzmann diffusion tensor DB. Explicitely, we have

Lu
loc

= Lav
loc

√

Du
B

Dav
B

, (86)

where Lav
loc = det{Lloc(E)}1/3 is the unique solution of

Lav
loc

lavB

[

1− π

3
(kE l

av
B )2

]

= arctan

(

Lav
loc

lavB

)

. (87)

For E > Ec, D∗(ω,E) converges to a real definite pos-
itive tensor when ω → 0. It describes anisotropic nor-
mal diffusive dynamics, characterized by the propaga-
tion kernel (29) where D(E) is replaced by the quantum-
corrected diffusion tensor

D∗(E) ≡ lim
ω→0

D∗(ω,E) (88)

=

[

1− ~
2

3πm2 {Dav
B (E)}2

]

DB(E).

Figure 17 shows the components of Lloc (for E < Ec)
and D∗ (for E > Ec) for the single-, incoherent- and
coherent-speckles cases, and for typical parameters of
Refs. [57, 58]. As already mentionned in Sec. VIA the
behavior of Lloc andD∗ is completely determined by that
of DB in our approach. The anisotropies of Lloc(E) are
the square roots of those of DB(E) [see Eq. (86)] and the
anisotropies of D∗(E) are the same as those of DB(E)
[see Eq. (88)]. Therefore, as for DB, we observe that the
anisotropy factors of Lloc and D∗ are nearly indepen-
dent of E, except for the inversion of anisotropy of the
coherent-speckles case. In the single-speckle case we find
Lz

loc
/Lx,y

loc ≃ 3.2 and Dz
∗/D

x,y
∗ ≃ 10. For the incoherent-

speckles configuration we find LX,Z
loc /LY

loc
≃ 1.3 and

DX,Z
∗ /DY

∗ ≃ 1.8. For the coherent-speckles configura-
tion we find the same values at low energy, and at high
energy we have DX

∗ /DY
∗ ≃ 0.5 and DZ

∗ /D
Y
∗ ≃ 2.1. Fig-

ures 17(a1), (b1) and (c1) present the results in the local-
ized regime. At low energy, using the scaling of Du

B(E)

obtained previously we find Lu
loc
(E) ∝

(

Du
B
/Dav

B

)1/2
E3/2.

When E increases, Lu
loc(E) grows and finally diverges at

Ec. In the diffusive regime [see Fig. 17(a2), (b2) and (c2)]
the quantum corrections are significant only close to Ec,
while for higher values of E, D∗(E) ≃ DB(E). There-
fore, in the high E limit we haveDu

∗ (E) ∝ (Du
B/D

av
B )E5/2

as found previously (see Sec. VII B). For the coherent-
speckles case, we recover the inversion of anisotropy pre-
dicted in Sec. VII B. For the parameters of Fig. 17(c) it
occurs in the diffusion regime. For higher values of VR,
however, it can be in the localization regime.
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Figure 17. (color online) Components of the localization tensor Lloc (left side, for E < Ec) and quantum-corrected diffusion
tensor D∗ (right side, for E > Ec) in the single- (upper row; VR = 7.1Eσ⊥), incoherent- (central row; VR = 0.35Eσ⊥ ) and
coherent- (lower row; VR = 0.35Eσ⊥ ) speckles cases. The components of DB are plotted for comparison (thin lines on the right
column). We have used the parameters of Refs. [57, 58] and Fig. 4.

VIII. ABOUT THE 3D MOBILITY EDGE

The self-consistent approach used above is expected to
fairly describe the quantum transport properties [62, 75,
80]. It gives some quantitative estimates consistent with
numerical calculations [124] and experimental data [56,
125]. It however has two main flaws.

On the one hand, it predicts that, just below the mo-
bility edge, the localization length diverges as Lu

loc
(E) ∝

(Ec − E)−ν with ν = 1 and, just above the mobil-
ity edge Ec, the corrected diffusion tensor increases as
Du

∗ (E) ∝ (E − Ec)
s with s = 1. Those values of the

critical exponents ν and s are consistent with the predic-
tion s = ν(d− 2) of the scaling theory [23, 126] and they
are independent of the choice of cut-off that we made.
However, it is known from advanced numerical calcula-
tions on the disordered tight-binding model of the An-

derson model [127, 128] and from experiments [52] that
they are not correct. The correct value of the critical
exponents in 3D is ν = s = 1.58 ± 0.01 [127, 128]. In
order to reproduce this value, it seems necessary to take
into account the fractal nature of the wave functions at
the critical point [129], which is beyond the scope of the
self-consistent theory of AL.

On the other hand, in contrast to critical exponents,
the location of the critical region (mobility edge, Ec) is
a non-universal quantity and should be determined from
microscopic theory. In this respect, the on-shell approx-
imation is questionnable because it neglects the strong
modification of the spectral function induced by the dis-
order. Including this effect is possible within the self-
consistent theory and we discuss below a new method to
do it.
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A. Energy renormalization

As discussed above, the main failure of the on-shell ap-
proximation is that it completely neglects the structure
of the disorder-dependent spectral function, which may
renormalize energies, and thus strongly affect the value
of Ec. In order to improve the method, one could in prin-
ciple use the more sophisticated approach of Ref. [124],
which do incorporate the spectral function, and provides
values of Ec in agreement with numerical calculations in
the Anderson model. For continuous disorder, one may
rely on the approach of Refs. [60, 64], which has been
applied to several standard models of disorder. However,
since we are interested in continuous disordered poten-
tials with fine anisotropic structures, these methods are
hardly practicable. From a numerical point of view, es-
timates of necessary ressources seem out of present-day
possibilities. In order to overcome this issue, we have
proposed in Ref. [79] an alternative method based on the
assumption that the leading term missing in the on-shell
approximation is the real part of the self energy,

Σ′(E,k) ≡ P

∫

dk′

(2π)d
C̃(k− k′)

E − ǫk′
, (89)

where P is the Cauchy principal value, see Eq. (43).
This term renormalizes the energies: A quasi-particle of
momentum k has an energy E, solution of E − ǫ(k) −
Σ′(E,k) = 0. Here, we incorporate Σ′(E,k) into the
theory self-consistently and by averaging, in first approx-
imation, its k-angle dependence. It amounts to replace
the on-shell prescription by ǫ(k) = E′ ≡ E −∆(E) with

∆(E) ≡ 1

4π

∫

ǫ(k)=E−∆(E)

dΩ
k̂
Σ′(E,k). (90)

Within this approach, all previous quantities are now re-
garded as functions of E′ instead of E. It does not change
the overall energy dependence of the quantities discussed
above, but may be important for direct comparison to
energy-resolved experimental measurements. In the fol-
lowing we concentrate on the 3D mobility edge Ec. It
is the solution of Ec − ∆(Ec) = E′

c, where E′
c is deter-

mined using the on-shell approach. The above equation
is solved self-consistently for Ec, and ∆ can be regarded
as an energy shift.

B. Three-dimensional, isotropic disorder

In order to validate our approach, we first consider 3D
correlated disorder with an isotropic correlation function.
In this case, other methods, such as the self-consistent
Born approximation (SCBA), can be used to calculate
the self-energy [60, 64] hence providing a test-bed of our
approach. For a speckle disorder obtained inside an inte-
grating sphere lit with a laser beam, the real-space cor-
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Figure 18. (Color online) Comparison of the mobility edge
as calculated with the SCBA method (the full black squares
are the results obtained by A. Yedjour and B. van Tiggelen in
Ref. [64], that we reproduce here), with the on-shell method
(E′

c, red crosses) and with the renormalized self-consistent
approach (corrected Ec, thick blue circles) mobility edges, for
an isotropic 3D speckle potential. When comparing to Fig. 8
of Ref. [64], note that in Ref. [64] the reference of energy
is the minimum value of the disorder and that we have the
correspondences Eξ = Eσ/2 and U = V 2

R .

relation function reads [62, 64]

C(r) = V 2
R

sin (|r|/σ)2

(|r|/σ)2
, (91)

with σ the correlation length. The associated power spec-
trum (see appendix B) is isotropic and bears the same
infrared divergence as the anisotropic models of 3D disor-
der considered in this work: C̃(k) ∝ 1/|k| when |k| → 0.
It is therefore a relevant model for comparison. Fig-
ure 18 shows the on-shell mobility edge E′

c calculated as
in Sec. VIIC (see also Ref. [62]), the true mobility edge
Ec calculated by our method [self-consistent theory with
renormalization of the energy, such that Ec is the solution
of Ec − Σ′(Ec, kE′

c
) = E′

c], and the mobility edge found
using the self-consistent Born approximation in Ref. [64].
As it is clearly seen in Fig. 18, the disorder-induced modi-
fication of the spectral function plays a major role for the
prediction of the mobility edge. While the on-shell mo-
bility edge, E′

c, is positive and increases with energy, the
corrected mobility edge, Ec, as calculated either by the
method of Ref. [64] or by our self-consistent approach
with renormalization of energies, is negative and mainly
decreases with E. In addition, we find that the renormal-
ized self-consistent approach predicts values of Ec in very
good agreement (within 5− 7%) with those of Ref. [64].

C. Three-dimensional disorder with structured
correlations

These results support our method to estimate Ec,
which we now apply to anisotropic disorder in the single-
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Figure 20. (color online) On-shell (E′
c) and corrected (Ec) mo-

bility edges versus the disorder amplitude VR for the single-,
incoherent- and coherent-speckles cases and for the parame-
ters of Fig. 4.

speckle, incoherent-speckles and coherent-speckles con-
figurations. The mobility edge is found by searching the
root of the self-consistent equation (90). Note that the
averaging of the angular dependence of Σ′ in Eq. (90)

is justified a posteriori by the weak k̂-angle variations
of Σ′ found around its mean value at Ec (with standard
deviations less than 10 − 15%). This is illustrated in
Fig. 19 which presents the angular variations obtained
numerically in the calculation of ∆(Ec) in the single and
coherent-speckles cases, for typical values of VR.

The on-shell (E′
c) and renormalized (Ec) mobility

edges for the three anisotropic models of disorder are
shown in Fig. 20. As for isotropic disorder, it is eye-

catching that the shift of the energy states completely
changes the behavior of the mobility edge. While the
on-shell mobility edge, E′

c, is positive and increases with
VR, we find that the renormalized mobility edge, Ec, is
negative and decreases with VR. For VR . Eσ⊥

, this be-
havior is qualitatively similar to that obtained in Fig. 18
(see also Ref. [64]). For larger values of VR, Ec further
decreases, consistently with the idea that it should ap-
proach the percolation threshold deep in the classical dis-
order regime (VR ≫ Eσ⊥

) [130].

IX. CONCLUSIONS

Disordered potentials with finite-range correlations are
often characterized by a counter-intuitive and interesting
behaviour [25, 28–30, 32, 79]. These are directly related
to the microscopic statistical properties of the potential,
hallmarked by the disorder correlation function. In this
paper we have focused on anisotropy effects in 2D and 3D
correlated disorder. We have quantitatively studied the
transport and localization of matter waves by using per-
turbative transport theory [81] and a standard on-shell
self-consistent approach [75]. The latter, first pioneered
by Vollhardt andWölfe [110, 114], remains the most pow-
erful, quantitative, microscopic approach to Anderson lo-
calization in dimension higher than one (d > 2), in spite
of the unavoidable problem of describing the physics in-
side the critical region in d > 2. Within this approach,
we have characterized incoherent diffusion, quantum cor-
rected diffusion and localization tensors versus the parti-
cle energy. We have found rich diffusion and localization
properties. A striking result is that weak structured cor-
relations can induce strong anisotropy effects. We have
supported the general theory with specific examples dis-
cussing speckle potentials in 2D and 3D.
2D configuration – In the 2D case, we have considered

an anisotropic Gaussian correlation function as used in
Refs. [53, 54]. The energy-dependences of relevant quan-
tities are studied: For E ≪ Eσ⊥

, in the white-noise limit,
we find τE,k̂ ∝ 1 for the scattering time and DB ∝ E for

the Boltzmann diffusion tensor, which are both isotropic.
For E ≫ Eσ⊥

, we find τE,k̂ ∝
√
E and DB ∝ E5/2. As

a general rule, the anisotropy of the disorder (ξ), of the
scattering time (ξs) and of Boltzmann diffusion (ξB) are
all different. The scattering time shows an inversion of
anisotropy from ξs > 1 (for ξ > 1) at low energy to
ξs = 1/ξ (< 1) at high energy. In contrast, the trans-
port anisotropy is always ξB > 1 (for ξ > 1) but shows a
strongly nonmonotonic behaviour as a function of energy
with a marked maximum at E ∼ Eσ⊥

. The anisotropy of
localization is simply the square root of that of transport.
For typical experimental parameters, we found that it is
very small in observable regimes, except for very strongly
anisotropic disorder. So far, experiments have only stud-
ied the classical regime [53, 54] and our study offers scope
for future studies of quantum transport and localization
in 2D speckle potentials.
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3D configurations – In the 3D case we have discussed
two configurations recently used to study Anderson lo-
calization (AL) of matter waves [57, 58]. The energy
dependence of relevant quantities are the following: For
E ≪ Eσ⊥

, we find τE,k̂ ∝ 1 and is slightly anisotropic,

and DB ∝ E and is significantly anisotropic, which is due
to anisotropic suppression of the white-noise limit in the
models we used. For E ≫ Eσ⊥

, we find τE,k̂ ∝
√
E

and DB ∝ E5/2, both being anisotropic. Again, the
anisotropies of the different quantities are all different.
In the single-speckle case, we found almost constant
anisotropy factors (Dz

∗/D
x,y
∗ ≃ 10 and Lz

loc/L
x,y
loc ≃ 3.2),

and experimental data can be compared to these pre-
dictions almost independently of the energy distribution.
Although no precise value has been extracted from the
experiment of Ref. [57], the data indicate significantly
larger anisotropy. Further analysis would be required to
clarify the origin of such discrepancy. In the incoherent-
speckles case we also found almost constant anisotropy

factors (DX,Z
∗ /DY

∗ ≃ 1.8 and Lz
loc/L

x,y
loc ≃ 1.3). In the

coherent-speckles case, bumps in the disorder power spec-
trum induce a strong inversion of anisotropy as a function
of energy. The anisotropy factor measured in Ref. [58]
was shown to be in fair agreement with the theory. The
inversion of the transport anisotropy was however not ob-
served because the images were taken in the (y, z) plane.
It only gave access to Dy = DY and Dz = (DX+DZ)/2,
which do not show the inversion. In order to observe it, it
is required to image the atoms along the transport eige-
naxes and to tune the balance between the populations
of low- and high-energy states.

Mobility edge in 3D – We have further studied the
behaviour of the 3D mobility edge. To do so, we have
extended the on-shell approach and proposed a way to
renormalize energies. We have found a striking agree-
ment of our method with the more involved method
based on SCBA developed in Ref [64] for isotropic dis-
order. The effect of renormalizing energies does not al-
ter the overall energy dependence of te quantities dis-
cussed above, but may be important for direct com-
parison to energy-resolved experimental measurements.
It is worth discussing our predictions in view of what
has been experimentally achieved so far. Comparing
to Ref. [57] (single-speckle configuration), our calcula-
tions significantly differ from experimental values (e.g. for
VR = 600 nK× kB ≃ 7.1Eσ⊥

, we find Ec ≃ −300 nK× kB

while +900 nK× kB is measured). However, the method
used in Ref. [57] to infer Ec from the localized frac-
tion neglects the disorder-induced distortion of the en-
ergy distribution. It is questionable because the latter is,
in particular, necessary to account for negative energy
states (i.e. below the disorder mean value). Comparing
to Ref. [58] (coherent-speckles configuration), we find that
∆(Ec) as calculated here is of the same order of magni-
tude as the heuristic shift introduced in Ref. [58] (e.g. for
VR = h×680Hz ≃ 0.35Eσ⊥

, we find ∆(Ec)/h = −390Hz
and the heuristic shift is −225Hz). A precise test of
the present theory would however require a reliable de-

termination of the energy distribution in ultracold-atom
experiments, which is not available so far.
Finally, our results and method may provide a guide

line to future experiments investigating the so-far un-
explored effect of anisotropy in quantum transport of
matter waves. In the case of ultracold atoms, to which
our study directly applies, the transport properties can
be probed by direct imaging of the atoms and control
of the energy. The effects discussed in this manuscript
can be expected for other kinds of waves and/or other
models of disorder, and are particularly relevant to new
systems where the disorder correlations can be con-
trolled [10, 57, 58, 67, 131–133].
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Appendix A: Intensity kernel

In this section we show the step-by-step calculation
of the long-time and large-distance limit of the intensity
kernel given by Eqs. (56), (57) and (59) and the diffusion
tensor Eq. (61).
As explained in Sec. II D, the solution of the Bethe-

Salpeter equation (20)-(21) can be obtained by inverting

the operator Λ ≡ 1−G⊗G†U [see Eq. (23)]. To this aim,

we diagonalize the operatorG⊗G†U in the (q, ω) = (0, 0)
limit. We thus solve

∫

dk′

(2π)d
UE
k,k′ fE,k′ φn

E,k′ = λn
Eφ

n
E,k (A1)

where UE
k,k′ = Uk,k′(q = 0, ω = 0, E) and fE,k =

G(E,k)G†(E,k) [see Eq. (25) for q = 0 and ω = 0].

1. Preliminary remark

First, let us notice that we have

fE,k =
τs(E,k)

~
A(E,k), (A2)

where A(E,k) is the spectral function defined in Eq. (12)
and τs(E,k) is the scattering mean free time defined in
Eq. (14).
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2. Properties of Eq. (A1)

The main properties of Eq. (A1) and of its eigenfuc-
tions are listed below:

1. The eigenvalues λn
E and the eigenvectors φn

E,k of

Eq. (A1) are real.

Proof. By multiplying Eq. (A1) by G†(E,k), we obtain

∫

dk′

(2π)d
ME

k,k′ G†(E,k′)φn
E,k′ = λn

E G†(E,k)φn
E,k,

(A3)

where ME
k,k′ ≡ G†(E,k)UE

k,k′ G(E,k′). The latter is

Hermitian since G†(E,k)∗ = G(E,k) and UE
k,k′ is real

and symmetric. Therefore all the eigenvalues λn
E are real.

By taking the complex conjugate of Eq. (A3), dividing
by G(E,k) and comparing it to Eq. (A1), we obtain that
the functions φn

E,k are real.

If UE
k,k′ is positive-definite, the eigenvalues λn

E are
positive. In particular, this is always true in the
Born approximation [134]. When UE

k,k′ is symmet-

ric and positive-definite, we can write it as UE
k,k′ =

∫

dk′′

(2π)d
Qk,k′′dk′′QT

k′′,k′ , where dk′′ > 0 and Q is an or-

thogonal operator. For any vector of components xk,

we have
∫

dk
(2π)d

dk′

(2π)d
xkM

E
k,k′xk′ =

∫

dk
(2π)d

dk|yk|2 > 0,

where yk ≡
∫

dk′

(2π)dG
†(E,k′)xk′Qk′,k. It shows that

ME
k,k′ is positive definite. Its eigenvalues λn

E are therefore
positive.

2. The eigenvectors φn
E,k can be chosen to satisfy the

orthonormalization condition
∫

dk

(2π)d
fE,k φ

n
E,kφ

m
E,k = δn,m. (A4)

Proof. This is an immediate consequence of the fact that,

according to Eq. (A3), the functions G†(E,k)φn
E,k are

eigenfunctions of the Hermitian operator ME
k,k′ .

3. The eigenvectors φn
E,k satisfy the completeness re-

lation

fE,k

∑

n

φn
E,k φ

n
E,k′ = (2π)d δ(k− k′). (A5)

Proof. This follows from the fact that the eigenfuntions

G†(E,k)φn
E,k of the matrixME

k,k′ , Eq. (A3), form a com-
plete basis.

4. The irreducible vertex function UE
k,k′ can be ex-

pressed as

UE
k,k′ =

∑

n

λn
E φn

E,k φ
n
E,k′ . (A6)

Proof. We multiply both terms of Eq. (A1) by φn
E,k′ and

sum over n. Equation (A6) is recovered by using the
completeness relation Eq. (A5).

5. The most important property of Eq. (A1) is that
one of the eigenvalues is

λn=1
E = 1, (A7)

and the corresponding eigenvector is proportional
to the inverse scattering mean free time:

φn=1
E,k =

√
~

[τs(E,k)]−1

√

dk′

(2π)d
A(E,k) [τs(E,k)]−1

. (A8)

Proof. This is a direct consequence of the Ward identity
[110]:

∆Σk(q, ω, E) =

∫

dk′

(2π)d
Uk,k′(q, ω, E)∆Gk(q, ω, E),

(A9)
where ∆Σk(q, ω, E) = Σ(E+,k+) − Σ†(E−,k−) and

∆Gk(q, ω, E) = G(E+,k+) − G†(E−,k−). For (q, ω) =
(0, 0) it becomes

∆Σk(0, 0, E) =

∫

dk′

(2π)d
UE
k,k′ fE,k∆Σk(0, 0, E). (A10)

When comparing Eq. (A10) to Eq. (A1), we obtain that
∆Σk(0, 0, E) = −i~/τs(E,k) is a solution of Eq. (A1)
with unit eigenvalue. Using Eq. (A2) and the or-
thonormalization condition (A4) one then easily finds
Eq. (A8).

6. The eigenfunctions φn
E,k have the parity properties:

φn=1
E,−k = φn=1

E,k (A11)

φn
E,−k = −φn

E,k for n > 1. (A12)

Proof. This is a consequence of the parity of the vertex
UE
k,k′ , in particular, UE

−k,−k′ = UE
k,k′ . Using Eq. (A6)

we have
∑

n λ
n
E φn

E,k φ
n
E,k′ =

∑

n λ
n
E φn

E,−k φ
n
E,−k′ , which

can only be satisfied if the eigenfunctions φn
E,k have a

well defined parity. The eignefunction φn=1
E,k is given by

Eq. (A8) and it is even. In addition, using Eqs. (A2) and
(A8) in the orthonormalization condition (A4), we have
∫

dk
(2π)d

A(E,k)φn
E,k = 0 for n > 1. Which shows that

φn
E,k are odd functions of k.

3. Solution of the BSE

Note first that, if Eq. (A1) could be diagonalized with
all eigenvalues different from one (λn

E 6= 1 for all n), it is
straightforward to show, using Eq. (A5), that we would
have Λ−1

k,k′(0, 0, E) =
∑

n[1/(1 − λn
E)]fkφ

n
kφ

n
k′ . In this

case no diffusion would be observed. As noticed above,



26

however, the conservation of particle number, through
the Ward identity, imposes that there is one eigenvalue
equal to one. As there is no other conserved quantity in
the system we are considering, we can assume that the
eigenvalue λ = 1 is not degenerated and that there is
a finite gap between this eigenvalue and the rest of the
spectrum when (q, ω) → 0 [135, 136]. This suggests the
following ansatz for the solution of the BSE (20)-(21) [see
Eq. (23)], in the small (but non-zero) q and ω limit:

Φk,k′(q, ω, E) =fE,k
φ1
k(q, ω, E)φ1

k′(q, ω, E)

λ(q, ω, E)
fE,k′

+
∑

λn
E
6=1

1

1− λn
E

fE,kφ
n
E,kφ

n
E,k′fE,k′ ,

(A13)

where φ1
k(q, ω, E) and 1 + λ(q, ω, E) are solutions of the

eigenequation
∫

dk′

(2π)d
UE
k,k′ fk(q, ω, E)φ1

k′(q, ω, E)

=
[

1 + λ(q, ω, E)
]

φ1
k(q, ω, E). (A14)

The latter are the first eigenvalue and eigenvector at
small (q, ω), and reduce to Eqs. (A7) and (A8) when
(q, ω) = (0, 0), respectively. We then write fk(q, ω, E) =
fE,k + Fk(q, ω, E) the expansion of fk(q, ω, E). Making
the ansatz φ1

k(q, ω, E) =
∑

n an(q, ω, E)φn
E,k, we find

λ(q, ω, E) =
∑

n

an(q, ω, E)

a1(q, ω, E)

∫

dk

(2π)d
φ0
E,k Fk(q, ω, E)φn

E,k.

(A15)
Finally, the coefficients an(q, ω, E) are found by im-
posing that Eq. (A13) solves the BSE. After some al-
gebra one finds a1(q, ω, E) = 1 and an(q, ω, E) =
λn
E

1−λn
E

∫

dk
(2π)d φ0

E,k Fk(q, ω, E)φn
E,k, for n > 1.

4. On-shell approximation

We now proceed to the on-shell (weak disorder) ap-
proximation, and we neglect the effect of disorder on the
spectral function. Equation (A2) becomes

fE,k ≈
τE,k̂

~
A0(k, E), (A16)

where τE,k̂ is the on-shell scattering mean free time

[τE,k̂ ≡ τs(E, kE k̂)], A0(k, E) = 2π δ[E − ǫ(k)] and ǫ(k)

are, respectively, the disorder-free particle spectral func-
tion and dispersion relation. An explicit calculation of
the small (q, ω) expansion of fk(q, ω, E), gives [137]

Fk(q, ω, E) =

{

iτ2
E,k̂

~2

[

~ω − q · ∇kǫ(k)
]

+
2τ3

E,k̂

~3
~ω
[

q · ∇kǫ(k)
]

−
τ3
E,k̂

~3

[

q · ∇kǫ(k)
]2

}

×A0(k, E) +O(ω2, q3, q2ω). (A17)

Then, making use of the parity properties of the func-
tions φn

E,k̂
[Eqs. (A11) and (A12)], τE,k̂ (even func-

tion of k̂) and ∇kǫ(k) (odd function of k), we fi-

nally obtain φ1
k(q, ω, E)fE,k = 2πγk(q, E)/

√

~〈τ−1

E,k̂
〉

where γk is given by Eq. (60) and λ(q, ω, E) =
2N0(E) [i~ω − ~q·D(E)·q] /~〈τ−1

E,k̂
〉 with the diffusion

tensor of Eq. (61). The solution of the BSE is thus
given by Eq. (56) with Eqs. (57) and (59). Note that
this expression for the diffusion constant is quite general
(only the on-shell approximation has been made), pro-
vided that the full irreducible vertex function U is con-
sidered in the eigenequation (A1). In Sec. VA the Born
and Boltzmann approximations are made U = UB [see
Eq. (62)].

Appendix B: Isotropic disorder

For disorder with isotropic correlation function, we

define, as in Ref. [62], p(k, θ) ≡ C̃(k|k̂ − k̂
′|) =

C̃
(

2k| sin(θ/2)|
)

, where θ is the angle between the unit

vectors k̂ and k̂
′
and k ≡ |k| = |k′|. In this case, rotation

invariance ensures that the eigenproblem (62) is solved
by cylindrical (2D) or spherical (3D) harmonics.

1. Two-dimensional case

In the 2D isotropic case, inserting the cylindrical har-
monics Z0 = 1, Z+1

l = cos(lθ) and Z−1
l = sin(lθ) into

Eq. (62), we find

λl,m
E =

∫ 2π

0
dθ p(kE , θ) cos(lθ)
∫ 2π

0 dθ p(kE , θ)
, (B1)

where l ≥ 0 and m ∈ {−1,+1} are integer numbers. In
particular, we find λl=0

E = 1 in agreement with Eq. (A7).
They are doubly-degenerated for l > 0 and the corre-
sponding normalized eigenfunctions are proportional to
the orthonormal cylindrical harmonics, with the prefac-
tor determined by the normalization condition (A4):

φl=0
E,k̂

= Z0(θ)

√

∫ 2π

0 dθ′ p(kE , θ′)

π
, (B2)

and

φl,±1

E,k̂
= Z±1

l (θ)

√

∫ 2π

0
dθ′ p(kE , θ′)

π
. (B3)

In the calculation of the diffusion constant, it is actually
possible to see that only the first term plus the l = 1
terms (with m = −1,+1) in the summation of the right-
hand side of Eq. (61), contribute to the diffusion coeffi-
cient. More precisely the on-shell scattering mean free
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time τE,k̂ does not depend on k̂, υx (respectively υy) is

a 2π-periodic and even (resp. odd) function of θ, and
Z+1
l (resp. Z+1

l ) is 2π/l-periodic and even (resp. odd).
Therefore, when performing the angular averaging of the
product τE,k̂υiφ

n
E,k̂

in Eq. (61), one finds that only the

term with l = 1 and m = +1 (resp. m = −1) couples to
υx (resp. υy) and contribute to Dx

B (resp. Dy
B). Then,

inserting Eqs. (B1), (B2) and (B3) into Eq. (61), we find

DB(E) =
~E

mN0(E)

1
∫ 2π

0 dθ (1− cos θ) p(kE , θ)
. (B4)

This formula agress with the result of Ref. [62], obtained
by a different approach.

2. Three-dimensional case

In the 3D isotropic case, proceeding in a similar way,
we find that the eigenvalues of Eq. (62) are given by

λl,m
E =

∫ π

0 dθ sin θ p(kE , θ)Pl(cos θ)
∫ π

0 dθ sin θ p(kE , θ)
, (B5)

with the index l = 0, 1, ...,+∞ and m = −l,−l+1, ...,+l
and where Pl(cos θ) are the Legendre polynomials. The
eigenvalues are (2l+1)-degenerated and the correspond-
ing normalized eigenfunctions are propotional to or-
thonormal spherical harmonics, with the prefactor de-
termined by the normalization condition (A4):

φl,m

E,k̂
= Y m

l (θ, φ)

√

2π

∫ π

0

dθ′ sin θ′ p(kE , θ′), (B6)

In the calculation of the diffusion constant, using the
same type of symmetry arguments as in the 2D case, we
find that only the l = 1 (with m = −1, 0, 1) terms couple
to υ and contribute in the summation of Eq. (61). We
thus find

DB(E) =
2

3π

~E

mN0(E)

1
∫ π

0
dθ sin θ

(

1− cos θ
)

p(kE , θ)
,

(B7)
which agrees with the expression found in Ref. [62].

3. Three-dimensional isotropic speckle

A simple model of 3D speckle with isotropic correlation
properties, is found when considering the light pattern
obtained inside an integrating sphere lit by a laser beam
of wavevector kL. The real-space correlation function is
given in Eq. (91) and the associated power spectrum

C̃(k) =
V 2

R
π2σ2

|k| Θ(2σ−1 − |k|) (B8)

is isotropic. Although this isotropic model is unrealistic
from an experimental point of view, it is useful here in
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Figure 21. (Color online) Isotropic 3D speckle. Eigenvalues
of Eq. (62) (top row) for the isotropic 3D speckle with power
spectrum given by Eq. (B8). Topology of the main eigenvec-
tors φn

E,k̂
contributing to Dx

B (bottom row), Dy
B (2nd row) and

Dz
B (3rd row) [with the parametrization k̂ = (k̂x, k̂y , k̂z) ≡

(sin θ cosφ, sin θ sinφ, cos θ)], the red lines locate the nodal
lines. From left to right E = 6.3×10−3Eσ, E = 6.3×10−1Eσ

and E = 63Eσ.

two respects. First, it bears the same divergence as the
anisotropic 3D models of disorder considered in Sec. III:
C̃(k) ∝ 1/|k| when |k| → 0. Second, several proper-
ties of this model are analytical and known [61, 62], and
therefore provides a test our numerical methods.
As done previously, for the diagonalization of the inte-

gral operator (62) we use 27 × 27 points regularly spaced
on the k-space shell |k| = kE . Some eigenfunctions and
eigenvalues of Eq. (62) are presented in Fig. 21. We in-
deed find spherical harmonics [see Eq. (B6)], and the
eigenvalues λn

E agree well with theory [Eq. (B5) with

C̃ given by Eq. (B8), not shown on the figure]. We
further incoporate these results in Eq. (61). Figure 22
presents the numerical results for the Boltzmann diffu-
sion constant (red dots) which agree very well with the
analytic formula (solid black line) found when incorpo-
rating Eq. (B8) into Eq. (B7). Note that we recover the
same asymptotic behaviours as for our anisotropic cases:
DB(E) ∝ E for E/Eσ < 1/2 and DB(E) ∝ E5/2 for
E/Eσ ≥ 1/2. In particular, those tests show that the
discretization used here correctly treats the |k| → 0 di-
vergence.

Appendix C: Conductivity

1. Einstein relation

As presented in Sec. II E, we expect σ(ω = 0) ∝ D in
the linear response regime. Here we calculate σB(ω = 0)
in the Boltzmann approximation and verify this relation
explicitly, which enables us to find the proportionality
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Figure 22. (Color online) Boltzmann diffusion coefficient
for the isotropic 3D speckle configuration of power spectrum
given by Eq. (B8). The solid black line is the theoretical
prediction, red dots are numerical results.

factor in Eq. (34).

Let us first rewrite the Boltzmann diffusion tensor as

Di,j
B (E) =

1

~N0(E)

〈

τE,k̂viJk,j

〉

, (C1)

where Jk is the renormalized current vertex :

Jk

~
= υ +

2π

~

∑

λn
E
6=1

λn
E

1− λn
E

〈

τ
E,k̂

′υ
′φn

E,k̂
′

〉

φn
E,k̂

. (C2)

We want to calculate the conductivity σB in the ladder
approximation. We have to evaluate

σB =
υ υ

+
υ υ

′
Γ (C3)

where Γ is defined in Eq. (55). It reads

σi,j
B (E) =

∫

dk

(2π)d
vifE,kvj + (C4)

∫

dk

(2π)d
dk′

(2π)d
vifE,kΓk,k′(0, 0, E)fE,k′v′j .

As Γk,k′(0, 0, E) =
∑

λn
E
6=1

λn
E

1−λn
E

φn
E,k̂

φn
E,k̂

′ [138], and

fE,k ≃ τE,k̂A0(E,k)/~, one easily finds

σi,j
B (E) =

2π

~

{

〈

τE,k̂vivj

〉

+
2π

~
(C5)

×
∑

λn
E
6=1

λn
E

1− λn
E

〈

τE,k̂viφ
n
E,k̂

〉 〈

τE,k̂vjφ
n
E,k̂

〉

}

.

Therefore, we have σB = 2πN0(E)DB/~. We have thus
verified Einstein’s relation for the classical dc conductiv-
ity in anistropic disorder.

2. Current vertex renormalization

The DC conductivity σB in the Boltzmann approxima-
tion reads (see appendix C 1)

σi,j
B
(E) =

2π

~

〈

τE,k̂υi
Jk,j
~

〉

, (C6)

where Jk, the renormalized vertex function, is given by
Eq. (C2). Diagrammatically we can absorb this renor-
malization in one of the vertices as shown in Eq. (C7).
This is a standard procedure for anisotropic scattering,
which is presented for example in Ref. [6].

υ
+

υ
Γ =

Jk/~
(C7)

3. Weak-localization correction

a. The cooperon

We calculate the bare cooperon correction, with renormalized current vertices, Diag. (68) translates into

∆σi,j
(X)(ω,E) =

∫

dk

(2π)d
dk′

(2π)d
Jk,i
~

fE,kXk,k′(0, ω, E)fE,k′

Jk′,j

~
. (C8)

Considering that the dominant contribution in the integral comes from Q ≃ k + k′ ∼ 0 [see Eq (73)], and that
f2
E,k ∼ 2(τE,k̂/~)

3A0(E,k) in the on-shell approximation [139], we get

∆σi,j
(X)(ω,E) = − 2

~N0(E)

〈

Jk,iJk,j
~2

τE,k̂

〉
∫

dQ

(2π)d
1

−i~ω + ~Q ·DB(E) ·Q . (C9)
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b. Hikami contributions

We now calculate the Hikami corrections [see Diags. (69) and (70)]

∆σi,j
(H1)

(ω,E) =

∫

dk

(2π)d
dk′

(2π)d
dk′′

(2π)d
Jk,i
~

fE,kUBk,k′G(E,k′′)X k+k′′

2 ,k′+ k′′−k
2

(k′′−k, ω, E)G(E,k′+k′′−k)fE,k′

Jk′,j

~
.

(C10)
In the same way as before, and using the on-shell approximation formulas [139] G(E,k)fE,k ∼ −i(τE,k̂/~)

2A0(E,k)

and G†(E,k)fE,k ∼ i(τE,k̂/~)
2A0(E,k), we get ∆σ(H1) ≃ ∆σ(H2) and

∆σi,j
(H)(ω,E) = ∆σi,j

(H1)
(ω,E)+∆σi,j

(H2)
(ω,E) = (C11)

2

~N0(E)

〈Jk,i
~

τE,k̂

∫

dk′

(2π)d
UBk,k′fE,k′

Jk′,j

~

〉

∫

dQ

(2π)d
1

−i~ω + ~Q ·DB(E) ·Q .

c. Corrected conductivity tensor

We now consider the quantity Jk −
∫

dk′

(2π)d
UBk,k′f

E,k̂
′J

k̂
′ . Using the relation UBk,k′ =

∑

λn
E
6=1 λ

n
Eφ

n
E,kφ

n
E,k′ , and

the parities of the functions φn
E,k̂

[see Eqs. (A11) and (A12)], one can show that

Jk −
∫

dk′

(2π)d
UBk,k′fE,k′Jk′ = ~υ. (C12)

Therefore the Hikami contributions renormalize one of the Jk/~ back to the bare vertex υ, and we have

∆σi,j(ω,E) = ∆σi,j
(X)(ω,E) + ∆σi,j

(H)(ω,E) = − 2

~N0(E)

〈Jk,i
~

vjτE,k̂

〉

∫

dQ

(2π)d
1

−i~ω + ~Q ·DB(E) ·Q , (C13)

which gives the final expression (74).
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