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We present a method for automatic target detection based on the iterative interplay between an active polarimetric
imager with adaptive capabilities and a snake-based image segmentation algorithm. It successfully addresses the
difficult situations where the target and the background differ only by their polarimetric properties. This method
illustrates the benefits of integrating digital processing algorithms at the heart of the image acquisition process rather
than using them only for postprocessing. © 2012 Optical Society of America
OCIS codes: 110.5405, 100.0100.

Active polarimetric imaging is a powerful tool for reveal-
ing contrasts that do not appear in standard intensity
images and has been proven useful in such domains as
remote sensing or biomedical imaging [1,2]. Extensive
research has been conducted to maximize the contrast
between an object of interest and a background in target
detection applications [3–6]. Most of these studies
assumed that the polarimetric properties (i.e., the Muel-
ler matrices) of the objects in the scene were known
beforehand. This is obviously a limitation to their prac-
tical use. The purpose of the present Letter is to propose
a solution to this issue that consists in performing
iteratively image segmentation and contrast optimiza-
tion. It is based on the iterative operation of an active
polarimetric imager whose illumination and analysis po-
larization states can be anywhere on the Poincaré sphere
and of a fast and unsupervised image segmentation
algorithm. The benefits of this approach will be demon-
strated on real-world images in difficult situations where
target and background differ only by polarimetric
properties.
Let us consider an active polarimetric imaging system

that illuminates the scene with light whose polarization
state is defined by a Stokes vector S and is produced by a
polarization state generator (PSG) [7]. The polarimetric
properties of a region of the scene corresponding to a
pixel in the image is characterized by its Mueller matrix
M . The Stokes vector of the light scattered by this region
is S0 � MS. It is analyzed by a polarization state analyzer
(PSA), which is a generalized polarizer allowing selecting
photons characterized by their polarization state T. The
number of photoelectrons measured at a pixel of the sen-
sor is

i �
ηI0

2
TTMS; (1)

where the superscript T denotes matrix transposition. In
this equation, S and T are unit intensity, purely polarized
Stokes vectors, I0 is a number of photons, and η is the
conversion efficiency between photons and electrons.
By changing the PSG and PSA states, it is possible to
optimize the contrast between a target of interest and
the background in the image [3,6]. However, this

optimization assumes that the Mueller matrices of the re-
gions of interest are known, and the question remains of
what can be done if these matrices are unknown.

A first solution would be to measure the full Mueller
image of the scene, which consists in acquiring 16 inten-
sity images with 16 different couples of PSG/PSA states.
An image segmentation algorithm would then be used to
automatically extract the shape of the target. However,
acquisition of 16 images with sufficient signal-to-noise
ratio (SNR) may require a long time, which can be a
problem in the presence of rapidly evolving scenes.
Furthermore, automatic segmentation algorithms on
high-dimensional, noisy data with strong inhomogene-
ities [6] are prone to errors, such as being stuck in local
maxima of the segmentation criterion.

To solve these issues, we propose an iterative method
based on the acquisition of single images with optimized
contrast [7]. It is illustrated in Fig. 1. The first step con-
sists in acquiring the full Mueller image in t0 seconds. The
integration time of each images is thus about t0 ∕ 16, and
they consequently have a low SNR. We then use a fast
and unsupervised segmentation algorithm adapted to
such noisy 16-dimensional (16D) images (described be-
low) that gives a first estimation of the target shape. Be-
cause of low SNR and inhomogeneities in some
components, this shape estimation is not perfect. How-
ever, from this first segmentation, it is possible to esti-
mate the polarimetric properties of the pixels inside
and outside the segmented region (object and back-
ground). One estimates the average Mueller matrix

M̄u �
1

NΩu

X

k∈Ωu

Mk
u (2)

with u � fin; outg corresponding to pixels inside or out-
side the segmentation boundaries, Ωu the set containing
the NΩu

pixels in the region u, andMk
u the Mueller matrix

of the pixel k in the region u. The spatial fluctuations are
characterized by the covariance matrix given by

Gu �
1

NΩu

X

k∈Ωu

�VMk
u
− VM̄u

��VMk
u
− VM̄u

�T ; (3)

with VM the vectorized Mueller matrix M .
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Using these estimates, the PSG and PSA states S1 and
T1 that maximize the contrast between the two regions
are determined by optimizing the Fisher ratio [6]:

F �
�x̄in − x̄out�

2

var�xin� � var�xout�
; (4)

with x̄u � TTM̄uS and var�xu� � �T ⊗ S�TGu�T ⊗ S�
(the symbol ⊗ denotes the Kronecker product). These
optimal states are implemented on the imaging system
to acquire a single image with an integration time equal
to t0 and thus a better SNR. This image is then segmented
in order to refine the shape of the target, which allows
one to obtain a better estimation of the polarimetric prop-
erties of the target and the background (Mu, Gu,
u ∈ fin; outg) and thus a better estimation of the optimal
PSG/PSA states S2 and T2. These new states can be im-
plemented on the imaging system to acquire a new image,
which is segmented to further refine the PSG/PSA estima-
tion. This process of acquisition/segmentation/contrast
optimization can be iterated until the contrast between
the target and the background is sufficient. The number
of iterations will depend on the complexity of the scene
and on the difference of polarimetric properties between
the target and the background. However, since all the
steps but the first one are based on single image acquisi-
tions, it is much more robust to object movements in
the scene.
One of the key elements of this method is the segmen-

tation algorithm. First, it should be fast and not require
any intervention from the user. It should also be adapted
to both one-dimensional (1D) and 16D noisy intensity
images whose fluctuations may not be correctly modeled
with standard probabilities laws, due notably to illumina-
tion inhomogeneities and textures in the image. We thus
used the polygonal active contour (snake) proposed in

[8,9], initially developed for 1D images and that has been
generalized in this Letter to multidimensional images.
This algorithm relies on a minimum description length
(MDL) criterion, based on a nonparametric description
of the gray level fluctuations that are modeled with
K -bin histograms. Both the number and location of the
nodes of the polygonal contour used to separate the ob-
ject from the background are estimated iteratively via the
optimization of the MDL criterion, which does not
contain any parameter to be tuned by the user.

The most time-consuming step in this algorithm is the
calculus of the K statistics needed to update the height of
the K bins of the histogram after each deformation of the
contour [9]. Fast computation of these statistics are ob-
tained with summing K precomputed images along the
contour of the object, and a number of bins K between
8 and 16 usually yields a good trade-off between compu-
tation time and discrimination capability. The computa-
tion time of this operation can be significantly reduced by
vectorizing it with the streaming single instruction multi-
ple data (SIMD) extensions (SSEs). As described in [9],
for images with a pixel number N ≤ 32767, it allows com-
puting S � 8 statistics simultaneously with only one SSE
summation. Assuming that the gray level values of the 16
Mueller matrix components are independent, the gener-
alization of the 1D MDL criterion to 16D is straightfor-
ward [8], the data adequacy term in the MDL criterion
being simply the sum of the data adequacy terms for each
of the 16 components. It is thus necessary to calculate
16K statistics, which implies k SSE summations, where
k is the smallest integer not less than �16K� ∕ S. Since in
the considered images N ≤ 32767, S � 8, and thus only
k � 2K SSE summations are necessary, allowing to keep
a reduced computation time even when dealing with 16D
intensity images. For example, a 152 × 162 pixel image
(see Fig. 3 below) is segmented with K � 8 in 4 ms
for 1D images and less than 20 ms for 16D images on
a 2.5 GHz processor laptop.

Let us now apply this method on a real-world image.
The scheme of the scene is represented in Fig. 2(a).
The target is composed of metallic plates and the back-
ground of white paper. Both are placed behind a piece of
diffusing paper and a scattering birefringent medium;
they cannot be discriminated on a standard intensity im-
age [see Fig. 2(b)]. We first acquire full Mueller data with
a short integration time of t0 ∕ 16 � 150 μs for each of the
16 images, and we apply the 16D segmentation algorithm
to extract a first estimated shape of the target (see Fig. 3,
Step 1). Even if the contour encloses the target, its shape
is not well defined due to the presence of noise and spa-
tial fluctuations of the polarimetric properties in the

Fig. 1. (Color online) Different steps to detect and recognize a
target from a background.

Fig. 2. (Color online) (a) Scheme of the scene. (b) Intensity
image.
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scene. We extract the polarimetric properties of the re-
gions inside and outside this approximate contour. We
check that the average Mueller matrices are physically
realizable, and we compute the PSG/PSA states maximiz-
ing the contrast criterion in Eq. (4). The obtained optimal
states are f�53°;−5°�; �36°;−5°�g, where each state �α; ε�
is defined by its azimuth α and its ellipticity ε. By imple-
menting these polarization states on the imaging system,
we acquire the image presented in Fig. 3 (Step 2). In this
optimized intensity image, the contrast between the tar-
get and the background has been significantly improved.
Using this image for a new 1D segmentation step, we ob-
tain an improvement of the shape estimation. However,
as some fluctuations remain in the images, the shape es-
timation has still some defects. The new optimal PSG/
PSA states f�5°;−1°�; �35°; 7°�g estimated from this seg-
mentation are then implemented on the imager, leading
to the image in Fig. 3 (Step 3), where we observe that the
contrast is sufficiently improved to yield a precise esti-
mation of the object shape. In this case, a correct shape
estimation is finally recovered in only three iterations, for
a global computation time of about 30 ms. The main ben-
efit of this method is that each image acquisition has a

duration of only t0 (2.4 ms in the present case). A full
Mueller image with sufficient SNR for each channel
would require a total acquisition time of 16t0 (t0 for each
channel), and the scene should not evolve during this
time interval. This method is thus particularly beneficial
for observing rapidly evolving scene, which is a difficult
problem for polarization imaging.

The improvement of separability between the estimated
target and the background throughout the process can be
quantified by computing the Fisher ratio [Eq. (4)] at each
step of the process. For Step 1, since the image is multi-
dimensional, the Fisher ratios obtained for each of the
16 channels are summed (this is only an approximation
since it assumes that the perturbations in each image
are uncorrelated), and for the subsequent steps, theFisher
ratio is directly computed on the optimized intensity im-
age. The values of the Fisher ratio obtained at the end
of the different steps are given in Fig. 3. We can see that
they constantly increase during the process.

We have presented a methodology for automatic target
detection based on the iterative interplay between an
active polarimetric imager with adaptive capabilities
and a snake-based image segmentation algorithm. It does
not require prior knowledge of the polarimetric proper-
ties of the scene and provides a scalar image with optimal
contrast that can be further exploited by a human obser-
ver. These results illustrate the benefits of integrating
digital processing algorithms at the heart of the image
acquisition process rather than using them only for
postprocessing.
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Fig. 3. (a) Data used for segmentation (152 × 162 pixel
images). (b) Segmentation results (K � 8). tc denotes computa-
tion time.
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