
HAL Id: hal-00747189
https://hal-iogs.archives-ouvertes.fr/hal-00747189

Submitted on 30 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

General State Contrast Imaging : an optimized
polarimetric imaging modality insensitive to spatial

intensity fluctuations
Guillaume Anna, François Goudail, Daniel Dolfi

To cite this version:
Guillaume Anna, François Goudail, Daniel Dolfi. General State Contrast Imaging : an optimized
polarimetric imaging modality insensitive to spatial intensity fluctuations. Journal of the Optical
Society of America B, 2012, 29 (6), pp.892-900. �hal-00747189�

https://hal-iogs.archives-ouvertes.fr/hal-00747189
https://hal.archives-ouvertes.fr


General state contrast imaging: an optimized
polarimetric imaging modality insensitive

to spatial intensity fluctuations

Guillaume Anna,1 Françcois Goudail,1,* and Daniel Dolfi2

1Laboratoire Charles Fabry, UMR 8501, Institut d’Optique, CNRS, University Paris Sud 11, 91127 Palaiseau, France
2Thales Research and Technology–France, RD128, 91767 Palaiseau Cedex, France

*Corresponding author: francois.goudail@institutoptique.fr

Received December 13, 2011; revised January 30, 2012; accepted February 1, 2012;

posted February 2, 2012 (Doc. ID 159887); published May 17, 2012

In active polarization imaging, one frequently needs to be insensitive to noninformative spatial intensity fluctua-
tions. We investigate a way of solving this issue with general state contrast (GSC) imaging. It consists in acquiring
two scalar polarimetric images with optimized illumination and analysis polarization states, then forming a ratio.
We propose a method for maximizing the discrimination ability between a target and a background in GSC images
by determining the optimal illumination and analysis states. A further advantage of this approach is to provide an
objective way of quantifying the performance improvement obtained by increasing the number of degrees of
freedom of a GSC imager. The efficiency of this approach is demonstrated on simulated and real-world
images. © 2012 Optical Society of America

OCIS codes: 110.5405, 100.0100.

1. INTRODUCTION

Polarimetric images are useful for gathering information that

is not visible in intensity images. They have many applications

in machine vision, remote sensing, biomedical imaging, and

industrial control [1–9]. One of the most frequent applications

is target detection, where the goal is to optimize the contrast

between a target of interest and the background. The first so-

lutions to this problem have been obtained in the radar com-

munity [10,11], where systems are intrinsically active and

polarization plays an important role. Then, thanks to techno-

logical progress, several polarimetric contrast optimization

strategies have been designed in the domain of optics [12–17].

One of the main issues in polarimetric target detection is

robustness to noninformative spatial fluctuations, such as in-

tensity fluctuations. Indeed, in some cases, light intensity is

useful for discriminating the regions of interest, but in other

instances, it is not and can create false alarms. In such cases,

one would like to base detection only on purely polarimetric

properties. To respond to this need, different polarimetric

imaging strategies have been designed. In particular, several

decompositions have been proposed to extract purely po-

larimetric properties from measurements [18,19]. However,

the simplest way of suppressing the influence of intensity is

orthogonal state contrast (OSC) imaging [20]. This technique

consists in illuminating the scene with a given polarization

state and in acquiring two intensity images after analyzing

the light parallel and orthogonal to the illumination state.

The OSC image is then obtained as the pixelwise ratio be-

tween the difference and the sum of these two images.

OSC imaging is known as an efficient way to estimate the de-

gree of polarization (DOP) of the light backscattered by the

scene in certain conditions and has been used in several

applications [20–23].

In this paper, we propose a generalization of OSC imaging

that we call general state contrast (GSC) imaging, by allowing

the illumination and analysis states of the two acquired images

to vary independently, and thus to be optimized. It has to be

noted that works have already been done in this direction

[13,16]. It is well known that the main issue in OSC imaging

is noise enhancement, due to the fact that the image is a ratio

of noisy measurements [13,24]. This effect has to be taken into

account in the criterion used for optimizing the illumination

and analysis polarization states. In this paper, we will consider

two commonly encountered noise sources. The first one is

Poisson-distributed shot noise, since well-designed optical

imaging systems using incoherent illumination are ultimately

limited by this type of noise. The second one is spatial fluctua-

tions of the polarimetric properties of the scene itself, which

can be the main source of perturbation in imaging through in-

homogeneously diffusive media. Furthermore, GSC imagers

can have different numbers of degrees of freedom in the illu-

mination and analysis polarization states, but a larger number

of degrees of freedom generally increases complexity and cost

of the imaging system. A further advantage of the proposed

approach is that it defines an objective expression of the im-

age quality in a target detection application, and thus provides

a quantitative way of evaluating the improvement brought by

each extra degree of freedom.

The paper is organized as follows. In Section 2, we define

GSC imaging. In Section 3, we propose an image quality cri-

terion adapted to target detection and use it to optimize GSC

imaging configurations. In Section 4, we apply the proposed

approach to the comparison of different GSC imaging config-

urations with different degrees of freedom. The efficiency of

this method is demonstrated on simulated and real-world

images.
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2. GENERAL STATE CONTRAST IMAGING

In this section, we recall the principle of the basic building

block of any active polarization imager [25], then we present

how it can be used for reducing the sensitivity to intensity fluc-

tuations by computing the GSC image. Let us consider an ac-

tive polarimetric imaging system that illuminates the scene

with light whose polarization state is defined by a Stokes vec-

tor S and is produced by a polarization state generator (PSG)

composed of two liquid crystal variable retarders associated

with a linear polarizer (see Fig. 1). The polarimetric properties

of a region of the scene corresponding to a pixel in the image

are characterized by its Mueller matrix M . The Stokes vector

of the light scattered by this region is S0 � MS. It is analyzed

by a polarization state analyzer (PSA), which is a generalized

polarizer allowing selection of photons characterized by the

Stokes vector T. This PSA is composed of the same optical

elements as the PSG. The number of photoelectrons measured

at a pixel of the sensor is

i � ηI0

2
TTMS; (1)

where the superscript T denotes matrix transposition. In this

equation, S and T are unit intensity, purely polarized Stokes

vectors, I0 is a number of photons, and η is the conversion

efficiency between photons and electrons. It is thus obvious

that by changing the illumination and analysis polarization

states, it is possible to change the intensity coming from

the objects in the scene.

It has been shown that when the polarization contains

relevant information for enhancing the performance of detec-

tion of a single target over a background [26], the best strategy

consists in acquiring a single scalar polarimetric image with

optimal PSG and PSA states [27]. However, this acquisition

method is sensitive to intensity. If this intensity is relevant

for discriminating the target of interest and the background,

it is valuable to use it. However, in many cases intensity fluc-

tuations, for example, due to illumination nonuniformity, are

irrelevant and can even create false alarms. In this case, it is

preferable to base detection only on purely polarimetric infor-

mation that is independent of the illumination. One way of

reaching this objective is to perform two intensity measure-

ments by illuminating the scene with the same linear PSG

state but two orthogonal linear PSA states. One obtains

i∥ �
ηI0

2
STMS and i⊥ � ηI0

2
ST
⊥
MS; (2)

whereM denotes the Mueller matrix associated with a pixel of

the scene and S⊥ the Stokes vector orthogonal to S. One then

computes the OSC image in the following way:

OSC �
i∥ − i⊥

i∥ � i⊥
�

STMS − ST
⊥
MS

STMS� ST
⊥
MS

. (3)

It is obvious that if the Muller matrix of the observed pixel is

multiplied by a coefficient α that remains constant between

the two sequential acquisitions of the image (which means

that the intensity of the light source does not vary temporally),

the OSC does not change. Moreover, it has been shown that if

the Mueller matrixM is a diagonal depolarizer of the form [28]

M �

2

6

6

4

1 0 0 0

0 a 0 0

0 0 a 0

0 0 0 b

3

7

7

5

; (4)

then one has OSC � a, which represents the depolarization

power for linear input states [20,21]. Because of its invariance

to intensity fluctuations and the fact that it estimates the de-

polarizing properties of objects in certain conditions of imag-

ing, this kind of imaging system is of great interest in detection

applications [21–23].

It is possible to increase the degrees of freedom in acquisi-

tion of the OSC while preserving the invariance to intensity.

Indeed, we can assume that in the two acquired images, the

PSG and PSA states can be anywhere on the Poincaré sphere:

Fig. 1. (Color online) Polarimetric imaging setup.
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i1 �
ηI0

2
TT
1
MS1 and i2 �

ηI0

2
TT
2
MS2; (5)

where S1 and S2 are the two PSG states and T1 and T2 the two

PSA states. One then computes the GSC in the following way:

γ�θ� � i1 − i2

i1 � i2
� TT

1
MS1 − TT

2
MS2

TT
1
MS1 � TT

2
MS2

; (6)

where we have denoted as θ � fS1;T1; S2;T2g the set of para-

meters on which the GSC depends. These parameters can

be optimized to maximize some performance criterion. Of

course, the adequate criterion depends on the information

searched in the image. In this paper, we address the problem

of target detection, and it is clear that GSC will be particularly

efficient when, for example, the differences in the polari-

metric properties between the target and the background are

very small. In the following, we will propose a method for op-

timizing GSC imaging in the presence of different noise

sources and demonstrate the improvement brought by this

method compared to conventional OSC imaging on real-world

polarimetric images.

3. GENERALIZED STATE CONTRAST
IMAGING OPTIMIZATION

We consider an imaging system that acquires two polarimetric

images with different PSG and PSA settings:

ik
1
� ηI0

2
TT
1
MkS1 and ik

2
� ηI0

2
TT
2
MkS2; (7)

where the index k denotes the pixel (for simplicity’s sake, we

will use in this paper one-dimensional notation for image co-

ordinates) and Mk denotes the Mueller matrix at pixel k. One

then computes the GSC image as follows:

γk�θ� �
ik
1
− ik

2

ik
1
� ik

2

� TT
1
MkS1 − TT

2
MkS2

TT
1
MkS1 � TT

2
MkS2

. (8)

In practice, the intensity images in Eq. (7) are perturbed by

noise, and the GSC image in Eq. (8) is often too noisy to

be exploited. To reduce these perturbations, one has to esti-

mate intensity as an average over a small neighborhood Ωk of

N pixels around pixel k. The GSC image is then

γk�θ� �

P

n∈Ωk

TT
1
MnS1 −

P

n∈Ωk

TT
2
MnS2

P

n∈Ωk

TT
1
MnS1 �

P

n∈Ωk

TT
2
MnS2

. (9)

It has been shown that in the presence of additive or shot

noise, small neighborhoods of 3 × 3 (N � 9) or 5 × 5

(N � 25) pixels significantly reduce the noise while having

a limited impact on image resolution [24,29]. It can also be

noted that if full spatial resolution is necessary, the averaging

can be made temporally over N successive acquisitions.

Our objective in the following will be to determine the

parameter set θ that optimizes the GSC image. For that pur-

pose, one first has to choose an image quality criterion. After

describing this criterion and practical ways of optimizing it,

we will illustrate the efficiency of GSC in the presence of

two types of noise: Poisson-distributed shot noise and spatial

fluctuations of the Mueller matrix.

A. Definition of the Contrast Criterion: the
Bhattacharyya Distance
We consider that the observed scene is composed of two re-

gions: the target region t and the background b. The objective

is to have good discrimination between these two regions in

the GSC image. We thus have to define a criterion character-

izing the discrimination ability, and the Bhattacharyya dis-

tance has been shown to be an efficient way of doing this [30].

The Bhattacharyya distance is defined as follows. Let us con-

sider two probability density functions (PDFs) Pt�x� and

Pb�x�. In our case, these PDFs correspond to the noise statis-

tics of the pixels in regions t (target) and b (background). The

Bhattacharyya distance between these two sets is defined as

B � − log

�Z

D

�Pt�x�Pb�x��1∕2dx
�

; (10)

with D the definition domain of Pa and Pb. The Bhattacharyya

distance is a scalar value that quantifies the similarity between

the PDFs Pt�x� and Pb�x�. It belongs to the interval �0;�∞�. It
is equal to zero when the PDFs are identical and infinite when

the PDF supports do not overlap. We have to note that in the

following, the Bhattacharrya distance will be applied to GSC

images, and the variable x in Eq. (10) will be related to the

value of the GSC at each pixel of the sensor.

To be efficient, this criterion has to take into account the

relevant sources of fluctuations in the image. The intensity

images in Eq. (7) can be affected by different sources of per-

turbations, such as additive sensor noise, Poisson-distributed

shot noise, and spatial fluctuations of the polarimetric proper-

ties in the scene. These perturbations result in fluctuations of

the GSC image, whose statistics are difficult to express in

closed form. For simplicity’s sake, we will assume that the

PDFs of the GSC in the two regions are Gaussian, defined

by their mean values hγ�θ�iu, where u � ft; bg denotes the re-

gion, and their variances σ2u�θ�. This is clearly an approxima-

tion, but it has been shown that in the presence of low level

additive Gaussian and Poisson noise, the PDF of the GSC is

close to a Gaussian [24,29]. Moreover, it will be observed in

simulated and real images [see Figs. 3(b), 4(b), and 7] that the

histograms of regions of interest are indeed close to Gaussian

curves. Within this hypothesis, the Bhattacharyya distance

has the following expression:

B�θ� � 1

4

�hγ�θ�it − hγ�θ�ib�2
σ2t �θ� � σ2b�θ�

� 1

2
log

�

1

2

�

σt�θ�
σb�θ�

� σb�θ�
σt�θ�

��

;

(11)

with θ � fS1;T1;S2;T2g. The higher the value of B�θ�, the
easier will be the discrimination of the target from theFig. 2. (a) Scheme of the scene, (b) intensity image.

894 J. Opt. Soc. Am. A / Vol. 29, No. 6 / June 2012 Anna et al.



background. Our goal is now to compute the optimal set of

parameters θ that maximizes this criterion.

B. Computational Issue for the Optimization
To perform the search of the set θ that maximizes the

Bhattacharyya distance defined in Eq. (11), one has to take

into account the number of parameters that have to be opti-

mized simultaneously. Indeed, each intensity image depends

on four parameters, e.g., the azimuth and ellipticity of the PSG

and PSA states. Optimizing the two intensity images needed

for GSC calculation thus involves eight parameters, which

is quite large, and it is thus likely that the performance criter-

ion will have local maxima. It is thus necessary to use an algo-

rithm robust to the presence of local maxima. After comparing

different solutions, we have chosen the shuffled complex evo-

lution (SCE-UA) method [31]. This algorithm consists in gen-

erating different sets of illumination and analysis polarization

states and in changing them by using a global evolution frame-

work to finally converge to a parameter set that leads to the

highest value of the Bhattacharyya distance. We have verified

that in our applications, it converges rapidly to the global

maximum researched.

C. Optimization in the Presence of Nonuniform
Illumination Intensity
Our purpose in this section is to study the influence of the

signal to noise ratio of the intensity images involved in

GSC computation on the choice of the optimal PSG and PSA

states. We will assume that the illumination intensity is non-

uniform on the scene and, to simplify the discussion, that the

dominant source of perturbation is Poisson-distributed shot

noise. An approximate closed-form expression of the variance

of the GSC in the presence of Poisson noise has been

determined in [29]

σ2 � �1 − γ2�
N × itot

; (12)

where γ is the true value of the GSC, N the size of the neigh-

borhood on which the GSC is estimated [see Eq. (9)], and itot

the sum of the true values of the two intensity measurements

defined in Eq. (5):

itot � i1 � i2. (13)

It is interesting to notice on Eq. (12) that even if the true value

γ of the GSC does not depend on the intensity (this is precisely

the reason for the choice of this value), that is not the case for

its variance σ2. Indeed, the higher the itot, the lower is this

variance. This phenomenon can be explained by the fact that

the signal to noise ratio in the intensity measurements in-

creases as
�������

itot
p

, which makes the estimation of γ easier. This

observation is critical in the presence of strong nonuniform

illumination. Indeed, it can be preferable to have a lower dif-

ference of GSC mean values between the two regions b and t

with few fluctuations than a higher difference with too strong

fluctuations.

Let us first illustrate this observation on a simulated image.

The scheme of the scene is presented in Fig. 2(a). It is com-

posed of two square pieces of the same material, which con-

stitute the target (t), over a background (b). The average

Mueller matrices of the target and the background are given

in Table 1. For illustration purposes, we have chosen for the

target and the background simple diagonal depolarizer

matrices, which constitute special members of the vast class

of depolarizing Mueller matrices [28]. We simulate a strongly

nonuniform illumination having smooth variations. The image

that would be observed with a standard intensity imager is

represented in Fig. 2(b). We can observe the spatial variation

of the illumination, and we can notice that since the target and

the background have the same intensity reflectivities, they

cannot be discriminated on this image.

Fig. 3. (Color online) (a) GSC image of the scene in Fig. 2 after optimization of D�θ�, (b) PDF of the targets and of the background.

Table 1. Average Mueller Matrices of the
Target (t) and the Background (b)

Mb M t

2

6

6

6

4

1 0 0 0

0 0.80 0 0

0 0 0.84 0

0 0 0 0.60

3

7

7

7

5

2

6

6

6

4

1 0 0 0

0 0.80 0 0

0 0 0.87 0

0 0 0 0.65

3

7

7

7

5
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In order to illustrate the influence of illumination intensity

on noise in the GSC image, we first compute the parameter set

θ that maximizes the following criterion:

D�θ� � �hγ�θ�it − hγ�θ�ib�2. (14)

This criterion is simply a squared difference between the

mean values; it does not take into account the variation of

the noise variance with θ. The pair of PSA and PSG states that

maximizes this criterion is given in Table 2. We can note that

these optimal states do not correspond to the classic OSC,

since the two illumination states are different and the illumi-

nation and analysis states are orthogonal for each acquired

image. We have represented the optimal GSC image in

Fig. 3(a) and the estimated PDFs of the two targets and of

the background in the dark (bottom) part of the scene in

Fig. 3(b). We can see that the average values hγit are the same

on the two targets, but the variances are different. The var-

iance in the dark part of the scene is much larger than that

in the bright region. This result is in agreement with the ex-

pression of the variance in Eq. (12), which shows that the var-

iance is inversely proportional to iav. The difference of

average values between the background and the target is

about 0.12, but the overlap between the PDF of target no. 2

and the background is also very large, which will lead to

detection errors.

Let us now take into account the influence of the noise by

optimizing the Bhattacharyya distance defined in Eq. (11),

with σ2u�θ� expressed in Eq. (12). The optimization is done

in the dark (bottom) part of the image, because it is there that

the separability is the most difficult to obtain. The pair of PSG

and PSA states maximizing this criterion is given in Table 2.

They are circular and thus different from those obtained with

criterionD�θ�. They thus lead to different PDFs for the targets

and the background. The estimated PDFs of the two targets

and of the background in the dark part of the scene are pre-

sented in Fig. 4(b) together with the optimal GSC image in

Fig. 4(a). The difference in average values between the back-

ground and the target is now only 0.05, that is twice less than

in the previous case. However, the discrimination ability is sig-

nificantly better, since the overlap between the histograms of

target no. 2 and of the background is much reduced.

Let us now illustrate this conclusion in a real-world exam-

ple. The background is composed of white paper, and the tar-

get is a piece of translucent adhesive, so the polarimetric

properties of the target and the background are very similar.

The scheme of the scene and the intensity image are given in

Fig. 5. We can see that the target cannot be discriminated from

the background on a standard intensity image. The GSC image

obtained after maximizing D�θ� is presented in Fig. 6(a) and

that obtained by maximizing B�θ� in Fig. 6(b). We observe that

it is easier to detect the target on Fig. 6(b), which corresponds

to an optimization taking into account the dependence of

noise variance with θ. We have represented in Fig. 7 the es-

timated PDFs of the target and the background in these two

images. We can observe that, as in the simulated example, the

difference between the average values hγit and hγib is higher

when we optimizeD�θ�, but the overlap between their PDFs is

high. This overlap is reduced when B�θ� is optimized, even if

the difference of average values has decreased. The conclu-

sions are in agreement with those presented in the simulated

example: optimizing the Bhattacharyya distance enables us to

find a better compromise between average class separation

and noise variance.

In this section, we have analyzed the influence of Poisson

noise on GSC optimization. If the illumination intensity is low

or varies strongly, the variation of noise variance with the

PSG and PSA states must be taken into account, and the

Bhattacharyya distance is an efficient way of doing this.

Furthermore, the optimization of the GSC image has to be

done between the target and the background that are in

the darkest parts of the scene to increase the global discrimi-

nation ability, since this corresponds to the most difficult

Table 2. Optimal States Maximizing the Discrimi-
nation Criteria D�θ� [see Eq. (14)] and B�θ�

[see Eq. (11)]a

Criterion S1 T1 S2 T2

D�θ� (−90°; 0°) (0°; 0°) (−45°; 0°) (45°; 0°)

B�θ� (0°; 45°) (0°;−45°) (0°; 45°) (0°; 45°)
aStates are represented as (α; ε), where α is the azimuth and ε the ellipticity.

Fig. 4. (Color online) (a) GSC image of the scene in Fig. 2 after optimization of D�θ�, (b) PDFs of the targets and of the background.
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case. Finally, it can be noted that the same conclusions would

be reached if additive noise was the dominant source of per-

turbations in intensity images; an approximate expression of

the variance on the GSC induced by additive noise can be

found in [29].

D. Optimization in the Presence of Spatial Fluctuations
of the Polarimetric Properties in the Scene
Let us now consider that the main source of noise disturbing

the image is not linked to detection but to the spatial fluctua-

tions of the polarimetric properties of the scene. In this case

also, it is beneficial to take into account the dependence of the

noise variance on PSG and PSA states. Let us illustrate this

effect in a real-world example. The scene is composed of a

piece of adhesive tape [the target (t)] over a polarizer [the

background (b)], and both are placed behind translucent dif-

fusing papers and a translucent foam-like plastic sheet with

bubbles. It is impossible to discriminate the adhesive tape

on the standard intensity image as presented in Fig. 8(a).

We first optimize the squared difference of average values

D�θ� [see Eq. (14)]. The optimal set of parameters is given

in Table 3, and the corresponding GSC image is presented

in Fig. 9(b). In this image, the target can hardly be

discriminated due to the presence of high fluctuations.

Let us now take into account these fluctuations by optimiz-

ing the Bhattacharyya distance in Eq. (11). Contrary to the

case where only additive or Poisson noises are present, we

could not find any closed-form expression of the variance of

the GSC in the presence of Mueller matrix fluctuations. We

thus choose to estimate the variances σ2u�θ� from training data

corresponding to the two regions of the scene. Letting Ωu be a

set of Nu pixels representative of region u ∈ fb; tg, the value

of the variance in region u of the GSC image is estimated as

σ2u�θ� �
1

Nu

X

k∈Ωu

�γk�θ� − γu�θ��2;

with

γu�θ� �
1

Nu

X

k∈Ωu

γk�θ�.

It can be seen in Table 3 that the set of PSG and PSA states

maximizing the Bhattacharyya distance is different from that

maximizing the squared difference of average values. We can

notice that they are elliptic and nontrivial. The final GSC im-

age is also different (see Fig. 9). It is now much easier to dis-

criminate the target from the background since the variance

of the fluctuations in the image has been reduced. As a con-

clusion, optimization of the PSG and PSA states can lead to

significant improvement of discrimination ability in GSC

images. To obtain this result, it is necessary to use an optimi-

zation criterion that takes into account the variation of the

noise variance as a function of the PSG and PSA states.

4. CHOOSING THE NUMBER OF DEGREES
OF FREEDOM OF A GSC IMAGER

In the previous section, we have assumed that in the imaging

system of Fig. 1, the polarization states of the PSG and the PSA

could vary on the whole Poincaré sphere. This can be realized

experimentally with liquid crystal variable retarders. How-

ever, this equipment is costly, and in many cases, it would

be preferable to use simpler systems, which can be cheaper

and easier to implement. Of course, these simpler systems

have to keep a sufficient level of performance. One of the ad-

vantages of the optimization approach proposed in the pre-

vious section is that it provides a way to objectively

compare the performance of different GSC acquisition setups

with different numbers of degrees of freedom. We will

illustrate this capacity in a real-world imaging example.

Let us consider the five different imaging configurations

summarized in Table 4. In the first four configurations, the

PSG states are identical for the two acquired images

(S1 � S2) and the two PSA states are orthogonal (T1⊥T2).

These two properties make it possible to use a setup using

a Wollaston prism that simultaneously acquires two images

with orthogonal PSA states on two different parts of an ima-

ging sensor [23]. The two intensity images are thus acquired

simultaneously, which is important for visualizing a rapidly

evolving scene.

The difference among the first four configurations is thus

only the number of degrees of freedom available to optimize

the discrimination ability (i.e., the size of the set θ). In config-

uration no. 1, the PSG state is linear with an azimuth of 0° and

the PSA states are linear and orthogonal with azimuths of 0°

and 90°: no degrees of freedom are available. In configuration

no. 2, the PSG has 1 degree of freedom: its azimuth can vary,

while the PSA states are parallel and orthogonal to it. In con-

figuration no. 3, both the azimuth and the ellipticity of the PSG

can be optimized, which increases the number of degrees of

freedom to 2. Finally, in configuration no. 4, the PSG and PSA

states are decoupled: their azimuth and ellipticities can vary

independently, while the two PSA states remain orthogonal.

There are thus 4 degrees of freedom. These four imaging con-

figurations can be implemented with the setup based on a

Wollaston prism described in [23]. One may wonder whether

there is an interest in relaxing the constraints due to this

architecture in order to further increase the discrimination

ability. To answer this question, we consider configuration

no. 5, in which the PSG and PSA states for each intensity

image can be optimized separately and lie anywhere on the

Poincaré sphere, which amounts to having 8 degrees of

freedom.

Fig. 5. (a) Schema of the scene, (b) intensity image.

(a) (b)

Fig. 6. GSC images of the scene in Fig. 5 after optimization of (a)
D�θ�, (b) B�θ�.
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Let us now consider a scene composed of three pieces

of translucent adhesive tape—which will constitute the

targets—over a background composed of a polarizer over

white paper. Both are placed behind a nonuniform birefrin-

gent scattering medium. The scheme of the scene and its

standard intensity image are given in Fig. 10. We can see that

in this image, the targets are not discriminated from the

background.

Fig. 7. (Color online) Estimated PDFs of the target and the background in the images of Fig. 6, obtained after optimization of (a) D�θ�, (b) B�θ�.

Fig. 8. (a) Intensity image of the scene, (b) scheme of the scene.

Table 3. Optimal States Maximizing the Discrimi-
nation Criteria D�θ� [see Eq. (14)] and B�θ�

[see Eq. (11)]

(α; ε) S1 T1 S2 T2

Without noise (5°;−21°) (−60°;−4°) (28°;−11°) (45°;−6°)

With noise (11°;−8°) (37°; 15°) (31°; 6°) (−80°; 7°)

Fig. 9. GSC images of the scene in Fig. 8 after optimization of (a)
D�θ�, (b) B�θ�.

Table 4. GSC Imaging Configurations with Different
Degrees of Freedoma

Configuration

Degrees

of Freedom S1 T1 S2 T2

No. 1 0 α fixed S1 S1 S⊥
1

ε fixed

No. 2 1 α varies S1 S1 S⊥
1

ε fixed

No. 3 2 α varies S1 S1 S⊥
1

ε varies

No. 4 4 α1 varies α2 varies S1 T⊥
1

ε1 varies ε2 varies

No. 5 8 (α1; ε1) (α2; ε2) (α3; ε3) (α4; ε4)
a(α; ε) denotes the azimuth and the ellipticity of the polarization states, and ⊥

denotes the orthogonality of a polarization state with another.
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To compute the optimal states maximizing the contrast in

the five considered configurations, we use a database contain-

ing sets of Mueller matrices associated with the targets and

the background. The optimal images obtained using the differ-

ent imaging configurations are presented, together with the

values of the Bhattacharyya distance, in Fig. 11, and the cor-

responding optimal pairs of PSG/PSA states are presented in

Table 5. We can see that by increasing the number of degrees

of freedom, the discrimination ability is significantly en-

hanced. Indeed, configuration no. 1 yields a poor contrast.

By allowing the azimuth of the PSG to vary in configuration

no. 2, we observe that the azimuth of the optimal PSG state is

quite different from that used in configuration no. 1. The gain

in discrimination ability is significant. If we now use the pos-

sibility of optimizing the ellipticity of the PSG and PSA in sys-

tem no. 3, we observe that the optimal states are close to

circular, which means that some information relevant to dis-

crimination is contained in this polarization state. However,

there remain strong fluctuations. In system no. 4, the PSG

and the PSA are optimized separately, which corresponds

to 4 degrees of freedom. We observe that these new degrees

of freedom enable us to significantly improve the discrimina-

tion ability with respect to system no. 3. It is also interesting to

note that the optimal PSG states are close to those obtained

with system no. 2, while the PSA states are close to those ob-

tained with system no. 3. Finally, in configuration no. 5, where

all the constraints on PSG and PSA are relaxed, we observe

that the optimal states are different from those obtained with

the other configurations, and the value of the Bhattacharyya

distance (B � 18.9) is significantly larger than those obtained

before. The targets are much more easily discriminated from

the background, and the fluctuations are reduced. This exam-

ple allows us to conclude that in certain applications, the full

use of GSC degrees of freedom can help increase the

discrimination ability significantly.

5. CONCLUSION

GSC imaging, as a polarimetric imaging modality, can reveal

contrasts that do not appear in standard intensity images. It

has the further advantage of being insensitive to intensity fluc-

tuations. Its drawback is that since it is a ratio of noisy data,

noise is enhanced in regions with low intensity values. Taking

this fact into account, we have proposed a method for max-

imizing the discrimination ability between a target of interest

and a background by optimizing the illumination and analysis

polarization states. This method makes it possible to deter-

mine the best compromise between class separation and mini-

mization of the fluctuations in the GSC image.

One of the advantages of the proposed approach is that

it allows one to perform an objective comparison of the

performance of GSC configurations with different degrees

of freedom. It is thus possible to evaluate the added value

of each degree of freedom in a given application. We have de-

monstrated the efficiency of this approach in an application

example, where making use of the full set of 8 degrees of free-

dom brings significant improvement in discrimination ability.

Of course, in practice, this gain has to be weighed against the

increasing cost and complexity usually associated with in-

creasing the number of degrees of freedom. However, the

Fig. 10. (a) Intensity image, (b) scheme of the scene.

Fig. 11. Optimal GSC images in the different configurations
presented in Section 4. Btheo and Bexp denote, respectively, the
Bhattacharyya distance computed from the database and the real
images.

Table 5. Optimal States for the GSC Images in the
Different Configurations Presented in Table 4

Configuration S1 T1 S2 T2

No. 1 (0°; 0°) (0°; 0°) (0°; 0°) (90°; 0°)

No. 2 (−69°; 0°) (−69°; 0°) (−69°; 0°) (21°; 0°)

No. 3 (−90°;−39°) (−90°;−39°) (−90°;−39°) (0°; 39°)

No. 4 (64°;−7°) (−20°;−32°) (64°;−7°) (70°; 32°)

No. 5 (49°;−38°) (79°;−32°) (54°; 18°) (57°; 15°)
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approach we propose provides objective elements for this

choice.

This work has many perspectives. It would be interesting to

generalize the method to the discrimination of more than two

regions, as was recently done for scalar polarimetric images

[32], and to investigate adaptive optimization strategies that

would not require prior knowledge about the statistics of

the regions to discriminate.
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