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Abstract: Until now, most studies about polarimetric contrast optimiza-
tion have focused on the discrimination of two regions (a target and a
background). In this paper, we propose a methodology to determine the set
of polarimetric measurements that optimize discrimination of an arbitrary
number of regions with different polarimetric properties. We show on
real world examples that in some situations, a few number of optimized
polarimetric measurements can overcome the performance of full Mueller
matrix imaging.
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24. F. Goudail, P. Ŕefrégier, and G. Delyon, “Bhattacharyya distance as a contrast parameter for statistical processing

of noisy optical images,” J. Opt. Soc. Am. A21, 1231–1240 (2004).
25. T. M. Cover and J. A. Thomas,Elements of Information Theory(John Wiley and Sons, New York, 1991).
26. A. Jain, P. Moulin, M. I. Miller, and K. Ramchandran, “Information-theoretic bounds on target recognition per-

formance based on degraded image data,” IEEE Trans. Pattern Anal. Mach. Intell.24, 1153–1166 (2002).
27. Q. Y. Duan, V. K. Gupta, and S. Sorooshian, “A shuffled complex evolution approach for effective and efficient

global minimization,” J. Optim. Theory Appl.76, 501–521 (1993).

1. Introduction

Active polarimetric imaging systems are useful for gathering information that is not visible on
intensity images, and can be useful in such domains as machine vision, remote sensing, biomed-
ical imaging, and industrial control [1–8]. However, cost, size and technological complexity of
polarimetric imagers depend on the number of images they need to acquire in order to per-
form their task [9, 10]. Acquisition time can also be an issue when observing rapidly evolving
scenes [11]. In this context, a key issue is to evaluate the added value of each acquired image in
order to optimize the compromise between complexity, speed, and efficiency of these systems.

In target detection applications, the relevant criterion for quantifying the efficiency of an
imaging configuration is the contrast (or discrimination ability) between a target and a back-
ground region. Analysis and optimization of the contrast in polarimetric images have been
investigated in the radar [12, 13] and optics [14–16] communities. In particular, in [10], three
different polarization imaging modalities (scalar, Stokes and Mueller) have been compared and
it has been shown that for discriminating two regions, the optimal strategy consists in perform-
ing a single measurement with optimized illumination and analysis polarization states.

Until now, most studies about polarimetric contrast optimization have focused on the dis-
crimination of two regions (a target and a background). In this paper, we address discrimina-
tion of an arbitrary number of regions having different polarimetric properties. This problem
is more complex than two-region discrimination since it involves new degrees of freedom. In
particular, the optimal number of measurements may no longer be equal to one, since several
projections may be needed to optimally discriminate a given number of regions. This incurs
accrued complexity in the expression of the performance criterion (separability measure) and
its optimization. The present study is, to the best of our knowledge, the first one that addresses
these issues theoretically and experimentally.

The paper is organized as follows. In section 2, we define our classification method and il-
lustrate it on full Mueller matrix data. These results will serve as a benchmark for the following
of the study. In section 3, we address the problem of finding the optimal set of polarimetric
measurements when the number of acquisitions is fixed. In particular, we discuss the separabil-
ity criterion and the numerical method to optimize it. We then illustrate our methodology on a
real-world imaging example, and show that in some experimental conditions, a limited number
of projections can yield better discrimination results than full Mueller matrix data.
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Fig. 1. Polarimetric imaging setup

2. Polarimetric imaging and region discrimination

In this section, we present the basic active imaging principle that we will consider, and the
classification algorithm that we will use for multiple target discrimination. We then apply this
approach to the classification of full Mueller matrix data. These results will serve as a bench-
mark for the following of the study. Finally, we discuss the limits and possible improvements
of this approach.

2.1. Polarimetric measurements

We consider an active polarimetric imaging system that illuminates the scene with light coming
from an unpolarized white source. Polarization state in illumination is defined by a Stokes
vectorS generated thanks to a Polarization State Generator (PSG) (see Fig. 1). In the practical
implementation we use, the PSG is composed of two Liquid Crystal Variable Retarders and
one polarizer. The output beam allows illuminating the scene uniformly in polarization and
intensity. The polarimetric properties of a region of the scene corresponding to a pixel in the
image is characterized by its Mueller matrixM. The Stokes vector of the light scattered by this
region isS

′
= MS. It is analyzed by a Polarization State Analyser (PSA), which is a generalized

polarizer whose eigenstate is the Stokes vectorT. As for the PSG, in the experimental setup
we use, the PSA is composed of two Liquid Crystal Variable Retarders and one polarizer. The
number of photoelectrons measured at a pixel of the sensor is:

i =
η I0
2

TTMS (1)

where the superscriptT denotes matrix transposition. In this equation,SandT are unit intensity,
purely polarized Stokes vectors,I0 is a number of photons andη is the conversion efficiency
between photons and electrons. The total field of view of the imager, using a 480×640 CCD
camera, is about 10o. The measurements are done in a spectral band of 10 nm centered on 640
nm and selected thanks to an interference filter.

2.2. Maximum Likelihood (ML) region classification

Our objective in this section is to classify different regions of the scene by using a series of
acquisitions of the type defined in Eq. (1). Let us consider a scene composed of a numberK
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of regions with different polarimetric properties, indexed ask ∈ [1,K] . We assume that we
have a database containing sets of Mueller matrices associated to these different regions. One
acquiresN scalar polarimetric images with N different couples of illumination Stokes vectors
(S = [S1, ...,SN]) and analysis Stokes vectors (T = [T1, ...,TN]). For each pixelp of the scene,
the measures can be gathered in a vectorxp of dimensionN defined as:

xp =




ip
1

ip
2
...
ip
N


 where ip

n = η I0
2 TT

n MpSn (2)

with Mp, the Mueller matrix of the region of the scene corresponding to pixelp and ip
n,n ∈

[1,N], the intensity associated to the pixelp projected on the polarization statesSn andTn.
Each pixel of the scene is thus represented by a point in aN-dimensional space, and our goal is
to discriminate the different regions in this space.

The choice of the classifier depends on the application and on the statistics of the noise
disturbing the images, that can be for example detection noise or spatial fluctuations of the
scene. For the sake of simplicity, we will assume that the sum of these perturbations leads to
Gaussian statistics for the measured data. The Probability Density Function (PDF) associated
with classk is thus:

Pk(x) =
1√

2πdet(Γk)
exp

[
−

1
2
(x−xk)

TΓ−1
k (x−xk)

]
(3)

where det returns the determinant of a square matrix,xk and Γk respectively the mean and
covariance matrix ofx associated to the classk. From this expression of the PDF, it is possible
to define the log-likelihood:

Lk = log[Pk(x)] = −
1
2

log[2πdet(Γk)]−
1
2
(x−xk)

TΓ−1
k (x−xk) (4)

The Maximum Likelihood (ML) classifier consists in deciding that a pixel of the scene belongs
to clasŝk as:

k̂ = arg max
k∈[1,K]

[Lk] (5)

In practice, the mean and covariance matrix of each classk are estimated from a database
composed of setsΩk containingPk training Mueller matrices. For each of these datasets,Pk

values ofxp
k , p ∈ [1,Pk], can be computed as in the Eq. (2). The estimate ofxk and Γk are

obtained by the following formula:

x̂k =
1
Pk

∑
p∈Ωk

xp
k (6)

Γ̂k =
1
Pk

∑
p∈Ωk

(xp
k −xk)(x

p
k −xk)

T (7)

We will now illustrate this classification method on full Mueller matrix data.

2.3. Classification on full Mueller matrix data and discussion

The full Mueller matrix of the scene is obtained by performing 16 projections of the type of
Eq. (1) using different couples of illumination and analysis states. These data are then inverted
to yield an estimate of the Mueller matrix associated with each pixelp of the scene, which
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(a) (b)

Fig. 2.(a) Scheme of the scene.(b) Intensity Image

is thus represented by a vectorxp of dimensionN = 16 (Eq. (2)). The set of illumination and
analysis states is usually chosen to minimize the error propagation during this inversion [17,18].
The Mueller matrix contains all the polarimetric properties of the scene and such data has often
been used for discrimination by applying different methods of classification [19,20].

Let us illustrate our approach on a real Mueller matrix image. We consider a scene composed
of four regions (three regions over a background). The three regions and the background will
be denotedti ,i = {1,2,3} andb in the following and are represented in Fig. 2(a). The intensity
image of the scene is presented in Fig. 2(b). We can see that the four regions cannot be discrimi-
nated on it, since they have similar intensity reflectances. The Mueller matrices and covariances
matrices are estimated from the database and these estimates are used to design a ML classifier
(see Eq. (5)). The classification results are presented in Fig. 3(b). We can see that the different
objects are globally well discriminated, although some errors are present.

Our purpose in the next section will be to compare the results obtained with full Mueller
data to those obtained by using a smaller number of optimized projections. To have a common
reference, we will consider that the total amount of timet0 available to perform the acquisition
is constant. Consequently, the larger the number of projections, the smaller the integration time
for each measurement. For example, for the Mueller matrix acquisition, we have to acquire 16
projections thus the acquisition time ist0/16 for each image. In Fig. 3(a), it is seen that some
Mueller images contain no information useful for discrimination. The time used for acquiring
them would thus have been better spent on other more informative projections. To reduce the
number of images that need to be acquired, one solution is to estimate only the coefficients of
the Mueller matrix containing relevant information to discriminate the regions. This selection
of specific coefficients has been the subject of recent works [9] and it has been shown that in
general, 4 acquisitions are needed to extract one coefficient. In the next section, we will propose
an alternative approach that makes it possible to further reduce the number of acquisitions while
keeping, and even improving the classification results.

3. Discrimination using optimal projections

In this section, our purpose is to determine the optimal set of polarimetric projections that
optimizes discrimination capacity. We can note that Eq. (1) can be put in the form of a linear
projection [21]:

i =
η I0
2

qTm (8)
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


M00 M01 M02 M03

M10 M11 M12 M13

M20 M21 M22 M23

M30 M31 M32 M33




(a)

(b)

Fig. 3.(a) Mueller image of the scene with an integration time oft0/16∼ 5ms. (b) Results
of the classification.

wherem is the 16-component vector formed by reading the Mueller matrixM in the lexico-
graphic order:

m =




M00

M01

M02

...
M33




(9)

,andq = T ⊗S (⊗ denotes the Kronecker product). Using this formulation, each pixel of the
scene can be seen as a point in a 16-dimension space defined by each component of the Mueller
matrix and, as all the pixels associated with the same object have not exactly the same po-
larimetric properties, each region is represented by a point cloud in this 16-dimension space.
Using a vecteurq, it is then possible to project these points on a direction of the space in
which the separability of the regions is maximal. The problem is thus of finding the optimal
set of linear projections that maximizes the separability of the different point clouds. This issue
has long been solved in pattern recognition: it is the well-known Linear Discriminant Analysis
(LDA) [22]. The optimal projection vectors are theK−1 generalized eigenvectors associated to
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the interclass and intraclass covariances matrices. In our case, it would lead toK−1 vectorsq,
that, after having projected the data, allow maximizing the separability of the different regions.
However, this solution is valid when the domain of definition of the projection vectors is the set
of real valued 16-component vectors with unit norm. In our problem, the vectorq = T⊗Sdoes
not span this space (it has 4 degrees of freedom instead of 15). Consequently, the classical LDA
technique cannot be used, and we describe in this section an approach to solve this problem. The
key point is to define a tractable separability criterion for multi-region discrimination, which is
not obvious. We then briefly describe the optimization algorithm that we use to determine the
optimal configuration and illustrate this approach on a real-world imaging scenario.

3.1. Separability criterion

The statistics of each classk, and thus the performance of the classifier, depends on the sets of
illumination and analysis statesS = [S1, ...,SN] andT = [T1, ...,TN]. Our goal in the following
will be to optimize these states in order to maximize the separability of the different classes.
For that purpose, one has to define a separability criterion, that is, a functionC(S ,T ) of the
illumination and analysis states that quantifies the discrimination performance. The optimal
projection parameters will be obtained as:

(Ŝ ,T̂ ) = argmax
S ,T

[C(S ,T )] (10)

The adequate separability criterion for a multi-class discrimination problem is the Bayesian
probability of error, which involves a sum of integrals of the PDF over the decision regions,
weighted by the relative importance of the different types of errors (misclassification between
pairs of classes) [23]. However, this criterion is difficult to calculate and optimize. This is why
we will use a separability criterion which is suboptimal, but easier to compute. Recently, it
has been shown that for such real-world discrimination tasks as target detection and object
segmentation, the Bhattacharyya distance is a good candidate for separability criterion [24].
We have thus decided to use it as contrast criterion in our study.

The Bhattacharyya distance (B) is an asymptotic exponent on the probability of error in
discrimination problems [25,26]. Let us consider two probability density functions (pdf)Pk(x)
andPl (x). In our case, these pdf correspond to the noise statistics of the pixels in regionsk and
l . If n denotes the size of the sample, the probability of error in deciding wether the observed
data has been generated withPk(x) andPl (x) behaves as exp[-nB] as n tends to infinity [26].
Considering our two sets of data defined by their pdfPk(x) andPl (x), the Bhattacharyya distance
is defined as:

Bk,l = − ln

[∫

D

[Pk(x)Pl (x)]
1/2dx

]
(11)

with D the definition domain ofPk andPl . The Bhattacharyya distance is thus a scalar value
that quantifies the similarity between the pdfPk(x) andPl (x). It belongs to the interval[0;+∞[,
is equal to zero when the pdf are identical and infinite when the pdf supports do not overlap.

In our case, the Bhattacharyya distance between two classesk and l has the following ex-
pression:

Bk,l (S ,T ) =
1
8
(xk−xl )

T
[

Γk +Γ l

2

]−1

(xk−xl )+
1
2

log




det

(
Γk+Γl

2

)

√
det(Γk)det(Γ l )



 (12)

We have to note that, if it can be considered that the average values of the projected pixels in
each classxk are sufficiently different, we can neglect the second term associated only to the
difference of covariance matricesΓk andΓ l . This simplification is particularly valuable since
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a large number of iterations have to be done to compute the optimal sets of images. We have
checked that in the example of Fig. 4, taking into account the second term does not change the
sets of optimal polarization states.

When the number of regions to discriminate is larger than two, there are several possible
ways of merging the separability of each pair of classes into a single numerical criterion. We
have chosen a min-max approach which consists in maximizing the minimal separation between
pairs of classes. It corresponds to maximizing the following criterion:

C(S ,T ) = min
∀(k,l),k6=l

[
Bk,l (S ,T )

]
(13)

The higher the value of this criterion, the easier will be the discrimination of all classes in
theN-dimensional space. Our goal is now to determine the optimal set of parameters(S ,T )
maximizing this criterion.

3.2. Computational issue for the optimization

Once the optimization criterion has been defined and the numberN of projections chosen, one
has to search for the optimal combination of projections maximizing the separability. The main
characteristic of this problem is the number of parameters that have to be optimized simulta-
neously. Indeed, each projection depends on 4 parameters, e.g., the azimuth and ellipticity of
the illumination and analysis states. Searching forN projections thus involves optimization on
4N parameters, which is quite large even for low values ofN and it is thus likely that the sepa-
rability criterion will have local maxima. It is thus necessary to use an algorithm robust to the
presence of local maxima. After having compared different solutions, we have chosen to use
the Shuffled Complex Evolution (SCE-UA) Method [27]. This algorithm consists in generating
different sets consisting of N couples of illumination and analysis polarization states, and is
changing them by using a global evolution framework to finally converge to the best set of pa-
rameters(S ,T ) that leads to the highest separability of the contrast. Concerning our issue, we
have verified that in our applications, it converges rapidly to the global maximum researched.

3.3. Application to a real-world imaging example

Let us now apply the proposed approach to the scene represented in Fig.2. We have considered
successively that we can acquire one, two or three polarimetric projections. On each of these
configurations, we have compared the discrimination results obtained with the classifier pre-
sented in Eq. (5) on each of these configurations. The obtained images, the associated optimal
states and the results of the classification are gathered in Fig. 4, as well as the discrimination
result and Bhattacharyya distance obtained with full Mueller matrix data (see Fig. 3), that will
serve as a benchmark.

As explained in the previous section, for all the acquisition scenarios, the total measurement
time is constant and equal tot0. If only one projection is acquired, the integration time is thust0.
It can been seen in Fig. 4(a) that the obtained image is indeed much less noisy than the Mueller
images in Fig. 3, since the latter corresponds to an integration time that is 16 times smaller
for each projection. However, for this 4-region scenario, one projection - although optimal - is
clearly insufficient since many classification errors are observed in Fig. 4(a). To visualize the
detection efficiency, we have represented the estimation of the PDF (histogram) associated to
the four classes of object in Fig. 5. We can observe that the average values of the four classes
are well separated (which explains why we can globally discriminate the objects in the scene),
but there is also a large overlap between the different PDF that leads to a high number of
classification errors as we can see in Fig. 4(a). Consequently, the contrast criterion (C = 2.0) is
low compared to that obtained using the full Mueller matrix(C = 6.6). It is thus necessary to
increase the number of projections to enhance the classification performance.
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N = 1
(−15o,−15o) (−85o,−20o) C = 2.0

(a) (A)

N = 2
(−36o,−30o) (8o,−21o) (2o,3o) (34o,4o) C = 9.8

(b) (c) (B)

N = 3
(69o,16o) (−52o,−21o) (−16o,−26o) (−29o,0o) (43o,20o) (−88o,6o) C = 13.1

(d) (e) (f) (C)

Mueller
C = 6.6

(D)

Fig. 4. Optimal sets ofN = 1,2 and 3 projections maximizing the separability of the objects
in the scene. Last column: results of classification using a ML classifier. Last row : classifi-
cation results obtained with full Mueller matrix data. The polarization states in illumination
and analysis are represented by their azimuth (α ) and ellipticity (ε): (αS,εS)(αT ,εT ).

Fig. 5. Estimated PDF of the four classes in the scene (estimated on sample of around 300
pixels in each class). This projection corresponds to the results in the first row of the figure
4.
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Fig. 6. Representation of pixels of the four classes in the 2-dimensional space defined by
the two images presented in the second row of the figure 4.

Let us now consider that we can acquire two projections (see Fig. 4(b) and 4(c). These im-
ages are obtained with an integration time equal tot0/2. We observe that the optimal projections
are different from that obtained by trying to optimize the separability on only one projection
(Fig. 4a). Indeed, in the image 4.b, the three regions are separated from the background but
are not discriminated between themselves. This discrimination is done thanks to the second
image (Fig. 4.c). To visualize the detection efficiency, we have plotted, in Fig. 6, the pixel value
distributions of the different objects in the 2-dimensional space defined by the two optimal
projections. We can see that the different point clouds are well separated that leads to good
discrimination performance, as we can see in Fig. 4(b). Indeed, the obtained value of the sep-
arability criterion (C = 9.8) is higher than that obtained with full Mueller matrix data. We can
now ask the question: is it possible to increase further the contrast using a third projection ?

The set of three projections that maximize separability is presented in Fig. 4(d,e,f). The inte-
gration time for each image is equal tot0/3. These images are different from all the previously
obtained images and correspond to a different way to discriminate the objects. Indeed the first
image discriminates the regionst1 andt3 from the backgroundb and the regiont2. The second
image separates the regiont1 from the regiont3 and finally the third image isolates all the re-
gions from the background. This set of images leads to a high value of the separability criterion
(C = 13.1) that corresponds to a good separability of the classes in the 3-dimensional space (see
Fig. 7) and thus to excellent discrimination results, as we can see in Fig. 4(c). Theses results
are better than those obtained with the full Mueller matrix because we acquire only images that
contain information relevant to classification: by decreasing the number of images, we increase
the integration time associated with each image and thus increase the signal to noise ratio.

The objective is thus to find the best number of images that allows obtaining all the informa-
tion necessary for the discrimination and also a good signal to noise ratio. Indeed, by increasing
the number of images while keeping the same global acquisition time, we may not be able to
extract more useful information but since the signal to noise ratio in the images is decreased,
this may lead to a decrease of the contrast. To verify this assumption, we have represented in
Fig. 8 the evolution of the contrast criterion as a function of the number of optimal images ac-
quired. The integration time for one set of images is kept constant and equal tot0 ∼ 80ms. We
can see in Fig. 8 that the contrast begins by increasing and reaches its maximum for 3 images.
This evolution can be explained by the fact that each extra image brings enough new informa-
tion to compensate the decrease of the signal to noise ratio per image due to the reduction of
the integration time. With 3 images, all the information useful for discrimination is gathered.
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Fig. 7. Representation of pixels of the four classes in the 3-dimensional space defined by
the three images presented in the third row of the figure 4.

Fig. 8. Evolution of the contrast criterion in function of the number of optimal images
acquired. The integration for one set of images is keeping constant and equal tot0 ∼ 80ms.
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This is in perfect accord with the standard result in Linear Discriminant Analysis (LDA): ifK
classes have to be discriminated,K−1 linear projection are sufficient to obtain optimal discrim-
ination [22]. If the number of acquired images is increased while keeping the total acquisition
time constant, the information brought by these new images is no longer sufficient to compen-
sate for the reduction of the signal to noise ratio and the contrast decreases. We can also notice
that with 16 optimal projections, we obtain the same contrast as with the raw Mueller matrix
data (C = 6.6).

4. Conclusion

We have proposed a methodology to determine the set of active polarimetric measurements that
optimize discrimination of an arbitrary number of regions with different polarimetric properties.
For that purpose, we have considered systems where the illumination and analysis states can
vary on the whole Poincaré sphere. Of course, this methodology can also be easily applied to
systems with reduced sets of accessible polarization states in illumination and/on in analysis.
We have demonstrated on a real world example that a few number of optimized polarimetric
measurements can overcome the performance of full Mueller matrix imaging. The optimal
number of measurements is of course highly dependent on the nature of the observed scene.

It is clear that the determination of the optimal projections require some prior knowledge
about the polarimetric properties of the scene - i.e. the average and the covariance of Mueller
matrices of each class. It can thus not be used in all polarimetric imaging scenarios. However,
if such prior knowledge is available, we have demonstrated that it may be preferable to use
a few, well selected acquisitions. Of course, research on adaptive strategies that can reduce or
suppress the need of prior knowledge about the scene is an interesting perspective of the present
work.
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