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We compare the performances of three different polarimetric imaging modalities, scalar, Stokes, and Mueller, in

terms of achievable contrast for target detection applications. These modalities require, respectively, 1, 4, and 16
intensity measurements to form the polarimetric image. We show that the technique that leads to the best contrast is

the scalar one, which requires only one optimized measurement.

OCIS codes: 260.5430, 030.4280.

Polarization images are measures of some characteristics
of the polarization state of the light scattered by a scene.
They can reveal contrasts that do not appear in classical
intensity images and find many applications in remote
sensing, biomedical imaging, or industrial control. Cost,
size, and technological complexity of polarimetric ima-
gers depend on the number of polarimetric parameters
they measure. In this context, a key issue is to evaluate
the added value of each measured polarimetric parameter
in order to optimize the compromise between complexity
and efficiency of these systems. In target detection
applications, the relevant criterion for quantifying the per-
formance of an imaging configuration is contrast (or dis-
crimination ability) between a target region a and a
background region b. Analysis of the contrast and its op-
timization in polarimetric images have been investigated
in the radar [1] and optics [2-4] communities. In this
Letter, our purpose will be to determine and compare
the best achievable contrast in three different polarization
imaging modalities: scalar, Stokes, and Mueller. The
obtained conclusions will have important applications
in domains where optimizing the contrast is a key issue,
such as in remote sensing or biomedical imaging.

We use the Mueller formalism to represent the polari-
metric properties of the scene, which is assumed to be
composed of two regions: a target with Mueller matrix
M, and a background with Mueller matrix M, (in this Let-
ter, capital letters represent matrices, bold letters repre-
sent vectors, and normal letters represent scalar
numbers). The scene is illuminated with purely polarized
light that can have any Stokes vector s on the Poincaré
sphere and is produced by a polarization state generator.
The Stokes vector of the light scattered by region a(b) is
Sq = M s(s, = M,s). The light scattered by the scene is
analyzed by a polarization state analyzer, which is a gen-
eralized polarizer whose eigenstate is the Stokes vector t.
In the following, we will denote scalar imaging as the
configuration where only one image is measured, Stokes
imaging a configuration where the whole Stokes vectoris
measured (four different analysis states t are used), and
Mueller imaging when the Mueller matrix is measured
(four different illumination states s and four different ana-
lysis states t are used).

Let us first consider scalar imaging. At a given pixel of
regions a or b, the measured intensity is [4]
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where u = {a,b} and the superscript T' denotes matrix
transposition. In this equation, t and s are unit intensity
Stokes vectors; f is the illumination flux [in photon(s)];
t, is the time during which the scene is observed; and n,,,
u = {a,b}, are zero mean Gaussian random variables
with variance ¢2. In this Letter, we thus assume that
the noise is additive and Gaussian. We also assume that
the imaging is photon limited, that is, for any considered
value of {,, the total measured number of photons does
not saturate the capacity of the well of the detector. We
consider that the noise can be of two types: with Type I
noise, the variance o2 is independent of the observation
time ¢,, such as readout noise for example. With Type I1
noise, the variance is proportional to the observation
time, that is, 6> = at,. This is a pertinent model for dark
current noise or shot noise due to unpolarized back-
ground illumination.

The additive Gaussian noise model leads to the follow-
ing expression of the contrast [4]: C(s,t) = (i, — 7,)?/0°.
Using Eq. (1), this contrast can also be written as

2 2
Cls,t) = ( ‘;‘) xi <tTAMs) ,

where AM = M, - M, is the difference between the
Mueller matrices of the two regions. The contrast in
Eq. (2) is a function of both the illumination and the anal-
ysis state. In practice, one will determine the vectors s
and t that maximize it, and the maximal achievable con-
trast iS Cgealar = Max,([C(s, t)]. An efficient way of deter-
mining this maximum has been proposed in [4].

Let us now consider Stokes imaging systems. Let us
define the matrix W whose rows are the Stokes vectors
of the four analysis states t!, i € {1,4}, where t; are unit
intensity, fully polarized Stokes vectors that are usually
chosen so as to minimize the variance of the estimated
Stokes vector [5]. The four measured intensities can
be stacked in a four-dimensional vector:

th 1

i, _JSolo x=WM,s +n,, (3)
4 2

where w = {a,b}; s is the Stokes vector of the illumina-

tion; and the vector n,, u = {a,b}, is a realization of a

(2)
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four-dimensional white Gaussian random vector n with
variance ¢2. Its covariance matrix is I',, = 6°7,, where
7, is the 4 x 4 identity matrix. The factor f{,/4 comes
from the fact that the observation time ¢, is constant,
so that if four intensity measurements are performed dur-
ing this time, the integration time for each measurement
is equal to t,/4. The adequate expression of the contrast
is [3] C(s) = (i — i) T3 (i —iy). Taking into account
Eq. (3), it can also be written as

e = (M) () < quovamsie. @

where |[|.|| stands for the Euclidian norm on four-
dimensional vectors. It is a function of the illumination
state. In practice, one will determine the vector s that
maximizes it [3], and the maximal achievable contrast
is Csiokes = max[C(s)].

Let us now consider Mueller imaging systems. In this
case, one uses four different illumination Stokes vectors
s;, © € [1,4], that form the columns of a matrix X. One
also has four analysis states in the matrix W defined
above. One measures 16 intensities that can be gathered
in the following matrices:

_Jobo
u 16

1
xS WMX +N,, (5)

where u = {a,b} and N, are 4 x4 random matrices
whose elements are independent Gaussian random vari-
ables with variance 2. The factor ft,/16 stands for the
fact that 16 intensity measurements are performed during
the observation time ¢,. The contrast can be written as

t\2/1\2 1
C= ( ‘; ) (E) ><1||WAMX||J?, (6)

where ||Q||; = [>_,; @%]"/? denotes the Frobenius norm of
a matrix @.

Using Egs. (2), (4), and (6), the expressions of the con-
trast in the three above-mentioned imaging modalities
can be written in the following way:

242

15
Cloatar = 4‘:)_; X max[(tTAMs)z]
1 [f2¢2 1<
1 _ — M0Y - T 2
CStokes - 4 [462:| XmsaX|:4kz_;(tkAMs) :|’
1 _ 1 f%t% 1 & § TAM 2 7
CMueller - E 40_2 X E; ;(tk Sl) . ( )

Please note that in the expressions of C}, ;.. and Ciperers
we have split the factor (1/N)? (N being the number of
measurements) that appears in Egs. (4) and (6) into two
parts: one factor 1/N in front of the first term and an-
other in front of the second term. This second term thus
appears as a sum of N terms divided by N. The expres-
sions in Eq. (7) make it possible to compare the maxi-
mum contrast achievable by the three modalities. The
first term of the right-hand side represents the intensity
signal-to-noise ratio, SNR = f2¢2/40%, divided by the
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number of measurements (1 for scalar imaging, 4 for
Stokes imaging, and 16 for Mueller imaging). The value
of this term strongly depends on the type of noise. In-
deed, for noise of Type I, the variance is independent
of the measurement duration and the contrast thus de-
creases proportionally to the number of performed mea-
surements. This is easily understood because each
measurement adds up a constant amount of noise, thus
reducing the contrast. On the other hand, for noise of
Type II, the variance is proportional to the integration
time and can thus be written ¢° = at,/N, where N is
the number of measurements. In this case, the first term
in Eq. (7) is equal to f 3150 /a for the three imaging modes.
In the presence of Type II noise, the contrasts can thus be
written as

CZ _f%to

Scalar — da [(tTAMS)Z ’

2
CStokes

f0° AN (tF AMs)?
= xmaxZZt s

k=0

2 2to 1 $ (tr
CMueller =1, |:1_6 Z tlc AMSZ :| : (8)
k=0 1=0
One can note that if the two types of noises are simulta-
neously present, the total variance can be written as
o ag + at,/N, and the situation is intermediary be-
tween Egs. (7) and (8).

The second term of the right-hand sides of Egs. (7) and
(8) is a sum of N positive terms divided by N. Obviously,
Clitar 2 Ciores = Chneniers Where @ € {1,2}, stands for the
type of noise. Indeed, Cstokes can be seen as a version of
Cliueniers Where the illumination state of polarization has
been optimized, and CScalar a version where both the illu-
mination and the analysis states have been optimized.
Consequently, scalar imaging is the most efficient ap-
proach, and the architectures that acquire more than
one image will lead to a lower contrast. As a side effect
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Fig. 1. (Color online) Normalized values of the square root of
the contrast for scalar, Stokes, and Mueller images as a function
Ofa, see Eq (9) <> [C a}(a)/cécal( )]1/2) * [CStokes( )/CSca.l( )}1/2;
[, [Ciruetter (@)/Cheg (0)]1/2. In each case: solid line, i = 1 (Type I
noise); dotted line, © = 2 (Type II noise).
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Fig. 2. (Color online) Gain of scalar imaging with respect to
Stokes and Mueller imaging as a function of «; see Eq. (9). *,
Pliores(@); O, Plrwener(@)- In each case: solid line, ¢ =1 (Type
I noise); dotted line, ¢ = 2 (Type II noise).

of the present study, one can notice that the value Cécalar
can be used as a pertinent metric for quantifying the intrin-
sic difficulty of a detection task with polarization imaging.

Asanillustrative example, letusassume thatregion a has

the following Mueller matrix:

08 a 0 0
a 05 0 O
Ma((l) - O 0 05 O ’ (9)

where aisaparameterthat can varybetweenOand(0.12. Let
us also assume that the background region has the follow-
ing diagonal Mueller matrix: M, = diag (0.8,0.5,0.5,0.3).
For Stokes imaging, we have chosen the matrix W
implemented by the optimal rotatable retarder—fixed
polarizer polarimeter described in [5], and for Mueller
imaging, we have chosen X = W”. We have plotted in
Fig. 1, as a function of a, the square roots of the values
of the contrast obtained with the three architectures,
normalized in the following way: [Ci.,(a)/Ch..(0)]2,
[Cétokes(a)/ClScal(O)}l/z’ and [Ci/[ueller(a)/ClScal(O)]1/2’ where
i € {1,2}.Indeed, for Stokes and Muellerimaging systems,
there are two curves in the graph: the solid curves corre-
spond to noise of Type I [Eq. (7)], and the dotted curves
to noise of Type II [Eq. (8)]. Note that because of this nor-
malization, the curves for Type I and Type Il noises overlap
in the scalar case.

It is seen that for all imaging modes, the contrast in-
creases with a. This is understandable because a corre-
sponds to the polarizance/diattenuation factor of M, (a):
when it increases, the difference between M, (a) and M,
increases. It is also verified that the scalar imaging mode
provides the highest value of contrast. To have a better
idea of the gain in contrast obtained by using scalar
imaging, we have plotted in Fig. 2 the following ratios:
p ?Stokes (a) = [CZScalar(a)/ Cétokes(a)]l/2 and p i’[ueller(a) =
[Cl o (@) / Clenier (@)] Y2, With @ € {1,2}. In the presence
of Type I noise, the contrast obtained with scalar imaging
is about ten times higher than with Mueller imaging and
four times higher than with Stokes imaging. For Type II
noise, these ratios are smaller but still around 2. Of
course, the values of these ratios depend on the matrices
M, and M, but the ranking between the three imaging
modalities will always be the same.

In conclusion, we have shown that in the presence of
additive noise, simple scalar imaging with optimized illu-
mination and analysis states always yields better contrast
than Stokes and Mueller imaging. This result provides an
important element in the choice of polarimetric imaging
architectures. Of course, this conclusion is valid when
the only concern is to optimize the contrast between
two regions with definite polarimetric signatures. When
discriminating multiple targets, or if the objective is to
have insight into the physics of the scene, multidimen-
sional polarimetric measurements may be needed, and
strategies based on partial estimation of the Mueller ma-
trix may be more appropriate [6]. As a perspective, it can
be noted that noise models other than the additive one
may be more relevant in some situations, such as signal-
dependent shot noise or speckle noise. In such cases, the
relevant expressions of the contrast are different and so
may be the conclusions in terms of the influence of the
number of measurements.
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