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We consider imaging systems that measure the three first elements of the Stokes vector and deduce from
them the degree of linear polarization and the angle of polarization. They require the acquisition of at
least three intensity measurements, but performing more measurements is often thought to improve the
estimation precision. We show that if the total acquisition time is fixed, the optimal number of measure-
ments depends on the type of noise that affects the image: the estimation variance increases with the
number of measurements N when the noise is additive; it is independent of N in the presence of Poisson
shot noise and decreases with N when the angles of the analyzers fluctuate. In general, the optimal
number of measurements results from a compromise on the robustness of these different types of
perturbations. © 2010 Optical Society of America

OCIS codes: 260.5430, 030.4280.

1. Introduction

In many cases, the circular contribution to polarized
light reflected by materials can be considered negli-
gible, and measuring the three first elements of the
Stokes vector is sufficient. It is, in particular, the case
when measuring images of outdoor scenes illumi-
nated by unpolarized natural sources. The polariza-
tion features of the backscattered light mainly arise
from Fresnel-like reflection on facets with different
orientations, and this phenomenon produces light
that is partially polarized but whose principal polar-
ization state [1] is linear. In this case, the last ele-
ment of the Stokes vector, which corresponds to
ellipticity, can be considered null with good approx-
imation [1]. The Stokes vector limited to the three
first components is classically named linear Stokes
vector. From its measurement, two main parameters

can be estimated: the degree of linear polarization
(DOLP) and the angle of the principal state of polar-
ization, which we will call the angle of polarization
(AOP). These two parameters are used, for example,
for estimating the absolute orientation of facets in a
scene in order to reconstruct it in three dimensions
[2–4].

Since the linear Stokes vector depends on three
real-valued parameters, one needs at least three in-
tensity measurements to estimate it. However, many
experimental schemes use a larger number of mea-
surements. This strategy is generally thought to
improve the estimation precision [5], but it may
increase the complexity of the system and the mea-
surement time. Our goal in this paper will be to
investigate the influence of the number of measure-
ments on the estimation precision of the linear Stok-
es vector, the DOLP, and the AOP. We shall see that
this influence depends on the dominant type of per-
turbation that affects the measurements. We will
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consider three different types of perturbations: addi-
tive noise that is independent of the measured inten-
sity, Poisson shot noise, and noise due to imperfect
knowledge of the parameters of the measurement
system. It should be noted that these issues have al-
ready been addressed by many authors in the more
complex cases of full Stokes and Mueller measure-
ments [5–13]. Restricting ourselves to the case of lin-
ear Stokes measurements will make it possible to
obtain closed-form solutions for the estimation
variances that clearly exhibit the influence of the
number of measurements.

2. Position of the Problem

We assume that the polarization state of the light is
defined by the three components of the linear Stokes
vector S ¼ ðS0;S1;S2ÞT, where T denotes transposi-
tion. It can also be written as [1]

S ¼ S0ð1;P cos 2α;P sin 2αÞT ; ð1Þ
where S0 represents the intensity of light, P ∈ ½0; 1�
is the DOLP, and α ∈ ½−90°;þ90°� is the AOP, that is,
the angle that the principal polarization state makes
with a reference axis. To estimate the linear Stokes
vector, one measures the light intensity at the output
of a set of N linear analyzers oriented with angles
θi; i ∈ ½1;N�. Depending on the experimental setup,
these N measurements may be performed by N
different static devices or by the same device that
is rotated N times, mechanically or with help of an
electro-optic device. The first type of measurement
system can be called “division of wavefront” and
the second “division of time” [14]. In both cases,
the amount of light available for each measurement
decreases with the number N. To take this into ac-
count, we will assume that the total amount of light
(the number of photons) available is fixed, whatever
the number of measurements. We also assume that
the vector S that we want to estimate is the Stokes
vector, whose intensity is equal to this total number
of photons. Consequently, if N measurements are
performed, each measurement is made with this to-
tal amount of photons divided by N. Notice that we
assume, for the sake of simplicity, that each of the N
measurements has the same duration and collects
the same amount of light flux. Whatever the type
of measurement system, in the absence of perturba-
tion, the output intensity from the ith measurement
can be written as

Ii ¼
1
2N

½S0 þ S1 cos2θi þ S2 sin 2θi�; ð2Þ

where θi are the angles of the analyzers. In Eq. (2),
the fact that the measured intensity is inversely
proportional to N relies on the assumption that
whatever the value ofN, the number of photons gath-
ered during one measurement is not sufficient to fill
up the well of the CCD sensor. In other words, Eq. (2)
is valid only in the case where the measurement is

photon limited, and we will consider only this situa-
tion in this paper.

By using Eq. (1), it is easily seen that the intensity
can also be written as

Ii ¼
S0

2N
½1þ P cosð2θi − 2αÞ�: ð3Þ

Estimating P and α thus corresponds to estimating
the contrast and the phase of a sinusoid sampled
on N points. To perform this estimation, we gather
the intensities Ii into a vector:

I ¼ 1
N

WS ð4Þ

with W having the following N × 3 matrix:

W ¼ 1
2

� ..
.

1 cos 2θi sin 2θi
..
.

�
: ð5Þ

In practice, however, Eq. (4) does not hold strictly
since I is affected by noise and perturbations: it is
thus a random vector. Our goal will be to estimate
S from the random vector I in the presence of such
perturbations. For that purpose, we will use the
pseudoinverse estimator [15], which has the follow-
ing expression:

Ŝ ¼ NW†I ð6Þ

with

W† ¼ ðWTWÞ−1WT : ð7Þ
This estimator is optimal in the maximum likelihood
sense when the noise that perturbs themeasurement
vector I is additive, white, and Gaussian [15]. For
other types of noise, it may not be optimal but it is
a simple and efficient estimator that we shall use
throughout this paper. If we assume that the noise
affecting the measurements is such that hIi ¼ 1=N×
WS, where h:i denotes ensemble averaging, the pseu-
doinverse estimator defined in Eq. (6) is unbiased
since hŜi ¼ S. This result is independent of the num-
ber of measurements N. Consequently, the estima-
tion performance will depend only on the variance
of Ŝ.

Once the Stokes vector has been estimated, the
DOLP is estimated by

P̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ŝ2
1 þ Ŝ2

2

q
Ŝ0

; ð8Þ

and the AOP α by

α̂ ¼ 1
2
arg½Ŝ1 þ iŜ2�; ð9Þ
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where arg½:� denotes the argument (phase) of a
complex number. In other words,

if S1 > 0: α̂ ¼ 1
2 arctan

�
Ŝ2

Ŝ1

�
;

if S1 < 0:α̂ ¼ π
2
× sgnðS2Þ þ

1
2
arctan

�
Ŝ2

Ŝ1

�
; ð10Þ

where sgnðxÞ ¼ 1 if x ≥ 0;−1 otherwise.

3. Estimation in the Presence of Additive Noise

Wewill first consider that the noise that perturbs the
measurements, I, is additive and Gaussian. In other
words,

I ¼ 1
N

WSþ b; ð11Þ

where b is a Gaussian random vector that is assumed
to be white with zero mean and variance σ2. We shall
analyze, in this section, the estimation precision of
the Stokes vector, the DOLP, and the AOP. A similar
approach has been used by Takakura and Ahmad to
study estimation precision of Mueller matrices [12].

A. Estimation of the Stokes Vector

The estimation performance of the pseudoinverse
estimator of the Stokes vector is determined by its
covariance matrix, which, from Eq. (6), is equal to

ΓŜ ¼ N2W†ΓIðW†ÞT ; ð12Þ
where ΓI is the covariance matrix of the measure-
ment vector I. If the noise is additive as defined in
Eq. (11), one has ΓI ¼ σ2IN, where IN denotes the
N ×N identity matrix. The covariance matrix of
the estimator is thus

ΓŜ ¼ N2σ2ðWTWÞ−1; ð13Þ
where we have made use of the expression of the
pseudoinverse estimator in Eq. (7). The covariance
matrix is a function of the measurement matrix W,
which depends on the chosen measurement angles
θi. This choice constitutes a degree of freedom of
the measurement system, which can be used to opti-
mize its performance. A classical performance criter-
ion is the trace of ΓŜ, which represents the sum of the
variances on the three components of the Stokes
vector. It can be shown [16] that the angles that
minimize this trace are such that

θi ¼ θ0 þ
ði − 1Þ × 180°

N
; ð14Þ

where i varies from 1 to N. This corresponds to ana-
lyzer angles evenly distributed over the half-circle. In
the following, we will choose this configuration with
θ0 ¼ 0, which means that the reference axis used to
define the Stokes vector is given by the orientation of

the first analyzer. Using Eqs. (5) and (14), it is easily
shown that

ðWTWÞ−1 ¼ 4
N

2
4 1 0 0
0 2 0
0 0 2

3
5; ð15Þ

where we have used the following relations:

P
N
i¼1 cos 2θi ¼

P
N
i¼1 sin 2θi ¼

P
N
i¼1 cos 2θi sin 2θi ¼ 0;

XN
i¼1

cos22θi ¼
XN
i¼1

sin22θi ¼
N
2

ð16Þ

that are valid if the values of θi verify Eq. (14). Sub-
stituting Eqs. (5) and (15) in Eq. (7), we find that the
pseudoinverse matrix has the following expression:

W† ¼ 2
N

2
4 1 … 1
2 cos 2θ1 … 2 cos 2θN
2 sin 2θ1 … 2 sin 2θN

3
5: ð17Þ

Moreover, substituting Eq. (15) in Eq. (13), one
obtains the covariance matrix of the estimator:

ΓŜ ¼ 4Nσ2
2
4 1 0 0
0 2 0
0 0 2

3
5: ð18Þ

This matrix is diagonal, which means that the fluc-
tuations of the estimates of each component of the
Stokes vector are uncorrelated. The estimation var-
iances of the Stokes parameters are the diagonal va-
lues of this matrix. It is seen that the variances on S1
and S2 are twice that on S0.

In order to study the variation of the covariance
matrix with respect to the number of measurement
N, one has to distinguish two cases, depending on
whether the variance σ2 of the noise depends or
not on the time spent by each measure, which is pro-
portional to 1=N. If σ2 is independent of the measure-
ment time, such as, for example, the readout noise of
a CCD sensor, it is seen in Eq. (18) that the estima-
tion variances of all Stokes parameters increase
linearly with N. In other words, the estimation pre-
cision decreases with the number of measurements!
This surprising result is, in fact, easy to understand.
Indeed, each single measurement adds a constant
amount of noise that is independent of the signal va-
lue, and thus by spreading the available amount of
light over more measurements, one increases the
amount of noise. Consequently, when signal and
time-independent additive detector noise is domi-
nant, it is preferable to use the smallest possible nu-
mber of measurements, that is, three measurement
angles at θ0 ¼ 0°, 60°, and 120°. However, it may also
happen that the variance of the noise is proportional
to the measurement time, so that σ2 ¼ a0=N, such as
dark current noise, for example [17]. In this case,
Eq. (18) shows that the estimation variances of all

1 February 2010 / Vol. 49, No. 4 / APPLIED OPTICS 685



Stokes parameters are independent of the number of
measurements N.

B. Estimation of the Degree of Linear Polarization and the
Angle of Polarization

Let us now turn to the estimation of the DOLP and
the AOP. The estimators of these parameters are gi-
ven in Eqs. (8) and (9). These are nonlinear functions
of the Stokes vector, and it is thus difficult to obtain
closed-form expressions of their variances. However,
one can determine approximate values of these var-
iances that are valid in the case of small perturba-
tions. Indeed, let X be a K-dimensional random
vector with mean hXi and covariance matrix ΓX,
and let y ¼ f ðXÞ be a random variable that is a func-
tion of this vector. If the variations of X around hXi
are sufficiently small and the function f is suffi-
ciently “smooth” around hXi, then [18]

hyi≃ f ðhXiÞ and VAR½y�≃ ½∇f ðhXiÞ�TΓX∇f ðhXiÞ;
ð19Þ

where∇f ðxÞ ¼ ½∂f =∂X1ðxÞ;…; ∂f =∂XKðxÞ�T is the gra-
dient of the function f . Keep in mind that it is only an
approximation, relying on strong assumptions that
are not always fulfilled in practice (see below).
However, it is useful to get physical insight into
the parameters that govern the estimation precision.
Let us first consider estimation of the DOLP. Using

Eq. (8), the expression of its gradient is

∇ P̂ ¼ 1

PS2
0

½−P2S0;S1;S2�T : ð20Þ

The approximate variance of P̂ is obtained by substi-
tuting Eqs. (20) and (18) into Eq. (19). Straightfor-
ward computations lead to

VAR½P̂� ¼
� σ
S0

�
2
4Nð2þ P2Þ: ð21Þ

This expression shows that when σ2 is independent
of N, the variance of P̂ increases linearly with N. On
the other hand, when it is inversely proportional to
N, the variance of P̂ is independent of N. Moreover,
this variance depends on the input polarization state
only through its intensity S0 and its DOLP. It is thus
independent of the AOP. It is also inversely propor-
tional to the square of the ratio S0=σ, which can be
considered as the intensity signal-to-noise ratio
(SNR), and it increases with the actual value of P.
It is interesting to note that preliminary experimen-
tal evidence of this phenomenon has been shown by
Vaughn and Hoover in a Mueller polarimeter [5].
It must be noticed that the function in Eq. (8), con-

sidered as a function of Ŝ, has a discontinuous first
derivative at the point ð1; 0; 0ÞT . Consequently, the
smoothness condition necessary for the validity of
Eq. (21) is fulfilled only if Ŝ1 and Ŝ2 are sufficiently
far from zero, that is, for sufficiently high values of P.

For example, if the light is completely depolarized, Ŝ1
or Ŝ2 are Gaussian random variables with zero
mean. If we neglect the fluctuations of Ŝ0, the ran-
dom variable P̂ has a Rayleigh probability density
function whose variance is [18] ðσ=S0Þ28Nð2 − π=2Þ,
which is about half of the value given by Eq. (21).
On the other hand, when P is sufficiently large
and the noise variance sufficiently low, the random
variables Ŝ1 and Ŝ2 have a very low probability to
reach zero and Eq. (21) is valid.

Let us now consider estimation of the AOP. From
Eq. (9), the expression of its gradient is

∇ α̂ ¼ 1

2P2S2
0

½0;−S2;S1�T : ð22Þ

The approximate variance of α̂ is obtained by substi-
tuting Eqs. (22) and (18) into Eq. (19). One obtains

VAR½α� ¼
� σ
S0

�
2 2N

P2 : ð23Þ

It must be noted that this expression of the variance
is valid when α is expressed in radian. The variance
of α̂ is proportional to the number of measurements
N if σ2 is independent of N and inversely propor-
tional to the intensity SNR. It is also inversely
proportional to P2, which means that the estimation
precision of α gets worse as the light becomes less
and less polarized. This is easily understandable,
since as P decreases, the polarized fraction of input
light, which defines the AOP, decreases.

Here again, it must be noticed that Eq. (23) is valid
only for sufficiently large values of P. In particular, it
tends to infinity when P tends to zero, whereas the
maximal variance of α̂ is clearly finite. Indeed, the
variance of α̂ is maximal when this random variable
is uniformly distributed between −90° and þ90°.
This happens, for example, when the light is totally
depolarized ðP ¼ 0Þ, so that Ŝ1 and Ŝ2 are zero-mean
random variables with identical variances. It is well
known [18] that in this case, Eq. (10) leads to a uni-
form probability density function for α̂. In conclusion,
Eqs. (21) and (23) give good insight in the parameters
that govern the estimation precision of the DOLP
and the AOP but are valid only for sufficiently polar-
ized light (P sufficiently high). Their actual domain of
validity depends on the value of P and of the SNR,
S0=σ. If they are not valid, one has to determine
the actual probability density functions of P̂ and α̂
from that of Ŝ and calculate the variances from them.

4. Estimation in the Presence of Signal Dependent
Poisson Shot Noise

In many cases, the dominant source of noise in
images is Poisson shot noise. The influence of this
source of noise on the estimation of the full Stokes
vector has been addressed by Sabatke et al. [8],
Gamiz and Belsher [19], and Goudail [20]. In the
presence of Poisson shot noise, I is a random vector
such that [20]
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hIi ¼ VAR½I� ¼ 1
N

WS; ð24Þ

where VAR½:� denotes the variance of a random
vector. From the properties of shot noise, the fluctua-
tions are statistically independent from one intensity
measurement to the other and the covariance matrix
ΓI of I is, thus, diagonal. In this section, we will study
the estimation precision of the Stokes vector, the
DOLP, and the AOP in the presence of this type
of noise.

A. Estimation of the Stokes Parameters

To estimate S from I, we will use the pseudoinverse
estimator. Please note that in the presence of Poisson
noise, the maximum likelihood estimator has a dif-
ferent expression [21] and is not closed form. Since
the pseudoinverse is a simple and closed-form algo-
rithm that gives good results in practice, we have
used it in this study. It has been shown in [20] that
the covariance matrix of the Stokes vector can be
written as

ΓŜ
ij ¼ N

X2
k¼0

Sk

XN
n¼1

W†
inW

†
jnWnk: ð25Þ

The expression of the covariance matrix depends
on the value N of the numbers of measurements.
Indeed, for N ¼ 3, substituting Eqs. (5) and (7) into
Eq. (25) leads to

ΓŜ ¼ 2

2
4S0 S1 S2

S1 2S0 þ S1 −S2

S2 −S2 2S0 − S1

3
5; ð26Þ

and for N ≥ 4:

ΓŜ ¼ 2

2
4S0 S1 S2

S1 2S0 0
S2 0 2S0

3
5: ð27Þ

To obtain these results, we have used Eq. (16) and
the following results, which assume that the angles
θi verify Eq. (14):

N ≥ 3:
XN
i¼1

cos22θi sin 2θi ¼
XN
i¼1

sin32θi ¼ 0; ð28Þ

N ¼ 3:
XN
i¼1

cos32θi ¼
3
4
;

XN
i¼1

sin22θi cos 2θi ¼ −
3
4
;

ð29Þ
N ≥ 4:

XN
i¼1

cos3 2θi ¼ 0;
XN
i¼1

sin2 2θi cos2θi ¼ 0:

ð30Þ
It is seen in Eq. (27) that for N ≥ 4, the covariance
matrix does not depend onN. In the presence of Pois-

son shot noise, there is no loss in terms of estimation
precision when using more measurements, but there
is no gain either. The same conclusion has been ob-
tained by Sabatke et al. using simulations in the case
of full Stokes vector estimation [8]. The variances
γ0; γ1; and γ2 of the three components of the linear
Stokes vector are given by the diagonal values of
the covariance matrix. For N ¼ 3, one has

8<
:

γ0 ¼ 2S0

γ1 ¼ 4S0 þ 2S1 ¼ 2S0ð2þ P cos 2αÞ
γ2 ¼ 4S0 − 2S1 ¼ 2S0ð2 − P cos 2αÞ

: ð31Þ

The estimation variances of S1 and S2 depend on
the AOP α of the input state. However, the sumP

2
i¼0 γi is independent of it, as predicted by theory

[20]. On the other hand, for N ≥ 4, one has

γ0 ¼ 2S0; γ1 ¼ 4S0; γ2 ¼ 4S0; ð32Þ

and the variances on all components of the Stokes
vector depend only on the intensity of the incident
state, not on its DOLP nor on its AOP. This result
is a justification for using four measurements in-
stead of three, since it makes the estimation variance
independent of the input polarization state. How-
ever, when Poisson shot noise is dominant, there is
no justification for using a number of measurements
larger than four.

B. Estimation of the Degree of Polarization and the Angle
of Polarization

Let us now turn to the estimation precision of the
DOLP and of the AOP. The approximate variance of
P̂ is obtained by substituting Eqs. (20) and (26) (for
N ¼ 3) or (27) (for N ≥ 4) into Eq. (19). This
results in

if N ¼ 3; VAR½P̂� ¼ 2
S0

½2 − P2 þ P cosð6αÞ�; ð33Þ

if N ≥ 4; VAR½P̂� ¼ 2
S0

½2 − P2�: ð34Þ

These expressions have the same restricted domain of
validity, as specified in Section 2. They thus require
sufficiently large values of P. Figure 1(a) illustrates
the results obtained if this condition is fulfilled. We
have chosen the following configuration: S0 ¼ 2000
photoelectrons, P ¼ 0:7, and we have plotted the var-
iance of P̂ for α varying between −45° and þ45° and
three values of N ¼ 3, 4, and 8. The solid curve with
the markers corresponds to the theoretical formulas
inEqs. (33) and (34), and thedotted curve corresponds
to the variance estimated byMonteCarlo simulations
on 104 trials.

When N ¼ 3, the variance of P̂ is inversely propor-
tional to S0, which can be considered as the intensity
SNR (ratio between the squared mean and the var-
iance of the intensity) in the case of Poisson shot noise.
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It depends on the AOP α. It has three localmaxima for
α ¼ 0°, 60°, and 120°, that is, when the state of polar-
ization is parallel to one of the analyzer directions,
and three local minima when α ¼ 30°, 90°, and
150°, in which cases, the AOP is orthogonal to one
of the analyzers and in the middle of the two others.
It is noticed that if the light is totally polarized
(P ¼ 1), the minimal variance is equal to zero. This
surprising result comes from the fact that if the light
is totally polarized, one measures an average of zero
photoelectrons when the AOP is orthogonal to one of
the analyzers. Since the noise has Poisson statistics,
its variance is also zero, which leads to a perfect esti-
mation. Of course, this is an ideal case. Taking into
account a residual additive detector noise or the finite
extinction degree of analyzers would lead to nonzero
variance even in this case, whichwould, however, still
correspond to a minimum.
When N ≥ 4, the variance of P̂ becomes indepen-

dent of the number of measurements N and of the
AOP. It depends on the input state only through
its intensity S0 and its degree of polarization. It de-
creases with the actual value of P, contrary to the
case of additive noise, where it increases with P
[see Eq. (21)]. It can be noted that when N ¼ 3,
the estimation variance varies sinusoidally around
the value that would be given by Eq. (34).
The approximate variance of the AOP is obtained

by substituting Eqs. (22) and (26) (for N ¼ 3) or (27)
(for N ≥ 4) in Eq. (19). This results in

if N ¼ 3; VAR½α̂� ¼ 1

P2S0

�
1 −

P
2
cosð6αÞ

�
; ð35Þ

if N ≥ 4; VAR½α̂� ¼ 1

P2S0
: ð36Þ

These results are illustrated in Fig. 1(b), which re-
presents the estimation variance of α when it varies
between −45° and þ45° and three values of N ¼ 3, 4,
and 8 [the values of S0 and P are the same as in
Fig. 1(a)]. The solid curve with the markers corre-
sponds to the theoretical formulas in Eqs. (35) and
(36) and the dotted curve to the variance estimated
by Monte Carlo simulations on 104 trials.

When N ¼ 3, the variance of α̂ depends on the ac-
tual value of α. It is interesting to note that the max-
ima of variance of α̂ correspond to the minima of
variance of P̂ and vice versa. The minima of variance
of α̂ correspond to cases where the input polarization
state is parallel to one of the analyzers. It is also no-
ticed that the variance of α̂ never reaches zero for any
value of the AOP. When N ≥ 4, the variance of α̂ is
independent of the number of measurements N
and of the actual value of α. As in the additive noise
case, it is inversely proportional to the SNR and to
P2. Similarly to the DOLP case, it can be noted that
when N ¼ 3, the variance of α̂ varies sinusoidally
around the value that would be given by Eq. (36).

In conclusion, when Poisson shot noise is the domi-
nant source of noise, it may be preferable to use four
measurements instead of three, so that the estima-
tion variances of the DOLP and of the AOP are inde-
pendent of the actual value of the AOP. However,
there is no justification for using more than four
measurements, since the estimation variances are
independent of N.

5. Estimation in the Presence of Instrumental Noise

In many cases, the dominant perturbations do not
come from thedetection process but froman imperfect
knowledge of the characteristics of the measurement
system. This problem has already been addressed in
the case of full Stokes imagers [10] and of Mueller po-
larimeters [5,22]. In this paper, we restrict ourselves

Fig. 1. (Color online) Theoretical and estimated variances of (a) the DOLP and (b) the AOP α as a function of the true value of the AOP in
the presence of Poisson noise. S0 ¼ 2000, P ¼ 0:7, α ∈ ½−45°;þ45°�, and three values of N ¼ 3, 4, and 8 are considered.
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to the case of linear Stokes images, but this will make
it possible to obtain closed-form solutions for the es-
timation variances that clearly exhibit the influence
of the number of measurements. We assume that the
actualmeasurements are donewithmatrixW defined
in Eq. (5), whereas the estimation is made with a dif-
ferent matrix W0:

I ¼ 1
N

WS and Ŝ ¼ NW†
0I: ð37Þ

In practice,W0 will be the matrix determined by cali-
bration, and the actual measurement matrix W may
deviate from it because of calibration noise or varia-
tions of the characteristics of the system after calibra-
tion (temperature changes or uncertainty on the
analyzer angles due to mechanical movements). Note
that to separate the problems, we assume that no
other source of noise is present. The estimator of S
can be written as

Ŝ ¼ Sþ dMS; ð38Þ

where the matrix dM is defined as

dM ¼ W†
0ðW −W0Þ: ð39Þ

The measurement matrix W depends, in general, on
anN-component parameter vector θ (in our case, it is
the set of analyzer angles) and will be written WðθÞ.
The calibratedmatrix isW0 ¼ Wðθ0Þ, where θ0 are the
parameters estimated by calibration. If there is a
small difference dθ ¼ θ − θ0, one can use a first-order
development of W with respect to θ and

dM ¼
XN
i¼1

Didθi with Di ¼ W†
0

∂W
∂θi

: ð40Þ

A. Estimation of the Stokes Vector

Let us now assume that the parameter variation vec-
tor dθ is a random vector with zero mean. In this
case, the matrix dM is random and so is the Stokes
vector estimate Ŝ. Its mean is the true value S, and its
covariance matrix

ΓŜ ¼ hdMdMTi ¼
XN
i¼1

XN
j¼1

DiSSTDT
j hdθidθji: ð41Þ

To go further, one has to make assumptions on dθ.
Let us assume that it is white, that is, hdθidθji ¼ 0
if i ≠ j and σ2θ otherwise. In this case,

ΓŜ ¼ σ2θ
XN
i¼1

DiSSTDT
i : ð42Þ

In the particular problem of linear Stokes vector es-
timation, the parameters of the measurement matrix

are the angles θi of the analyzers. The matrices Di
can be computed from Eqs. (5) and (7). The covar-
iance matrix of the estimator is then found by substi-
tuting this result into Eq. (42). After cumbersome,
but elementary, computations, one obtains the ex-
pressions of the covariance matrix that depend on
the value of N:

if N ¼ 3; ΓŜ ¼ 2σ2θ
3

×

2
64

P2S2
0 S2

2 − S2
1 2S1S2

S2
2 − S2

1 P2S2
0 þ 2S2

2 −2S1S2

2S1S2 −2S1S2 P2S2
0 þ 2S2

1

3
75; ð43Þ

if N ¼ 4; ΓŜ ¼ σ2θ
2

2
4P2S2

0 0 0
0 4S2

2 0
0 0 4S2

1

3
5; ð44Þ

if N > 4; ΓŜ ¼ 2σ2θ
N

×

2
64
P2S2

0 0 0

0 P2S2
0 þ 2S2

2 −2S1S2

0 −2S1S2 P2S2
0 þ 2S2

1

3
75: ð45Þ

For obtaining these results, we have taken into ac-
count explicitly the fact that the nominal values θi
are evenly distributed around the circle and that
θ0 ¼ 0 [Eq. (14)]. We have thus used Eqs. (16) and
(30), and the following relations:

N ≥ 3:
XN
i¼1

cos32θi sin 2θi ¼
XN
i¼1

cos 2θisin32θi ¼ 0;

ð46Þ

N ¼ 4:
XN
i¼1

cos42θi ¼ 2;
XN
i¼1

sin42θi ¼ 2;

XN
i¼1

cos22θisin22θi ¼ 0; ð47Þ

N ≠ 4:
XN
i¼1

cos42θi ¼
3N
8

;
XN
i¼1

sin42θi ¼
3N
8

;

XN
i¼1

cos22θisin22θi ¼
N
8
: ð48Þ

It is seen in Eqs. (43)–(45) that the nature of the
intercorrelations between the fluctuations of the
Stokes components depends on the value of N.
However, for all values ofN, the sum of the variances
of the three components of the Stokes vector is
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independent of the AOP and equal to

trace½ΓŜ� ¼ 10
N

σ2θP2S2
0: ð49Þ

It depends on the degree of polarization and is pro-
portional to the square of the intensity S0 of the input
state. More importantly, this variance is inversely
proportional to N. This means that it is preferable
to sample the circle with a number of polarization an-
gles that is as large as possible. Recalling the inter-
pretation of the measure of the Stokes vector as the
estimation of the parameters of a sinusoid [see
Eq. (3)], this means that sampling more finely the si-
nusoid reduces the sensitivity to the fluctuation of
the positions of the sampling points.
It is also noted that in the caseN ¼ 4, the matrix is

diagonal, which means that there is no correlation
between the fluctuations of the Stokes parameters.
Furthermore, the case N ¼ 3 is very similar to N >
4 except that extra nondiagonal terms are nonzero.

B. Estimation of the Degree of Polarization and the Angle
of Polarization

Let us now turn to the estimation precision of the
DOLP and of the AOP. Depending on the value of
N, the approximate variance of P̂ is obtained by sub-
stituting Eqs. (20) and (43), or (44) or (45) into
Eq. (19). After some cumbersome, but elementary,
computation, one obtains

if N ¼ 3; VAR½P̂� ¼ 2σ2θ
3

P2½1þ P2 þ 2P cosð6αÞ�;
ð50Þ

if N ¼ 4; VAR½P̂� ¼ σ2θ
2
P2½1þ P2 − cosð8αÞ�; ð51Þ

if N > 4; VAR½P̂� ¼ 2σ2θ
N

P2½1þ P2�: ð52Þ

Figure 2(a) illustrates these results. It represents the
estimation variance of the DOLP for α varying be-
tween −45° and þ45°, three values of N ¼ 3, 4,
and 8, and the same values of S0 and P as in Fig. 1.
The solid curve with the markers corresponds to the
theoretical formulas in Eqs. (50)–(52), and the dotted
curve corresponds to the variance estimated by
Monte Carlo simulations on 104 trials.
For N ¼ 3, the variance of P̂ varies sinusoidally

and reaches maxima for α ¼ 0°, 60°, and 120°, that
is, when the AOP of the incident state is parallel
to one of the analyzers. For N ¼ 4, the variance also
varies sinusoidally and reaches minima for α ¼
k × 45° (k is an integer), that is, when the AOP of
the incident state is parallel to one of the analyzers.
ForN > 4, it is independent of the AOP. One can note
that when N ¼ 3 or 4, the variance varies sinusoid-
ally around the value that would be given by Eq. (52).

Globally, it is seen that the variance of P̂ decreases
with N.

The approximate variance of the AOP is obtained
by substituting Eqs. (22), (43), and (44) or (45) into
Eq. (19). This results in

if N ¼ 4; VAR½α̂� ¼ σ2θ
8
½3þ cosð8αÞ�; ð53Þ

if N ≠ 4; VAR½α̂� ¼ 3
2
σ2θ
N

: ð54Þ

Figure 2(b) corresponds to the same values of S0 and
P as in Fig. 2(a). It represents the estimation var-
iance of the AOP for α varying between −45° and
þ45° and three values of N ¼ 3, 4, and 8. The solid
curve with the markers corresponds to the theoreti-
cal formulas in Eqs. (53) and (54), and the dotted
curve corresponds to the variance estimated by
Monte Carlo simulations on 104 trials.

For N ¼ 4, the variance varies sinusoidally with
the AOP and reaches maxima for α ¼ k × 45°, where
k is an integer. One can note that this is the inverse of
what happens for the DOLP estimation. Here again,
the variance varies around the value that would be
given by Eq. (54). For N ¼ 3 and N > 4, the variance
is independent on the AOP. It decreases with N and
depends only on the variance of the analyzer angles.
Interestingly, it is independent of P for all values
of N.

In conclusion, the variances on the DOLP and the
AOP are both inversely proportional to N. This
means that to minimize the influence of analyzer an-
gle uncertainty, it is preferable to use a number of
analyzer angles that is as large as possible.

6. Discussion

This paper was intended to answer a practical ques-
tion: what is the number N of polarization measure-
ments that ensures optimal estimation precision of
polarimetric parameters when the time (or total flux)
available to do the measurement is fixed? We have
seen that the answer depends on which source of
noise dominantly affects the measurements. If the
noise is additive and independent of the measure-
ment time, it is better to use the minimal number
of measurements. If Poisson shot noise is dominant,
the estimation precision depends on the AOP if N ¼
3 and is independent of it and of N for N ≥ 4. A good
choice may thus be four measurements, since there is
no justification for using a larger number of measure-
ments. If the dominant noise is due to fluctuations
of the analyzer angles, the estimation variance de-
creases with the number of measurements and pro-
vides a justification for using as many different
analyzer angles as made possible by technology
and the cost of the system. If the system is affected
by another type of instrumental noise, the covariance
matrix can still be computed from Eq. (42) but the
conclusion, in terms of optimal number of measure-
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ments, may, of course, be different. Next, we address
several applications and developments of the ob-
tained results.

A. Simultaneous Presence of Different Sources of Noise

If the different considered types of noise are simulta-
neously present and have comparable orders of mag-
nitude, they interact in a complex way. However, if
they are statistically independent and sufficiently
small with respect to the intensity measurement,
their covariances (for Stokes measurements) and
their variances (for estimation of the DOLP and
the AOP) just add up. In this case, it is possible to
determine the optimal number of measurements
with the formulas determined in this paper. For
example, assume that the three above-mentioned
sources of noise are present. If we want the estima-
tion of the DOLP and of the AOP to be invariant with
respect to the AOP, we have to choose N ≥ 5. We as-
sume that the total variance can be calculated as the
sum of the approximate variances associated to each
type of noise. Let us first consider estimation of the
DOLP. Using Eqs. (21), (34), and (52), one has

VAR½P̂�ðNÞ ¼ 4ð2þ P2Þ
SNR2 N þ 2

S0
ð2 − P2Þ

þ 2σ2θP2ð1þ P2Þ
N

; ð55Þ
where SNR ¼ S0=σ is the intensity SNR relative to
additive noise (we assume that σ is independent of
N). If we set to zero the derivative of this function
with respect toN, we obtain the value ofN that mini-
mizes the variance:

NP
min ¼ σθSNR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2ð1þ P2Þ
2ð2þ P2Þ

s
: ð56Þ

The same reasoning with the AOP leads to the value
of N that minimizes the estimation variance of the
AOP:

Nα
min ¼ σθSNR

ffiffiffi
3

p

2
P: ð57Þ

For example, let us assume that SNR ¼ 500, σθ ¼ 1°,
and P ¼ 0:5. One obtains NP

min ¼ 2:3 and Nα
min ¼ 3:8.

One notices that the optimal values of N for estima-
tion of P and α are different. In this case, both are
inferior to 5, and the configuration N ¼ 5 is thus op-
timal if one wishes the estimation variance of the
DOLP and of the AOP to be independent of the
AOP. Any larger value of N would lead to higher es-
timation variance. Let us now assume that the ana-
lysis angles are less precisely known, so that σθ ¼ 3°.
Equations (56) and (57) lead to NP

min ¼ 6:9 and
Nα

min ¼ 11:3. Depending on the parameter that re-
quires the highest precision, one will thus choose
N between 7 and 11. Of course, other criteria, such
as technological feasibility, power consumption, or
cost, will also have to be taken into account.

B. Introduction of a Penalty Due to Multiple
Measurements

Until now, we have made the assumption that the
same total flux is collected, whatever the number
N of measurements. This assumption may not be va-
lid. For example, in a division of time polarizer, mak-
ing a large number of measurements may cause a
significant penalty in lost integration time. Likewise,
in the division of wavefront polarimeters, each divi-
sion is usually accompanied by the same loss of effi-
ciency. In order to take this into account, we can
assume that at each measurement, a fraction ε of
the incoming flux is lost. Consequently, the vector
of measured intensities [Eq. (4)] becomes

Fig. 2. (Color online) Theoretical and estimated variances of (a) the DOLP and (b) the AOP α as a function of the true value of the AOP in
the presence of random fluctuations of the analyzer angles. S0 ¼ 2000, P ¼ 0:7, α ∈ ½−45°;þ45°�, σθ ¼ 3° , and three values ofN ¼ 3, 4, and
8 are considered.
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I ¼
�
1
N

− ε
�
WS; ð58Þ

and thus the unbiased estimate of the Stokes vector
is

Ŝ ¼ N
1 −NεW

†I: ð59Þ

Let us first consider the case of additive Gaussian
noise. It is easily shown that the covariance of the
estimated Stokes vector [see Eq. (12)] becomes

ΓŜ ¼
�

N
1 −Nε

�
2
W†ΓIðW†ÞT ¼ N2

ð1 −NεÞ2 σ
2ðWTWÞ−1:

ð60Þ

This expression has to be compared to Eq. (13), which
corresponds to the case ε ¼ 0. Taking into account a
nonzero value of ε thus induces an increase of the
variance of the estimated Stokes vector [Eq. (18)]
by a factor 1=ð1 −NεÞ2, which is always larger than
1. The approximated variances of the DOLP
[Eq. (21)] and of the AOP [Eq. (23)] are also multi-
plied by this factor.
Let us now consider Poisson shot noise. Taking into

account Eq. (58), the covariance matrix of I is

ΓI
ij ¼

�
1
N

− ε
�X2

k¼0

WikSk if i ¼ j; 0 ; otherwise;

ð61Þ

and thus Eq. (60) leads to

ΓŜ
ij ¼

N
1 −Nε

X2
k¼0

Sk

XN
n¼1

W†
inW

†
jnWnk: ð62Þ

This expression has to be compared to Eq. (25). We
observe that taking into account a nonzero value
of ε induces a multiplication of the estimation var-
iance of the Stokes vector [Eqs. (26) and (27)], the
DOLP [Eqs. (33) and (34)], and the AOP [Eqs. (35)
and (36)] by a factor 1=ð1 −NεÞ.
Finally, it is easily seen that the penalty ε has no

influence in the case of instrumental noise due to ap-
proximate knowledge of analyzer directions. As a
consequence, in the case where the three considered
sources of noise are simultaneously present, the ap-
proximate variance of P̂ becomes

VAR½P̂�ðNÞ ¼ 4ð2þ P2ÞN
SNR2ð1 −NεÞ2 þ

2ð2 − P2Þ
S0ð1 −NεÞ

þ 2σ2θP2ð1þ P2Þ
N

: ð63Þ

This equation has to be compared to Eq. (55). If we
take the same numerical example as in Subsec-
tion 5.A, σθ ¼ 3° and ε ¼ 0:05, the value of N, which

corresponds to the minimal variance of P, isNP
min ¼ 4

and that which corresponds to minimal variance of α
is Nα

min ¼ 5. These values are lower than those ob-
tained for ε ¼ 0, which is normal since a penalty
for each measurement has been enforced.

C. Consequences of the Different Sources of Noise on
Image Quality

One has to pay attention to the fact that the above-
mentioned sources of noise manifest themselves in
different ways in an image. Assume, for example,
that we acquire a polarimetric image of a region with
uniform polarimetric properties. The additive noise
and the Poisson shot noise will result in fluctuations
of the estimated polarimetric properties from one
pixel to the next. On the other hand, the manifesta-
tion of the instrumental noise depends on the design
of the polarimetric imager. If the imager performs lo-
cal analysis of the polarization at the pixel level, such
as in a microgrid polarimetric setup [23,24], a fluc-
tuation of the polarization angle or of any other
instrumental characteristic will also appear as a
pixelwise fluctuation. If polarization modulation is
performed by rotating analyzers that modulate the
whole field of the image, the fluctuation of the polari-
metric properties will be the same for all pixels of the
image. This noise will thus appear as a bias common
to all pixels of the image. The impact of these differ-
ent types of fluctuations depends on the application.
If absolute measurement of the polarimetric para-
meters is necessary, such as, for example, in astro-
nomical measurements [25] or three-dimensional
reconstruction [3,4], the bias is an important factor.
However, if the application is detection of a target
whose polarimetric properties are different from
those of the background, the pixelwise fluctuations
due to additive and shot noise are more annoying
than a bias common to all pixels of the image.

7. Conclusion

We have studied the influence of different sources of
noise on the estimation precision of the degree of lin-
ear polarization and the angle of polarization as a
function of the number N of polarimetric measure-
ments for a fixed incoming light flux. We have shown
that, for all the considered sources of noise, the esti-
mation precision may depend on the angle of polar-
ization of the incoming light when three or four
measurements are performed, but becomes indepen-
dent of it when N ≥ 5. Moreover, the variation of the
estimation variance with N depends on the type of
noise: it increases with N when the noise is additive;
it is independent ofN in the presence of Poisson shot
noise and decreases with N when the angles of the
analyzers fluctuate. In the general case, the optimal
value of the number of measurements results from a
compromise between the robustness to these differ-
ent sources of noise.

This work has many perspectives. First, the influ-
ence of other types of instrumental sources of noise,
such as the nonperfect and fluctuating extinction
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rate of analyzers, could be studied with the approach
proposed in this paper. It would also be of great in-
terest to extend the present analysis to full Stokes
imagers that measure the four components of the
Stokes vector. The mathematics are more complex,
but we are confident that the conclusions, in terms
of variation of the estimation precision with the num-
ber of measurements, will be similar to those pre-
sented in this paper.

The authors wish to thank their anonymous re-
viewers for fruitful suggestions that greatly helped
improve the quality of this article.
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