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We address the optimization of Stokes polarimeters in the presence of signal-dependent shot noise, which is
the dominant type of noise in certain imaging systems. We show that in some precise sense, the polarimeters
optimal for additive noise are also optimal for such noise and propose polarimeter architectures in which
noise variances are equalized and independent of the input polarization state. © 2009 Optical Society of
America

OCIS codes: 260.5430, 030.4280.

Active Stokes imaging consists of illuminating a
scene with polarized light and measuring the Stokes
vector of the light scattered by the scene. The design
of Stokes imagers that minimize and/or equalize the
noise power in the different Stokes channels has been
widely studied [1–6]. It is usually assumed that the
noise that affects the image is additive and indepen-
dent of the level of the signal. However, in many
cases, for example, photon counting systems or quan-
tum detectors with a sufficient level of light, the shot
noise due to the useful signal is dominant compared
to the signal independent detector noise. It is thus
important to determine which are the optimal Stokes
polarimeter structures in the presence of signal de-
pendent shot noise. This problem has already been
addressed in [7,8] with different approaches.

We consider Stokes polarimeters that perform N
intensity measurements to estimate the Stokes vec-

tor. Let us denote S� = �S0 ,S1 ,S2 ,S3�T the four-

dimensional Stokes vector to estimate and I�

= �I1 , . . . ,IN�T the N-dimensional vector representing
the intensity measurements. The number of intensity

measurement must be N�4 for the estimation of S� to
be possible. In the absence of noise, one has the rela-
tion

I� = WS� , �1�

where W is the N�4 measurement (or synthesis) ma-
trix. In its most general form, the ith line of W, with
i� �1,N�, is the first line of the Mueller matrix of a
perfect polarizer whose totally transmitted polariza-

tion state is defined by the reduced Stokes vector d� i,

where d� i is the three-dimensional unit-norm vector.

This line thus has the following form: �1,d� i
T� /2 [4]. In

practice, polarimeter architectures are such that the

degrees of freedom for choosing the vectors d� i are lim-
ited. For example, variable retarder systems consist
of two fixed retarders with variable delays and a
fixed polarizer [4]. Rotating retarder fixed polarizer
(RRFP) systems [3] consist of a fixed polarizer and a
retarder with a fixed delay whose angle is variable.

In the presence of Poisson shot noise, I� is a random
vector such that each of its elements Ii, i� �1,N� is a
Poisson random variable of mean value �Ii�
=�j=0

3 WijSj, where �.� denotes an ensemble average.
The probability law of a Poisson random variable of
mean � is P�n�=exp�−���n /n!. Its mean and its vari-
ance are both equal to �. In a vector form, one thus

has �I��=VAR�I��=WS� , where VAR[.] denotes the vari-

ance of a random vector. To estimate S� from I�, we will
use the following estimator:

Ŝ = W†I� , �2�

where W†= �WTW�−1WT (T denotes matrix transposi-
tion) is the pseudoinverse of W. If N=4, W† is the
classical inverse W−1 and is obviously the optimal es-

timate of S� . If N�4, it is known that the pseudoin-
verse matrix is the maximum-likelihood estimator of

S� in the presence of additive Gaussian noise [9]. In
the presence of Poisson noise, it is a simple and
closed-form algorithm that gives good results in prac-
tice. We shall thus use it in the following.

It is clear that Ŝ is an unbiased estimator, since

�Ŝ�=W† �I��=S� . Its covariance matrix has the follow-

ing expression: �Ŝ=W†�I�W†�T, where �I is the cova-

riance matrix of I�. From the properties of shot noise,
the fluctuations are statistically independent from
one intensity measurement to the other. The covari-

ance matrix �I of I� is thus a diagonal matrix whose
ith element is the variance of the ith intensity mea-
surement

�ij
I = ��Ii� = �

k=0

3

WikSk, if i = j

0, otherwise
	 .

One thus has
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�ij
Ŝ = �

k=0

3

Sk�
n=1

N

Win
† Wjn

† Wnk. �3�

The variances on each component of Ŝ are

�i = �ii
Ŝ = �

k=0

3

Sk�
n=1

N

�Win
† �2Wnk = �

k=0

3

QikSk, �4�

where the matrix Q is defined as

Qij = �
n=1

N

�Win
† �2Wnj. �5�

A standard performance criterion for a Stokes polar-

imeter is the total variance, which is the trace of �Ŝ

F�W,S� � = trace��Ŝ� = �
i=0

3

�i = �
k=0

3

qkSk = q� · S� , �6�

where the vector q� is defined by qk=�i=0
3 Qik and · de-

notes the scalar product. Contrary to what happens
in the presence of additive noise [3,4], this criterion
does depend on the actual value of the Stokes vector.
A possible way of defining a unique performance cri-
terion is to consider a minimax optimization, that is,
minimize with respect to W the following function:

F�W� = max
S�

�F�W,S� ��. �7�

Any Stokes vector S� can be written as S� =I0�1,Ps�T�T,
where I0 is the intensity and P is the degree of polar-
ization, which belongs to the interval [0, 1]. The nor-
malized Stokes vector s� is three-dimensional and unit
norm. It represents the principal state of polarization

of S� . Using this notation, Eq. (6) becomes

F�W,S� � = I0�q0 + P�� · s��, �8�

where v� = �q1 ,q2 ,q3�T. Let us consider the two terms
of this expression. The first one, I0q0, is independent
of s�. One has q0=�n=1

N Wn0�i=0
3 �Win

† �2. Taking into ac-
count that ∀n, Wn0=1/2, one has

q0 =
1

2
trace��WTW�−1� = Fadd�W�. �9�

The function Fadd�W� is well known in polarimeter
optimization. Indeed, if the noise is signal indepen-
dent and additive, the trace of the covariance matrix

of Ŝ is proportional to Fadd�W� [3,4]. The second term
of Eq. (8), I0Pv� ·s�, depends on s� and P. For a given in-
tensity I0, it is obviously maximized by P=1 (totally
polarized light) and s�max=v� / 
v�
. The function to mini-
mize with respect to W is thus

F�W� = I0�Fadd�W� + 
��
�, �10�

with 
v�
= ��i=1
3 qi�1/2. Both terms of the sum are posi-

tive.
From now on, we shall consider the particular case

where N=4 measurements are performed and thus
W†=W−1. In this case, it has been shown that the ma-

trices Wopt that minimize Fadd�W� are such that the

points defined by the vectors d� i of each row of matrix

W� form a regular tetrahedron [3,4,6]. If W has such a
structure, one has the two following properties: ∀j

�0, �i=0
3 Wij=0 and ∀j, �i=0

3 �Wij
−1�2=A. These two prop-

erties lead to ∀k ,qk=0. Consequently, when W has
this peculiar structure, 
v�
=0, it is obviously the
minimal possible value of 
v�
. This demonstrates that
the polarimeter structures that are optimal for addi-
tive signal independent noise are also optimal for sig-
nal dependent Poisson noise in the sense of the mini-
max criterion defined in Eq. (10). Indeed, if W has
such a structure, Fadd is minimal and 
v�
=0. A second
interesting result is that since v� =0, the total vari-

ance F�W ,S� �=�i=0
3 �i is independent of the input prin-

cipal polarization state s� [see Eq. (8)]. However, it
must be noted that contrary to the case of additive
noise, the variances �i on each Stokes channel may
vary with s�. Indeed, Eq. (4) yields

�i = �
j=0

3

QijSj = I0�Qi0 + Pu� i · s��, �11�

with u� i= �Qi1 ,Qi2 ,Qi3�T. The polarization state that
maximizes �i is s�max

i =u� i / 
u� i
 and that which mini-
mizes it is s�min

i =−s�max
i , which represents the state or-

thogonal to s�max
i . The maximal and minimal values of

the variance are thus given by

�i
max = I0�Qi0 + P
u� i
�, �i

min = I0�Qi0 − P
u� i
�. �12�

If P is close to zero, the variances become indepen-
dent of the polarization state. The situation is then
equivalent to signal independent additive noise
whose variance is controlled by the mean value of S0,
that is, I0Qi0, as was already noticed in [3]. In the
general case however, the estimation variance of a
given Stokes parameter depends on the true values of
all Stokes parameters.

If W has the regular tetrahedron structure, it has
the following properties:

• ∀i� �0,3�, W0i
−1=Wi0,

• ∀i� �1,3�, j� �0,3�, Wij
−1=3Wji.

Consequently, one has uj
i=9�k=0

3 �Wki�2Wkj, where uj
i

denotes the jth coordinate of vector u� i, and the ma-
trix Q has the following structure:

Q = �
1/2 0 0 0

3/2 u1
1 u2

1 u3
1

3/2 u1
2 u2

2 u3
2

3/2 u1
3 u2

3 u3
3
� , �13�

and thus one always has q0=5 and �0=I0 /2 indepen-
dently of s�.

For illustration purposes, let us consider the two
following measurement matrices:
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Wa = �
0.5 0.2895 0.3624 − 0.1867

0.5 0.2895 − 0.3624 0.1867

0.5 − 0.2895 − 0.1885 − 0.3615

0.5 − 0.2895 0.1885 0.3615
� ,

Wb = �
0.5 0.5 0 0

0.5 − 0.1667 − 0.4080 0.2355

0.5 − 0.1667 0 − 0.4710

0.5 − 0.1667 0.4080 0.2355
� .

The first one is an optimal RRFP configuration as
given by Sabatke et al. [3]. It consists of a plate of re-
tardation �=132° that is rotated by four different
angles ±51.7° and ±15.1. The second one is given by
Savenkov [6]. In the presence of additive noise, these
two matrices are totally equivalent; they both lead to

a noise covariance matrix on S� , �WTW�−1, which is di-
agonal with eigenvalues (1, 3, 3, 3) [4]. We will see
that they have different behaviors in the presence of
Poisson shot noise.

Let us assume that the input light has an intensity
of I0=100 photoelectrons and a degree of polarization
equal to P=1. Since q0=5, the total noise variance is
F�W�=500. We have represented in Table 1, for both
matrices Wa and Wb, the values of �i

min and �i
max for

i� �1,3� (�0 is constant and equal to 50) and the azi-
muth 	i

max and ellipticity 
i
max of the input polariza-

tion states s� for which �i
max is reached. For matrix Wa,

the variance on S1 is independent of the input polar-
ization state. On the other hand, �2 and �3 vary with
s� in the interval [100, 200]. It is seen in Table 1 that
for this particular architecture, �2 is maximal when
the input polarization is linear with azimuth 0° and
�3 is maximal when it has azimuth 90°. Since mini-
mal and maximal variances are reached for orthogo-
nal input states, �2 is maximal when �3 is minimal
and vice versa. When the measurement matrix Wb is

used, the variances on the three Stokes parameters
depend on the input polarization state and reach
their maxima for three different input states.

An attractive property for a measurement matrix
would be that all variances �i do not depend on s�. The
only two matrices that have this property are (within
arbitrary row permutations)

Wc = 1/2 � �
1 1/
3 1/
3 1/
3

1 − 1/
3 − 1/
3 1/
3

1 − 1/
3 1/
3 − 1/
3

1 1/
3 − 1/
3 − 1/
3
� , �14�

and the matrix Wc� obtained from Wc by reversing the
signs of all the elements of the last three columns. It
is easily verified that ∀i, j� �1,3�� �1,3�, uj

i=0. The
noise variances are thus independent of s� and equal
to �0=I0 /2 and ∀i� �1,3�, �i=3/2I0. The situation is
very similar to the case of additive noise; the vari-
ances on the three last elements of the Stokes vector
are “equalized,” equal to three times the variance on
S0, and they are independent of the input polariza-
tion state. However, in the case of Poisson noise,
these properties are not obtained for all polarimeter
structures based on regular tetrahedra but only in
the case of measurement matrices Wc and Wc�.

The results presented in this Letter make it pos-
sible to optimize Stokes polarimeters in the presence
of Poisson shot noise. It particular, we have shown
that polarimeter structures that minimize and equal-
ize the noise variance on each Stokes parameter ex-
ist. An interesting perspective to this Letter is to de-
termine the practical polarimeter architectures that
make it possible to easily generate a measurement
matrix, such as Eq. (14).

The author thanks Arnaud Bénière for fruitful dis-
cussions.
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Table 1. Minimal, Maximal Variance, �
i

max, and �
i

max

for Each Element of the Stokes Vector

�i
min �i

max 	i
max (°) 
i

max (°)

Matrix Wa

S1 150 150 – –

S2 100 200 0 0

S3 100 200 90 0

Matrix Wb

S1 50 250 0 0

S2 64 237 90 27

S3 64 237 90 −27
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