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Active Stokes imaging consists in illuminating a scene with polarized light and in measuring the Stokes
vector of the scattered light. We present a method for determining the polarization state of illumination that
maximizes the observed contrast between a target and the background when the scene is partially depolar-
izing and in the presence of additive Gaussian detection noise. © 2009 Optical Society of America

OCIS codes: 260.5430, 030.4280.

Active Stokes imaging consists in illuminating a
scene with polarized light and in measuring the
Stokes vector of the scattered light. This provides
useful information about the scene and makes it pos-
sible to discriminate objects that have different
polarization-scattering properties. Many applications
are found in biomedicine, remote sensing, or imaging
through turbid media. The design of Stokes imagers
that minimize and/or equalize the noise power in the
different Stokes channels has been widely studied
[1]. In this Letter, we seek to optimize the contrast
between two regions in the scene that have different
polarization properties, such as a target of interest
and a background. We will consider that the struc-
ture of the Stokes imager is fixed and that the only
degree of freedom available to optimize the contrast
is the polarization state of the illumination.

The appropriate expression of the contrast in an
image depends on the statistical properties of the
noise that perturbs it [2]. In this Letter, we will as-
sume that the noise is additive and Gaussian, since it
is a simple model, generally adequate for detection
noise. We propose a method for determining the po-
larization state of illumination that maximizes the
contrast in the presence of such noise and illustrate it
in several examples. These results will be useful for
optimizing information extraction from active Stokes
imagers in remote sensing and biomedical applica-
tions.

A Stokes vector S� is estimated from N intensity

measurements I� �N�4� in the following way:

I� = WS� + b� , �1�

where W is a N�4 matrix that is determined as part

of the calibration process of the polarimeter and b� is

a noise vector that will be assumed independent of S� .

Then S� is retrieved from I� using the pseudoinverse
matrix W†= �WTW�−1WT (one has W†=W−1 if N=4), so

that the estimate of S� is

S�̂ = W†I� = S� + n� , �2�

where n� =W†b� . With good approximation, the noise b�

can be considered white ��b�b�T�=�2I�, where T de-

notes vector transposition, �.� ensemble averaging, I

is the 4�4 identity matrix, and �2 is the variance of

b� . The noise n� that perturbs the measure of S� may
thus not be white, since its covariance matrix is

�n = �n�n� T� = �2�WTW�−1. �3�

Our purpose is to discriminate two regions a and b
whose polarimetric responses are described by their
Mueller matrices Ma and Mb. We use the Mueller for-
malism [3], since we are interested in remote sensing
or biomedical applications, where scenes are often
highly depolarizing and the Jones formalism [3] is
not sufficient. The scene is illuminated with purely
polarized light that can have any state on the
Poincaré sphere and that is represented by its Stokes

vector S� (see Fig. 1). The Stokes vector scattered by

region a �b� is S� a=MaS� �S� b=MbS� �. The measures are
perturbed by the additive Gaussian noise n� defined
above. The adequate expression of the contrast be-
tween the two regions is [4]

C�S� � = �S� a − S� b�T�n
−1�S� a − S� b� =

S� TGS�

�2
, �4�

with

G = �Ma − Mb�TWTW�Ma − Mb�. �5�

It can be noticed that G is a symmetric matrix. Equa-
tion (4) means that if two scenes are such that the

couples �S� a ,S� b� are different, but C�S� � is identical, an
optimal processing algorithm (performing detection
or estimation, for example) applied to these two
scenes will lead to identical performance [2]. In the
sequel of this article, for illustration purpose, we will
consider that W is optimal in the way defined in [5].
It has the property that WTW is diagonal with ele-
ments �1,1/3,1/3,1/3�, and thus the variance on the

Fig. 1. (Color online) Principle of active Stokes imaging.
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Stokes vector estimates [see Eq. (3)] is �2 for S0 and
3�2 for all other elements of the Stokes vector (the
noise is “equalized”).

Our objective is to determine the illumination

Stokes vector S� that maximizes the contrast C�S� �.
The constraint on this optimization problem is that

the vector S� represents purely polarized light, that is,

it can be written as S� T=I0�1,s�T�, where s�, the reduced
Stokes vector, is a three-dimensional unit-norm vec-
tor and I0 is a scalar that denotes intensity of light.
Let us write the matrix G as follows:

G = �G00 m� T

m� G̃
� ,

where G̃ is a 3�3 symmetric matrix and m� is a
three-dimensional vector. With this notation, the ex-
pression of the contrast becomes

C�s�� =
I0

2

�2
�G00 + 2s�Tm� + s�TG̃s��. �6�

It is seen that the contrast is trivially proportional to
the intensity signal-to-noise ratio I0

2 /�2. Our goal is to
find the vector s�max that maximizes C�s�� under the
constraint that �s��2=1. This optimization problem
has already been encountered by Kostinski et al. in a
different context [6]. The solution of this problem is
simple when m� =0. This happens in particular when
the matrices Ma and Mb have the same diattenuation
and polarizance vectors [3]. In this case, the function

to maximize is simply F�s��=s�TG̃s�. The solution to this
problem is well known; the vector s�max that maxi-

mizes F�s�� is the eigenvector of G̃ associated to the
largest eigenvalue.

As an example of application, let us take two
purely depolarizing matrices with different polariza-
tion properties. That is, Ma and Mb are diagonal with

elements respectively equal to D� a= �1,0.5,0.4,0.1� for

Ma and D� b= �1,0.3,0.3,0.4� for Mb. Since the matri-
ces are diagonal, the solution is trivial, s�max

= �0,0, ±1�T, since these vectors correspond to the
largest difference of depolarization between the two
regions �D3

a−D3
b � =0.3 and lead to the same maximal

value of F=0.09. They represent left and right circu-
lar states. More generally, it can be noted that or-
thogonal polarization states corresponding to s� and
−s� always lead to the same value of F�s��; when m�

=0� , the optimization problem thus has at least two
solutions. The minimum value of F�s�� is 0.01 and is
obtained for linear polarization at 45°, s� = �0,1,0�T.

Let us now consider the general case where m� �0.
The function in Eq. (6) can be simplified by diagonal-

izing the symmetric matrix G̃, that is, defining G̃
=X�XT, where � is a diagonal matrix with diagonal
values �i, i� 	1,3
 and X is a unitary matrix. Defin-
ing the new variables u� =XTs� and p� =XTm� , the func-

tion to optimize becomes F�u� �=2u� Tp� +u� T�u� , under
the constraint �u� �2=1. The associated Lagrange func-
tion is

F��u� � = 2�
i=1

3

piui + �
i=1

3

�iui
2 − ��

i=1

3

ui
2,

where � is the Lagrange parameter. Annulling its
partial derivatives with respect to ui, i� 	1,3
, one
obtains a set of three equations, ui��−�i�=pi, i
� 	1,3
. Substituting these equations into the con-
straint, that is, �iui

2=1, it is easily seen that a neces-
sary condition for � being an acceptable value of the
Lagrange parameter is that it verifies the following
equation:

p1t2t3 + p2t1t3 + p3t1t2 = t1t2t3, �7�

with ti= ��−�i�2. This is a polynomial equation of or-
der 6 in �. It thus has six roots �k, k� 	1,6
 that can
be determined numerically by standard methods
such as Jenkins–Traub [7]. Only real-valued roots
are relevant. The vectors u� k associated to each real-
valued root �k can be determined in the following
way: if ∀i� 	1,3
, �k��i, the vector u� k is given by

ui
k = pi/��k − �i�. �8�

If ∃i, �k=�i, several cases must be considered. Let us
assume, without loss of generality, that the eigenval-
ues are in ascending order: �1��2��3. Suppose for
example that �k=�1 (this can happen only if p1=0).
The different cases to consider are

• if �1��2: u2
k=p2 / ��1−�2� and u3

k=p3 / ��1−�3�.
This is acceptable if 	u2

k
2+ 	u3
k
2�1. In this case, one

has two possible solutions that correspond to u1
k

= ±�1− 	u2
k
2+ 	u3

k
2.
• if �1=�2: u3

k=p3 / ��1−�3�. This is acceptable if
	u3

k
2�1. In this case, one has an infinity of possible
solutions that all verify the relation 	u1

k
2+ 	u2
k
2

=1− 	u3
k
2.

It can be noticed that if �1=�2=�3, and if at least one
value of pi is different from zero, then � cannot be
equal to �, so the two previous cases are the only pos-
sible ones. The cases �k=�2 and �k=�3 are treated in
the same way.

After all the possible vectors u� k that correspond
to local extrema have been computed, the one
that maximizes F�u� k� is determined: u� max

=arg maxu� k	F�u� k�
. Finally, the reduced Stokes vector
that leads to the maximal contrast is s�max=Xu� max. It
is also possible to determine the maximum of the
function F�u� � with standard numerical optimization
software. However, these methods lead to local
maxima, whereas the function F�u� � can have more
than one maximum. It is thus necessary to solve the
problem with a sufficient number of different starting
points. A further interest of the above-described
method is to be able to determine cases where the op-
timum is not unique.
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Let us take an example of application of this
method. Assume that the depolarizing matrix Ma is
the same as before, but Mb now has nonzero polari-
zance such that

Mb = 

1 0 0 0

a � 0.866 0.3 0 0

a � 0.5 0 0.3 0

0 0 0 0.4
� , �9�

where a is a scalar. The normalized polarizance vec-

tor P� T= �0.866,0.5,0�, which is the principal polariza-
tion state of light obtained when illuminating the
material with totally depolarized light [3], corre-
sponds to a linear state of azimuth 15°. It can be
shown that m� =a�−0.173,−0.05,0�T [see Eq. (6)]. This
vector is collinear to the reduced Stokes vector s�m of a
linear polarization state of azimuth 98.1°, which is
represented in Fig. 2 with a diamond symbol on the
Poincaré sphere. We have also plotted in Fig. 2 the
trajectory of s�max, determined with the method de-
scribed above, when a takes ten different values be-
tween 0 and 0.35 (it has been checked that for all
these values of a, Mb is a physically realizable Muel-
ler matrix [3]).

When a is zero, the optimal state is circular as
shown above. When a increases, the ellipticity of s�max

decreases, and its azimuth remains constant at 95.1°,
which is close to that of the vector s�m. Then, when
a	0.2841, the ellipticity becomes equal to zero (the
optimal state is rigorously linear), and its azimuth
varies slowly towards that of s�m. Indeed, as a in-
creases, the norm of m� increases and so does the in-
fluence of the term 2s�Tm� in Eq. (6). It is thus normal
that s�max gets more collinear to s�m so that this term
increases.

We have represented in Fig. 3 the variation with a

of the contrast C�s�� for different illumination states:
the optimal state s�max, the left circular state, and the

linear state with azimuth 95.1°. When a=0, the cir-
cular state is optimal, and the contrast is 2.3 times
higher than what it would be for the linear state. On
the other hand, when a	0.25, the linear state is
quasi optimal, and one gains a factor 1.35 in contrast
compared to a circularly polarized illumination. This
illustrates the interest of adapting the illumination
state of polarization to the characteristics of the re-
gions to discriminate.

In summary, a method has been given to compute
the polarization state of illumination that optimizes
the contrast for region discrimination in active
Stokes images perturbed with additive Gaussian
noise. A significant increase of the contrast can be ob-
tained by adapting the state of polarization of illumi-
nation to the two regions to discriminate. This
method is thus useful to optimize the information
content of active Stokes images of partially depolar-
izing scenes in remote sensing and biomedical optics.
The study of contrast optimization in the presence of
photon detection noise [8] is an interesting perspec-
tive to this work, since the optimal illumination state
may be different in this case.

The author wishes to thank Arnaud Bénière for
fruitful discussion.
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Fig. 2. Solid curve, optimal polarization state on the
Poincaré sphere as a varies (solid curve). The matrix Ma is

diagonal with elements D� a= �1,0.5,0.4,0.1�, and the matrix
Mb is in Eq. (9). Diamond, reduced Stokes vector s�m collin-
ear to m� .

Fig. 3. Variation of the contrast C�s�� for different states of
illumination s�, and �2=1/3. Solid curve, optimal value
s�max. Dashed curve, left circular; dotted curve, linear with
azimuth 95.1°.
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