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Within the general framework of active imaging we address the degree of polarization (DOP) estimation in the
presence of additive Gaussian detector noise. We first study the performance of standard DOP estimators and
propose a method to increase estimation precision using physically relevant a priori information. We then con-
sider the realistic case of nonuniform illumination distribution. We derive the Cramer–Rao lower bound and
determine a profile likelihood-based estimator. We demonstrate the efficiency of this new estimator and com-
pare its performance with other standard estimators as a function of the degree of nonuniformity of the
illumination. © 2008 Optical Society of America

OCIS codes: 260.543, 030.4280.

1. INTRODUCTION
Imaging systems that measure the degree of polarization
(DOP) have been a topic of growing interest in several do-
mains such as machine vision [1], biomedical imaging [2],
and remote sensing [3]. These systems can for example
reveal contrasts between parts of a scene that have the
same intensity reflectivity but different polarimetric
properties [4].

One of the simplest active polarimetric imaging prin-
ciples consists of illuminating the scene with a totally po-
larized light beam and computing the orthogonal state
contrast image (OSCI) from two intensity images of the
same scene. The first image is formed with the fraction of
the backscattered light polarized parallel to the incident
light, and a second one with light orthogonal to the inci-
dent one. It should be noted that the polarization state of
the incident light need not be linear, but may be any pure
polarization state on the Poincaré sphere. Moreover, it
has been shown in [5] that the OSCI is an estimate of the
DOP of the backscattered light if the observed materials
are purely depolarizing. We will make this assumption in
the remainder of this paper.

However, the intensity measurements used to compute
the DOP images are corrupted with noise, and it is neces-
sary to take this into account in order to improve the per-
formance of DOP estimators. The estimation of phase de-
lay has been studied in the presence of additive Gaussian
noise coupled to photon counting noise [6]. Concerning
DOP estimation, the influence of speckle noise [7] and of
coupled speckle and photon noise in low-flux-intensity im-
ages [8] has been studied. More recently, we have ad-
dressed the case of additive Gaussian noise [9]. We have
shown in particular that this type of noise poses specific

problems at low SNR since the variances of usual estima-
tors diverge.

In this paper, we consider that illumination is weakly
coherent, so the speckle noise is not dominant and may be
neglected. This assumption has been verified for the wide-
band light sources we will use, but also with the high-
power laser sources used in [10], which do not lead to
speckled images. We thus focus on two important issues
relative to the estimation of DOP when the intensity im-
ages used to form the DOP image are perturbed by detec-
tor noise, which can be modeled as additive and Gaussian
[9]. First, we propose and characterize a way of avoiding
the divergence of DOP estimators when the SNR is low in
the intensity images. Second, we address the problem of
nonuniform illumination of the scene. Indeed, in DOP im-
aging, the illumination of the scene is often nonuniform
owing to a spatially or temporally nonuniform light
source. Standard estimators of the DOP assume that the
illumination is the same on all pixels of the sample. We
propose a method to reliably estimate the DOP when this
hypothesis is not fulfilled.

The paper is organized as follows. In Section 2, we re-
view the main results on DOP estimation precision in the
presence of additive Gaussian noise and uniform illumi-
nation. In Section 3, we compare the performance of sev-
eral DOP estimators in terms of bias and standard devia-
tion and show that it is possible to efficiently regularize
the maximum-likelihood (ML) estimator by using physi-
cally relevant a priori information. Section 4 is devoted to
the nonuniform illumination case. We determine the
Cramer–Rao lower bound (CRLB) and the profile-
likelihood estimator. We demonstrate the superiority of
this new estimator over standard ones and characterize
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its performance as a function of the degree of nonunifor-
mity of the illumination.

2. DOP ESTIMATION IN THE PRESENCE OF
ADDITIVE GAUSSIAN NOISE

A simple but efficient active polarimetric active imaging
mode can consist of illuminating the scene with a totally
polarized beam and forming two spatial or temporal data
samples relative to the same object in the scene [11–13].
The first one X= �Xi , i� �1,N�� is formed with the back-
scattered light in the same state of polarization as the in-
cident light. The second one Y= �Yi , i� �1,N�� is formed
with the light polarized orthogonally to the incident state.
One can gather those two sets of measurements in a the
statistical sample �= �X ,Y�. This sample can be spatial if
we consider a neighborhood of pixels corresponding to the
same object in the scene, or temporal if we consider a
single pixel in several acquisitions. We assume that X and
Y are polluted with an additive Gaussian noise and that
the incident beam is noncoherent temporally and spa-
tially uniform. One thus has two vectors of random vari-
ables:

Xi = mX + ni
x,

Yi = mY + ni
y, �1�

where mX and mY are the true values and each measure
is perturbed by additive noises ni

x and ni
y whose

probability-density functions (PDF) are assumed Gauss-
ian with zero mean and variance �2. The noises ni

x and ni
y

are assumed statistically independent. We will assume
that the materials present in the scene only depolarize
light without otherwise affecting the state of polarization.
In this case, the degree of polarization of the light back-
scattered by the scene is defined as

P =
mX − mY

mX + mY

. �2�

The parameters of the problem are the two average val-
ues mX and mY. If one considers the total intensity I

=mX+mY, one can define another parametrization �I ,P�
where mX=I�1+P� /2 and mY=I�1−P� /2.

A first approach to determine the potential precision es-
timation of the DOP is to compute the CRLB. The CRLB
is a lower bound on the variance that may be obtained by
an unbiased estimator. Taking into account the noise
model in Eq. (2) the expression of the CRLB of parameter
P is [9]

CRLB =
�1 + P2�

SNR2
, �3�

where

SNR =
I�N

�2�
�4�

corresponds to the averaged SNR on the intensity image.
The CRLB is independent of the estimator and thus char-
acterizes the estimation problem. It can thus serve as a

benchmark to evaluate the performance of actual unbi-
ased estimators.

A classical way to determine good estimators is the
Maximum-Likelihood (ML) principle. The ML estimator
is not always efficient for a fixed number N of data, but it
has good asymptotic properties as N increases [14]. The
ML estimator of P can be shown to have the expression [9]

P̂ml =
�i=1

N Xi − �i=1
N Yi

�i=1
N Xi + �i=1

N Yi

. �5�

By using the above defined characteristics of the random
variables Xi and Yi, one can express this estimator as

P̂ml =
SNR � P + b1�

SNR + b2�
, �6�

where SNR is defined in Eq. (4) and P the true value of
the DOP. The variables b1� and b2� are two independent
Gaussian random variables with zero mean and a vari-
ance of 1.

Equation (6) shows that P̂ml is the ratio of two normal
random variables. The probability-density function (PDF)
of this type of random variables has been determined in
[15]. By using the results therein, we have shown in [9]

that the PDF of P̂ml can be expressed as

P��� = �P1��� + �1 − ��P2���, �7�

where �=exp�−SNR2�1+P2� /2� and

P1��� =
1

��1 + �2�
,

P2��� =
SNR

�2��1 − ��

1 + �P

�1 + �2�3/2
F	SNR

�1 + �P�

�1 + �2 

�exp	−

SNR2�� − P�2

2�1 + �2� 
 ,

with F�x�= �erf�x /�2�−erf�−x /�2�� /2, and erf�x�
=2/���0

x exp�−t2�dt is the classical error function.

This expression shows that the PDF of P̂ml is the
weighted sum of two PDF. The first one P1 is the Cauchy
PDF [16]. It is known that all its statistical moments, in-
cluding average and variance, are not defined. Its main
characteristic is to lead to very large deviations with sig-
nificant probability, which makes it a noise particularly
difficult to handle. Thanks to the exponential factor, all
statistical moments of the PDF P2 are defined. One can
see on Fig. 1 that as SNR increases, P gets close to a
Gaussian PDF with a mean value equal to P and variance
equal to �1+P2� /SNR2 (that is, to the CRLB). For low
SNR, the PDF is close to a Cauchy law which is not even
centered on the true value of the DOP.

3. IMPROVEMENT OF DOP ESTIMATION

In this section, we will compare different estimators of
the DOP and propose an efficient method to regularize the
ML estimator based on physically relevant a priori knowl-
edge.
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A. Comparison of DOP Estimators
Besides the ML estimator defined in the previous section,
let us first consider the two following estimators:

P̂em =
1

N
�
i=1

N
Xi − Yi

Xi + Yi

, �8�

P̂med = median�Xi − Yi

Xi + Yi

 . �9�

The estimator P̂em consists of computing the empirical
mean of the pixelwise estimates of the DOP. The estima-

tor P̂med is the median of the sample constituted of the
pixelwise estimates of the DOP. We estimate the empiri-
cal means and standard deviations of these estimators
with Monte Carlo simulations and compare them with
those of the ML estimator in Fig. 2. The value of P is set
to 0.5 and the size of the sample to N=9, which corre-
sponds, for example, to temporally averaging nine acqui-
sitions.

It is observed that empirical means and standard de-
viations of both the ML and the empirical mean estima-

tors diverge at low SNR. This is because the probability of
having a large, Cauchy-like deviation in some of the 104

generated samples is not negligible. For higher SNR val-
ues, the biases of both estimators tend to zero, and their
standard deviations tend to the CRLB. However, it is
noted that the ML estimator becomes “well-behaved” for
much lower values of the SNR than the empirical mean
estimator, which makes the former preferable to use.

On the other hand, the estimated mean and standard
deviation of the median estimator do not diverge for low
SNR. Indeed, the median of a Cauchy law is defined and

equal to zero, and this is why the estimated mean of P̂med

tends toward zero for low SNR. That its standard devia-
tion goes lower than the CRLB for very low SNR is theo-
retically possible, as the estimator is biased. However, in
every other case, it is noted that this estimator always
yields a higher standard deviation than the CRLB, and
thus than the ML, even at higher SNR.

B. Experimental Results
To illustrate these conclusions, we have performed the fol-
lowing experiments with a Basler A312f, 12 bit camera. A
piece of homogeneous diffusive plastic is illuminated with
a linearly polarized beam from an incoherent light source.
The CCD delivers only positive gray levels, but we have
added an offset during the acquisition, which is a common
experimental practice especially when low intensity levels
must be detected. When the offset is subtracted after the
measure, one obtains a Gaussian distribution with nega-
tive values for low SNR. Moreover, at low SNR, it may
happen that the two measured values Xi and Yi are such
that Xi+Yi=0, so that the value of the estimated P is ei-
ther infinite or not defined. We choose not to take those
measurements into consideration.

Two samples X and Y are acquired, corresponding re-
spectively to the backscattered light in the same polariza-
tion state as the incident beam and light polarized or-
thogonally to the incident state. Those samples contain
50�50 pixels and are acquired successively 9 times. The
system aperture is deliberately reduced to obtain low
SNR values and mimic operational situations of long-
range object detection. We thus have 2500 realizations of

Fig. 2. (Color online) Estimated means; standard deviations of estimators P̂em, P̂med, P̂ml; and square root of CRLB for N=9 samples and
P=0.5. The estimations are made with 104 realizations.

Fig. 1. (Color online) PDF P [see Eq. (7)] for two values of the
SNR and P=0.5; Gaussian PDF with variance �1+P2� / �SNR2� for
SNR=9, P=0.5.
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the random vectors X= �Xi , i� �1,N�� and Y= �Yi , i
� �1,N�� with N=9. To estimate the mean and standard
deviation of the estimators we will use these 2500 realiza-
tions.

The histograms, the estimated mean, and the standard

deviations of the DOP estimators P̂med, P̂ml, and P̂mlt ap-
pear on Fig. 3. In Table 1 we compare these experimental
results with Monte Carlo simulations and observe that
they are in good agreement. One notices, however, that
the results of the empirical mean estimator are better
than those indicated by the Monte Carlo simulations:
This is because we did not consider the measurements
that lead to infinite or not defined estimates of the DOP,
which artificially reduces the standard deviation of this
estimator.

C. Improvement of the ML Estimator
On the histograms of Fig. 3, we can see that all the esti-
mators considered can lead to estimated values of P that
are negative or larger than 1. Such values are physically
unrealistic. Indeed, it is seen from the definition of P in
Eq. (2) that it must be smaller than 1. Moreover, if the
materials in the scene only depolarize light, one must
have mX�mY. Indeed, when noise is absent, there cannot
be more light in the orthogonal state than in the parallel
state: Equality happens when the light backscattered by
the scene is totally depolarized.

It is possible to take into account this knowledge to im-
prove the performance of the ML estimator. Let us define
the new “truncated” estimator as

P̂mlt = P̂ml if P̂ml � �0,1�;

=0 if P̂ml � 0;

=1 if P̂ml � 1. �10�

In order to characterize its performance, we have per-
formed Monte Carlo simulations and estimated the bias

b=P− �P̂�, the standard deviation �=���P− P̂�2�, and the

root mean square deviation RMSD=�b2+�2. The RMSD
is a way of representing the compound effect of bias and
variance on the global deviation of an estimator.

The results are presented in Fig. 4. The estimated bias
and standard deviation of the estimators for P=0.1 are in
perfect agreement with the experiments illustrated on

Fig. 3. It is seen that P̂mlt naturally does not diverge any-
more, and its RMSD is always lower than that of the ML
estimator. It is even noted that the standard deviation of

�P̂mlt� can be lower than the CRLB, which is theoretically
possible as this estimator is biased. Moreover, according

to the simulations, �P̂mlt� converges to a value about 0.36
as the SNR decreases toward 0. This value can be ob-
tained theoretically, as described in Appendix A. It can

thus be concluded that the P̂mlt improves the estimation
performance and efficiently avoids aberrant results. It
should thus be used whenever the physical hypotheses
from which it is derived are fulfilled.

4. ESTIMATION OF THE DOP IN THE
PRESENCE OF NONUNIFORM
ILLUMINATION

The ML estimator described in the previous section is
based on the hypothesis that all the pixels in the sample
have the same mean values mX and mY [see Eq. (2)]. If the
reflectivity of the material is assumed homogeneous in-
side the sample, this corresponds to also assuming that
the illumination is uniform. However, this may not be the
case in practice. Indeed, the beam that illuminates the
scene may be spatially nonuniform, and the illumination
can also be temporally nonuniform especially if a pulsed
illumination system is considered.

In this section, we thus address the problem of estima-
tion of the DOP in the presence of nonuniform illumina-
tion. We first define a new statistical model that takes
into account the nonuniform illumination as a nuisance
parameter. We then determine the CRLB and the ML es-
timator when the illumination is nonuniform but known,
to serve as a benchmark. We finally determine the profile
likelihood estimator adapted to cases where the illumina-

Fig. 3. (Color online) Histograms of P̂em, P̂med, P̂ml, and P̂mlt [see
Eq. (8), Eq. (9), Eq. (5), and Eq. (10)], obtained with N=9 and
2500 realizations. The conditions of acquisition with a Basler
A312f camera were such that SNR�6.1 and the real value of the
DOP was P=0.15 (this value has been estimated at high SNR).

Table 1. Estimated Mean and Standard Deviation

of the Empirical Mean „P̂em…, the Median „P̂med…,

the Maximum Likelihood „P̂ml…, and the Truncated

Maximum Likelihood „P̂mlt… Estimators
a

Estimation

Estimator

P̂em P̂med P̂ml P̂mlt

Mean

Experimental 0.18 0.14 0.15 0.17

Simulated 0.25 0.14 0.15 0.17

Standard Deviation

Experimental 0.38 0.20 0.17 0.14

Simulated 3.81 0.21 0.17 0.15

a
The experimental results are those obtained in Fig. 3. The simulated results are

obtained by Monte Carlo simulations with N=9, 2500 realizations, SNR=6.1, and a

true value of DOP P=0.15.
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tion is unknown. We analyze its performance as a func-
tion of the illumination nonuniformity and demonstrate
that it is more efficient than standard DOP estimators.

A. Image Model
The measured data N-sample ��= �X� ,Y�� is modeled as

Xi = FimX + ni
x,

Yi = FimY + ni
y, �11�

for i� �1,N�, where mX and mY are the true values. Note
that the observed sample is still considered homogeneous,
that is, all pixels are described by the same values mX and
mY. Only the illumination is assumed nonhomogeneous.
The parameter to estimate is still P= �mx−my� / �mx+my�.
Each measure is perturbed by the noises ni

x and ni
y whose

PDF are assumed Gaussian with zero mean and variance
�2. The noises ni

x and ni
y are assumed statistically inde-

pendent. The vector F elements are positive and denote
the spatial or temporal variations of the illumination in-
tensity. We will first assume that this vector is known to
the user. This hypothesis is relevant when the nonunifor-
mity is spatial, and when a calibration of the system has
been performed. In the case of temporal nonuniformity re-
lated to pulse-to-pulse fluctuations this hypothesis be-
comes unrealistic. However the results obtained above

can be used as a benchmark. We will then address esti-
mation in the more realistic case where F is unknown.

B. CRLB with Nonuniform but Known Illumination
Our objective is to determine the CRLB on P. For that
purpose, we determine the elements of the Fisher Matrix
I which is defined by

I = � �
−

�
2l

�I2� �−
�

2l

�I�P
�

�−
�

2l

�P�I
� �−

�
2l

�P2� � , �12�

where l is the log-likelihood and �.� denotes statistical av-
eraging. Let us start with the expression of the log-
likelihood determined from the model Eq. (11):

l����F,mX,mY� = − 2N ln��2��� −
1

2�2�
i=1

N

�Xi − FimX�2

−
1

2�2�
i=1

N

�Yi − FimY�2. �13�

Using the �I ,P� parametrization one has:

Fig. 4. (Color online) Estimated bias, standard deviation, and root mean square deviation of estimators P̂ml and P̂mlt with 25 samples as
a function of the SNR and square root of the CRLB. We performed Monte Carlo simulations with 104 realizations for three different
values of the DOP: first row, P=0.1; second row, P=0.5; third row: P=0.9.
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l����F,I,P� = − 2N ln��2��� −
1

2�2�
i=1

N �Xi − Fi

I�1 + P�

2

2

−
1

2�2�
i=1

N �Yi − Fi

I�1 − P�

2

2

. �14�

Consequently, the matrix J that corresponds to the in-
verse of the Fisher matrix has the expression

J = I−1 =
2�2

�i=1
N Fi

2� 1 −
P

I

−
P

I

�1 + P2�

I2
� . �15�

The CRLB on the estimation of P is given by the lower
right element of J [14]:

CRLBF =
2�2

�i=1
N Fi

2

�1 + P2�

I2
=

�1 + P2�

SNRF
2

, �16�

with

SNRF =
I��i=1

N Fi
2

�2�
. �17�

This expression is very similar to that of the CRLB in
the case of uniform illumination defined in Eq. (3). The
SNR has just be replaced by SNRF, which takes into ac-
count the illumination vector F. Indeed, we observe that
if Fi=1, ∀i� �1,N�, one has the same expression as in the
uniform illumination case.

C. Potential Gain in Precision When Taking into
Account the Nonuniformity
Considering a given level of illumination nonuniformity,
our objective now is to evaluate the gain in precision due
to taking into account this nonuniformity in the image
model. For that purpose, we study the CRLB in both uni-
form and nonuniform illumination. This will give us an
idea of the potential precision we can expect with both im-
age models in the presence of nonuniform illumination.

Let us consider a given value of the total illumination
intensity in the sample, that is, �i=1

N �mXFi+mYFi�=IF0.
Using the Cauchy–Schwartz inequality and the fact that
∀i ,Fi�0, one has �F0�2 /N	�i=1

N Fi
2	 �F0�2 and thus

SNRF
min

	 SNRF 	 SNRF
max �18�

with SNRF
min=IF0 /�2� /�N and SNRF

max=IF0 /�2�. The
lower bound SNRF

min corresponds to the uniform illumina-
tion Fi=F0 /N, ∀i. The upper bound SNRF

max corresponds
to an illumination concentrated on a single sample j:
Fj=F0 and ∀i� j, Fi=0. In practice, this means that if we
have a certain amount of light IF0 available for N acqui-
sitions, we will reach the highest SNRF by concentrating
the light in one pulse for the first acquisition even if the
N−1 other acquisitions do not have any illumination. It
can be shown (see Appendix B) that if we cope with non-
uniform illumination by adopting the uniform model
presented in Section 2, a lower bound on estimation vari-
ance is

CRLBU =
1 + P2

�SNRF
min�2

.

Let us now compare CRLBF with CRLBU, that is, find
the potential gain in estimation precision if we use the
nonuniform model instead of the uniform one. One has

CRLBU = CRLBF� SNRF

SNRF
min
2

= CRLBF�1 +
�F

2

mF
2
 ,

where mF= �1/N��i=1
N Fi is the empirical mean of the illu-

mination and �F
2 = �1/N��i=1

N Fi
2−mF

2 is its empirical vari-
ance. We know that �F

2 /mF
2 varies between 0 and N−1.

Let us define the quantity Q that characterizes the non-
uniformity of the illumination and varies between 0 and
1:

Q =
1

N − 1

�F
2

mF
2
. �19�

We thus have

CRLBU = CRLBF�1 + �N − 1�Q�. �20�

The square roots of these CRLBs are plotted on Fig. 5
in dashed and dotted–dashed curves. They represent the
potential precision that can be reached by an unbiased es-
timator based on, respectively, a uniform and a nonuni-
form illumination model.

D. Examples
To illustrate the gain in precision when using the nonuni-
form model, let us consider some typical distributions of

illumination. Let us compare stdU=�CRLBU, the poten-
tial precision using the uniform model, and stdF

=�CRLBF, the potential precision using a nonuniform
model. Consider:

(1) Deterministic uniform illumination: Fi=Fj, ∀i , j.

Fig. 5. Standard deviations �median, �ml, and �pl of, respectively,
the median, ML, and PL estimators for SNRF=12 with the
square roots of CRLB corresponding to the use of the uniform
model [CRLBU; see Eq. (3)] and nonuniform model [CRLBF; see
Eq. (16)] as a function of Q [see Eq. (19)], which characterizes the
nonuniformity of the illumination. The estimations were made
by Monte Carlo simulations on 104 realizations and nine samples
with P=0.5. For Q=0, we estimate �ml=0.114 and �pl=0.116.
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(2) Random uniformly distributed illumination: F is a
random vector uniformly distributed between 0 and 1.
One knows that on average, its empirical mean is mF

=1/2 and its empirical variance is �F
2�1/12.

(3) “Speckle” illumination: F is distributed with an ex-
ponential PDF. In this case one knows that on average
�F

2 /mF
2 �1.

(4) Pulsed illumination: Fj=F0 and Fi=0, ∀i� j.

One obtains the values of stdU listed in Table 2. For
Q=0 there is no potential improvement using the nonuni-
form model. Indeed, using the nonuniform model in this
case implies the useless estimation of parameters Fi,
which can decrease the actual precision. The improve-
ment is modest for uniform distribution, more appreciable
for exponentially distributed illumination, and does not
depend on the number of samples. In the case of pulsed
illumination, the improvement is significant and in-
creases with the number of samples. We thus conclude
that the nonuniform model will bring a modest precision
improvement with “classical” nonuniform illumination
distributions and a significant improvement with pulsed
illumination.

5. ACTUAL ESTIMATORS OF THE DOP IN
THE PRESENCE OF NONUNIFORM
ILLUMINATION

We have studied in Section 4 the potential precision that
can be reached under nonuniform illumination. We will
now determine and characterize actual estimators of the
DOP in this situation. We first consider the case when F

is known, and then the case when it is unknown.

A. Maximum-Likelihood Estimator with Nonuniform but
Known Illumination
Our aim is here to determine the ML estimator of the
DOP knowing the distribution of the illumination, that is,
the vector F. Starting with the expression of the log-
likelihood in Eq. (13), we estimate mx and then my by an-
nulling its derivative with respect to mx and then my. One
obtains m̂V=�i=1

N FiVi /�i=1
N Fi with V=X or Y. By the clas-

sical property of invariance of the ML estimator with re-
spect to parametrization, the expressions of I and P are,
respectively,

Îml,F =

�
i=1

N

Fi�Xi + Yi�

�
i=1

N

Fi

,

P̂ml,F =

�
i=1

N

�FiXi − FiYi�

�
i=1

N

�FiXi + FiYi�

.

It is easily shown that the estimator of P can be written
as

P̂ml,F =
SNRF � P + b1�

SNRF + b2�
, �21�

where b1� and b2� are two Gaussian random variables with
a mean of 0 and a variance of 1. This expression is iden-
tical to that of the ML estimator in the case of uniform
illumination: One has just replaced SNR with SNRF. As
soon as the illumination is known, the PDF of the estima-
tor and the CRLB thus have very similar expressions.

B. Estimation When Illumination Is Unknown
In most applications, F is a priori unknown. We must
thus deal with a new estimation problem, where the data
that have to be estimated are �F ,mX ,mY�. The estimation
of F is not directly of interest, as our aim is to estimate
the DOP: It is called a nuisance parameter. One can also
note that mX and mY cannot be estimated separately. Ac-
tually, the two vectors �F ,mX ,mY� and �F /a ,mXa ,mYa�,
where a is any positive scalar, both correspond to a data
sample �� [see Eq. (11)] with exactly the same statistical
properties. This means that these two parameter sets
cannot be distinguished from the observation of ��. How-
ever, the DOP is invariant under multiplication of the
data with a scalar a and is thus the same for both above-
considered parameter vectors. It is thus likely that this
parameter can be estimated from the data.

A way to deal with the nuisance parameters consists of
considering them as deterministic unknowns and maxi-
mizing the likelihood with respect to those parameters:
Lp��� �mX ,mY�=arg maxF�L��� �F ,mX ,mY��. The function
obtained Lp is called profile likelihood (PL), since it is not
really a likelihood function. Let us start with the expres-
sion of the log-likelihood � of the N-sample �� in Eq. (13).
We first estimate the Fi by annulling the derivative of �

with respect to Fi and obtain F̂i= �XimX+YimY� / �mX
2

+mY
2 �. Injecting these estimates into the expression of the

log-likelihood, one obtains the profile log-likelihood

�p����P� = − 2N ln��2��� −
1

2�2�
1

N ��P − 1�Xi − �P + 1�Yi�
2

1 + P2
.

�22�

Annulling the derivative of �p with respect to P leads to

P2 − 2RP − 1 = 0, �23�

with R=2��1
NXiYi� / ��1

NXi
2−Yi

2�.

Table 2. Values of Q
a
and Gain in Precision Using

the Nonuniform Model for Different Types of

Illumination

Type of Illumination Value of Q Value of stdU

Uniform 0 stdF

Uniformly
distributed

1

3�N−1�
�2/�3�stdF

Speckle 1

N−1

�2stdF

Pulsed 1 �NstdF

a
See Eq. �19�.
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Of the two solutions, we must keep the one that corre-
sponds to a maximum of the likelihood. Studying the sign
of �

2
�p / ��P�2, which should be negative to obtain a maxi-

mum, one obtains

P̂pl = − R + sign	�
i=1

N

�Xi
2 − Yi

2�
�1 + R2. �24�

This is the expression of the PL estimator of P. Before
characterizing the performance of this estimator, it is in-
teresting to determine on which signal parameters it de-
pends.

From Eq. (24) it is seen that Ppl
ˆ depends on R and on

sign��i=1
N �Xi

2−Yi
2��. It is sufficient to analyze these values.

After the cumbersome but easy computations detailed in
Appendix C, the random variable R can be put into the
form

R =

SNRF
2�1 − P2

2

 + SNRF�bs − Pbd� + �Nb3

SNRF
2P + SNRF�bs + Pbd� + �Nb4

, �25�

where bs and bd are two Gaussian variables with zero
mean and unit variance, and b3 and b4 are two random
variables with zero mean and unit variance. One can de-
duce from this expression that R depends only on SNRF,
P, and N, and so does the sign��i=1

N �Xi
2−Yi

2�� (see Appendix

C). The estimator P̂pl therefore depends only on these
three parameters and in particular not on Q, that is to
say, on the illumination distribution. One can also antici-
pate that when the SNRF is sufficiently high, the preci-

sion of P̂pl will not be very sensitive to N.
Let us illustrate these results with a Monte Carlo simu-

lation performed on 105 samples for a fixed SNRF. We
have represented in Fig. 6 the standard deviations of the

estimators P̂ml,F and P̂pl as a function of Q. It is observed
that they do not depend on Q as predicted by Eqs. (21)
and (25). The variations observed on the graph are simply
due to fluctuations of estimation of standard deviation on
a limited number of realizations shown by the error bars.

They correspond to ±2�std, where �std is the approximated
standard deviation of the estimated standard deviation.
In fact �std is equal to the estimated standard deviation

divided by �2M, where M is the number of realizations
used in the Monte Carlo simulation. We can also observe
on Fig. 6 that the estimation performances are very close

when the illumination is known (using P̂ml,F) and when it

is unknown (using P̂pl), which means that not knowing
the illumination distribution does not significantly de-
grade the estimation performance.

We have also characterized the dependency of P̂pl on
the number of samples in Fig. 7. As predicted, the CRLB

and P̂ml,F do not depend on the number of samples once
SNRF is fixed (the slight fluctuations are once again due
to the precision of the estimation of the values of interest
with Monte Carlo simulations). It is observed that the

standard deviation of P̂pl slowly increases with the num-
ber of samples. This might seem surprising, but one must
keep in mind that since SNRF is fixed, increasing N

means that the same SNR is spread over more pixels, and
thus that more parameters Fi must be estimated, which
increases the estimator variance.

C. Comparison with Estimators Adapted to Uniform
Illumination

It is interesting to compare P̂pl with the estimators
adapted to uniform illumination introduced in Section 2,

that is, P̂median, P̂em, and P̂mlt. We define as in Section 3 a
PL truncated estimator:

P̂plt = P̂pl if P̂pl � �0,1�;

=0 if P̂pl � 0;

=1 if P̂pl � 1. �26�

We have represented on Fig. 8 the empirical means and
standard deviations of these estimators as a function of
SNRF. We have chosen Q=1, which corresponds to the

Fig. 7. Standard deviation of the estimators P̂pl and P̂ml,F and
the square root of the CRLBF as a function of N for SNRF=12,
P=0.5 and Q=1. The estimations were made by Monte Carlo
simulations on 105 realizations.

Fig. 6. Standard deviation of estimators P̂pl and P̂ml,F and the
square root of the CRLBF [see Eq. (16)] as a function of Q [see Eq.
(19)], for SNRF=12, P=0.5, and N=9. The estimations were
made by Monte Carlo simulations on 104 realizations.
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most severe nonuniformity of illumination: All the SNR is
concentrated in a single pixel of the sample. The median
estimator is clearly not adapted to this value of Q. For
SNR higher than 5, the standard deviation of the PL es-
timator is lower than that of the truncated ML estimator
and rapidly approches that of the CRLB, where the ML

estimator does not. It can be noted that P̂plt converges to-

ward 0.36 just as P̂mlt did. Regarding the truncation itself
the same conclusion as in the uniform illumination case
can be drawn: It improves the estimation performance for
low values of the SNR and efficiently avoids aberrant re-
sults. It should thus be used as soon as the physical hy-
potheses are fulfilled.

We have represented in Fig. 5 the standard deviations
�median, �ml, and �pl of these estimators as a function of Q,
which describes the uniformity of the illumination, for a
given value of SNRF. It is seen that the standard devia-

tions of P̂median and P̂ml significantly depend on the illu-

mination nonuniformity, whereas, as shown above, P̂pl is

absolutely insensitive to it. For low values of Q, Pml
ˆ is

quite close to �CRLBU. However, we notice that as Q in-

creases the standard deviation of P̂ml becomes larger than
�CRLBU. Indeed, increasing Q is just like decreasing the
SNR corresponding to the uniform model, and we have
seen in Section 3 that as the SNR decreases, the variance
of actual estimators becomes larger than the CRLB.

For uniform illumination, which corresponds to Q=0,
the PL estimator is only a little less precise than the ML
estimator: Its standard deviation is estimated at �pl

=0.116 instead of �ml=0.114 for the ML estimator.
In conclusion, we have shown that the PL estimator is

independent of illumination nonuniformity. Moreover, its
performance is very close to that of the CRLB with known
illumination. Consequently, it is a good alternative to
standard ML estimation if one suspects that the illumina-
tion may be somehow spatially or temporally nonuniform.

D. Experimental Results
To illustrate these conclusions, we have performed the fol-
lowing experiments with the same setup as in Subsection
3.B. We consider the DOP images of pieces of homogenous
transparent plastic on a white uniform diffusive back-
ground. The illumination is mainly focused on the first ac-
quisition that corresponds to Q�1. For that purpose we
illuminate the scene during the first acquisition, and then
switch it off for the remaining eight images. The results
are represented on Fig. 9. The three objects are barely
seen using the median and ML estimators. This subjec-
tive observation is confirmed by the standard deviation of
the estimation of the DOP of the plastic, which decreases

from 0.53 with P̂med (a), to 0.13 with P̂mlt (b), and 0.06

with P̂plt (c). Those results are in good agreement with the

Fig. 8. Estimated means and standard deviations of estimators P̂pl, P̂plt, P̂med, and P̂mlt and the square root of CRLB as a function of
SNRF for N=9, P=0.5 and Q=1. The estimations are made with 105 realizations.

Fig. 9. Images of DOP estimated on nine successive images of the same scene with estimators P̂med (a), P̂mlt (b), and P̂plt (c). The non-
uniformity parameter Q is close to 1 and SNRF�23. The scene is composed of pieces of transparent plastic on a diffusive white back-
ground obtained with a Basler A312f camera with a 70 ms exposure time. The DOP of the plastic and the background have been esti-
mated, respectively, at 0.18 and 0.10.
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simulation results in Fig. 8. With such a severe nonuni-
form illumination, the PL estimator indisputably shows
the best performances.

6. CONCLUSION

We have addressed DOP estimation from intensity im-
ages perturbed by additive Gaussian noise when the ma-
terials present in the scene only depolarize the incident
light. We have considered both uniform and nonuniform
illuminations. We have demonstrated that with uniform
illumination, truncating the estimators improves their
precision and prevents aberrant results, as soon as the
corresponding a priori hypotheses about the materials are
fulfilled. Regarding the nonuniform illumination case, we
have demonstrated that the estimation problem is similar
to the uniform case when the spatial and temporal distri-
bution of the illumination is known. If it is not, we have
proposed a profile likelihood estimator that provides good
performance. It is thus an interesting solution in cases
where illumination fluctuates, for instance. An interest-
ing perspective will consist in studying the detection per-
formance for targets having a DOP contrast with the
background.

APPENDIX A: MEAN OF P̂MLT FOR SNR=0

If SNR=0, one can write the pdf of P̂ml as Pml���=P1���

=1/��1+�2�. The probability that P̂ml�0 is �−

0

P���=1/2.

The probability that P̂ml�1 is �1


P���=1/2−tan−1�1� /�. It

is thus possible to write the pdf of P̂mlt as

Pmlt��� = Pml��� if � � �0,1�;

=0 if � � 0;

=0 if � � 1;

=1/2 if � = 0;

=1/2 − tan−1�1�/� if � = 1.

One then computes the mean of P̂mlt and finds

�P̂mlt� =�
0

1

�Pmlt���d� = 0 +�
0

1

�Pml���d� + Pmlt�1� � 0.36.

�A1�

The bias is thus equal to b= �Pmlt�−P=0.36−P. This can
be verified on Fig. 4.

APPENDIX B: DEFINITION OF CRLBU

Let us assume that the sample �= �X ,Y� is observed un-
der uniform illumination and thus follows the model in
Eq. (2). The expression of the likelihood is

l���I,P� = − 2N ln��2��� −
1

2�2�
1

N 	Xi −
I�1 + P�

2

2

−
1

2�2�
1

N 	Yi −
I�1 − P�

2

2

,

which can be written as l�� �I ,P�= f�SX ,SY �I ,P�+g���,
where g��� is a function that does not depend on the pa-
rameters I and P, and

f�SX,SY�I,P� =
1

2�2	SX

I�1 + P�

2
+ SY

I�1 − P�

2

 +

I2�1 + P2�

2
,

with SX=�1
NXi and SY=�1

NYi. In statistics language, SX

and SY are named sufficient statistics for the problem at
hand, that is, once these two values are known, knowing
the rest of the data � is useless for purposes of estimation.
In particular, the CRLB depends only on the statistical
properties of SX and SY, which are Gaussian variables of
means NI�1+P� /2 and NI�1−P� /2 and variances N�2.

Let us now assume that the actual data are nonuni-
formly illuminated and thus follow the model in Eq. (11),
but the estimation is made by assuming uniform illumi-
nation. In this case, SX and SY are Gaussian variables of
means F0I�1+P� /2 and F0I�1−P� /2 and variances N�2.
The situation is thus totally equivalent to having a uni-
formly illuminated sample with parameters I�=IF0 /N
and P, that is, a SNR equal to [see Eq. (4) and Eq. (18)]

SNR =
I��N

�2�
=

IF0

�N�2�
= SNRF

min.

Consequently, a lower bound on estimation variance
using the uniform model in the presence of nonuniform il-
lumination is given by the CRLB of the uniform model
with SNR equal to SNRF

min:

CRLBU =
1 + P2

�SNRF
min�2

.

APPENDIX C: PARAMETERS ON WHICH R

DEPENDS

The expression of the PL estimator depends only on the
quantity R=2�i=1

N XiYi /�i=1
N Xi

2−Yi
2 and on sign��i=1

N �Xi
2

−Yi
2��. We will thus determine the parameters on which R

depends.
Let us analyze the numerator of R. Using the definition

of the measured data in Eq. (11), one obtains after some
computation

�
i=1

N

XiYi = ��
i=1

N

Fi
2
mxmy + ���

i=1

N

Fi
2
��mxby + mybx�

+ �N�2b3,

where bx and by are zero-mean Gaussian variables with
unit variance, and b3 is a zero-mean unit-variance ran-
dom variable. We have used the fact that if X and Y are
two independent random variables, then var�XY�
=var�X�var�Y�, where var(.) denotes the variance.
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Let us now analyze the numerator. After some compu-
tation, one obtains

�
i=1

N

Xi
2 − Yi

2 = �
i=1

N

Fi
2�mx

2 − my
2� + 2���

i=1

N

Fi
2
��mxbx − myby�

+ 2�N�2b4,

where b4 is a zero-mean unit-variance random variable.
We have used the fact that if X is a Gaussian variable
with zero mean and variance �2, then �X2�=�2 and
var�X2�=2�4.

Using the parametrization �I ,P� and the definition of
SNRF one has

R =

�SNRF�2�1 − P2

2

 + SNRF�bs − Pbd� + �Nb3

�SNRF�2P + SNRF�bs + Pbd� + �Nb4

,

sign��
i=1

N

Xi
2 − Yi

2
 = sign��2��SNRF�2P

+ SNRF�bs + Pbd� + �Nb4��,

where bs= �bx+by� /�2 and bd= �bx−bd� /�2 are two Gauss-
ian zero-mean and unit-variance variables.

It is seen that these two values depend only on param-
eters SNRF, P, and N.
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