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We address precision of estimation of the degree of polarization (DOP) from the orthogonal state contrast image (OSCI) in the presence of

both signal-dependent Poisson noise due to useful signal, and additive Poisson noise due to dark current and / or background light. We de-

termine the Cramer Rao Lower Bound and deduce from it figures of merit for DOP estimation. In particular, we show that the additive Poisson

noise has larger influence on DOP estimation than on intensity estimation when light is highly polarized. [DOI: 10.2971/jeos.2008.08002]
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1 INTRODUCTION

Polarimetric imaging is an important tool for characterizing

materials and observing contrasts that are not detectable in

conventional intensity images. It has applications in remote

sensing [1, 2], biomedical imaging [3, 4], optical coherence

tomography [5], etc. A simple but efficient active polarimet-

ric imaging mode consists in measuring the orthogonal state

contrast image (OSCI) from two intensity measurements. The

OSCI is an estimate of the degree of polarization (DOP) if the

observed material is purely depolarizing, which is a reason-

able assumption for natural materials observed in monostatic

configuration [6]. We will make this assumption in the fol-

lowing of this paper. However, these intensity measurements

are perturbed with noise, and its influence on DOP estima-

tion must be studied. Such analyses have recently been done

for Gamma noise [7], combined Poisson and speckle noise [8],

and Gaussian noise [9].

We address in this paper the case where the two active inten-

sity images used to build up the OSCI image are perturbed by

the signal-dependent Poisson noise due to the useful signal

and an additive Poisson noise that is independent of the use-

ful signal. This latter can be due to background light, dark cur-

rent or surrounding light which is reflected or backscattered

by the scene and is considered as a passive contribution. This

model has not yet been studied in the literature, whereas it

can be relevant for example in infra-red imaging, where back-

ground noise is an important issue, in low flux images where

dark current noise may not be negligible compared to use-

ful signal, or in every active imaging system where a passive

contribution due to other light sources will be encountered.

The obtained results are thus useful for analyzing the impact

of noise on DOP measurement by quantum detectors such as

CCD.

This article is organized as follows. In Section 2, we describe

the data model and discuss practical situations where it is

relevant. In Section 3, we determine the Cramer-Rao Lower

Bounds (CRLB) on estimation of the intensity and the DOP

of a homogeneous sample in a OSCI and discuss their ex-

pressions relatively to previously published results. In Sec-

tion 4, we analyze the physical meaning of these expressions

of CRLB. We show that the additive Poisson noise has larger

influence on DOP estimation than on intensity estimation

when light is highly polarized, and propose figure of merits

to visualize this phenomenon.

2 DATA AND NOISE MODEL

In the imaging system we consider, the scene is illuminated

with totally polarized light. A first image Xi, i ∈ [1, N] is

formed with the fraction of light backscattered by the scene

which is in the same polarization state as the incident light

(please note that for the sake of simplicity, one-dimensional

notation is used for images). A second image Yi is formed

with the fraction of light polarized orthogonally to the inci-

dent light. At each pixel i, the values Xi (Yi) are expressed in

terms of number of photoelectrons measured by the detector.

In the following, we will assume that the images Xi (Yi) are

homogeneous, that is, the average number of photoelectrons

is equal to mX (mY) for all pixels i. If the imaged scene is com-
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plex, this model can thus represent a region where the val-

ues of mX (mY) is approximately constant. This hypothesis is

classical and necessary to study the estimation precision. The

mean numbers of photoelectrons can also be written as

mX =
I

2
(1 + P) and mY =

I

2
(1 − P). (1)

The variable I = mX + mY denotes the total intensity of the

signal, and the variable P represents its DOP.

The photoelectrons generated by the backscattered fraction of

illumination light will be called the useful signal. In addition to

this signal, we assume that an average number of gX (gY) elec-

trons are also measured by the detector in the channel Xi(Yi).

These electrons correspond to the sum of all possible sources

of additive noise. Let us consider some possible sources of

such additive noise. A first one is dark current, which is due

to the generation of electrons in the detector in the absence of

illumination. This noise depends mainly on temperature and

exposure time, and is known to follow a Poisson distribution

[10]. For such a noise, the parameters gX (gY) represent the

average number of dark electrons measured in each channel.

Since images Xi and Yi are measured by identical sensors in

similar conditions, one has naturally the same average num-

ber of dark current electrons on both parallel and orthogonal

channels, that is, gX = gY = g.

A second type of noise is always encountered in active im-

agery systems, where the useful signal is due to the fraction

of the polarized illumination which is backscattered by the

scene. In general, there are also ambient light sources such as

sun or lamps whose light is scattered by the scene and pro-

duce a signal whose quantum fluctuations can be considered

as noise. Generally speaking, such light sources are unpolar-

ized. Moreover, we consider that the materials that compose

the scene can be considered totally depolarizing with good

approximation [6]. Such materials have a diagonal Mueller

matrix and thus have no polarizance [11]: if unpolarized light

impinges on such materials, it remains unpolarized. One thus

observes gX = gY = g. To check this fact, we used an active

imaging setup with a Basler A312f camera, and measured the

contribution signals gX and gY without active illumination in

the two channels for different type of materials in the scene.

It is seen in Table 1 that the difference between gX and gY

does not exceed 4%. This small difference can be due to ori-

entation of the materials that may slightly polarize the light.

In this setup, it can thus be assumed that gX = gY = g. In

infra-red imaging, another source of additive noise is thermal

light emitted by the scene. If this light is unpolarized, it will

generate an average number of photoelectrons g identical on

both channels.

In this paper, we will limit ourselves to the case gX = gY = g,

since it contains most of the essential physical results. How-

ever, all the results obtained below can be easily generalized

to the case gX 6= gY with a slight increase of complexity of the

expressions. Finally, it is reasonably sound to assume that all

the above mentioned sources of noise are independent. Since

they all have Poisson statistics, their contributions are addi-

tive and the final value of g is the sum of the average number

of photoelectrons related to each of these sources of noise.

Material gX gY
(gX−gY)

(gX+gY)/2

white paper 395 409 3.5%

white teflon 1063 1069 0.5%

grey painting 1095 1140 4.0%

bare metal 1072 1062 0.9%

TABLE 1 Backscattered light (in Digital Unit) by different materials with unpolarized

white ambient light. One has represented gX , gY , and
(gX−gY )

(gX+gY )/2
which represents

the relative difference between gX and gY .

Taking into account the photoelectrons from the useful signal

and the additive noise, the average number of electrons mea-

sured by the detector in channel Xi (Yi) is mX + g (mY + g).

Associated with these average values are fluctuations, which

are given by the Poisson statistics. The actual number of elec-

trons n measured in channel Ui is thus a random variable dis-

tributed with the following probability law:

PUi
(n) = exp [−(mU + g)]

(mU + g)n

n!
, (2)

with U = X or Y. According to this model, the fluctuations in

channels Xi and Yi are statistically independent.

3 PRECISION OF ESTIMATION OF
INTENSITY AND DOP

Our objective is to determine the precision of estimation of

the parameters I and P in the presence of the above defined

fluctuations. For that purpose, we will determine the Cramer-

Rao Lower Bound (CRLB), which is a lower bound on the

variance that can be reached by unbiased estimators of these

parameters, assuming that the parameter g is known. Deter-

mination of the CRLB first requires the expression of the log-

likelihood [12]. According to the above defined statistical data

model (see Eq. 2) and Eq. 1, the expression of the loglikelihood

is:

ℓ(I, P) =
N

∑
i=1

log PXi
(Xi) +

N

∑
i=1

log PYi
(Yi) (3)

= −N(I + 2g) + SX log

[
I

2
(1 + P) + g

]

+SY log

[
I

2
(1 − P) + g

]
+ A, (4)

where A does not depend on I nor on P, SX = ∑
N
i=1 Xi and

SY = ∑
N
i=1 Yi. Using this expression, the Fisher matrix defined

as F =
[
−

〈
∂2ℓ/(∂θi∂θj)

〉]
1≤i≤2,1≤j≤2

where θ1 = I and θ2 =

P, has the following expression:

F =
N

Q

[
I(1 − P2) + 2g(1 + P2) 2gIP

2gIP I2(I + 2g)

]
, (5)

where Q = (I + 2g)2 − (IP)2. Taking the inverse of this ma-

trix, one obtains:

J = F−1 =
1

N

[
I + 2g −2gP/I

−2gP/I (1 − P2)/I + 2g(1 + P2)/I2

]
.

(6)
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The parameters I and P can be gathered in a parameter vector

aT = (I, P). Let us consider an estimator â of the parame-

ter vector a, and assume that it is unbiased, that is, 〈â〉 = a0,

where a0 is the true value of the parameters. The precision of

this estimator can be characterized by its covariance matrix

Γ =
〈
(a − a0)(a − a0)

T
〉
. This covariance matrix is not easy to

determine. The Cramer-Rao theorem provides a lower bound

on the elements of this matrix in the following way [12]:

∀v ∈ R
2, vTΓv ≥ vT Jv. In particular, if v is such that vi = 1

and ∀j 6= i, vj = 0, one obtains : Γii ≥ Jii. Remembering that

the diagonal element Γii of the covariance matrix is equal to

the variance of the component âi of the estimator, the matrix

element Jii represents a lower bound on the variance of unbi-

ased estimation of parameter ai, which is called Cramer-Rao

Lower Bound (CRLB) [12].

Consequently, from the expression of J in Eq. 6, the CRLB κI

and κP of I and P have the following expression:

κI(g) = κsd
I + κa

I

with κsd
I =

I

N
and κa

I =
2g

N
, (7)

κP(g) = κsd
P + κa

P

with κsd
P =

(1 − P2)

NI
and κa

P =
2g(1 + P2)

NI2
. (8)

These expressions constitute the basic result of the present

work. It is seen that for both estimations of I and P, the CRLB

in the sum of the classical signal-dependent Poisson CRLB

(κsd
I , κsd

P ) and of a contribution due to the additive noise (κa
I ,

κa
P). Indeed, when the additive contribution to noise is zero,

that is, g = 0, one has κI(0) = κsd
I = I/N, which is the

well known value of the estimation variance of I in the pres-

ence of signal-dependent Poisson noise only. One also has

κP(0) = κsd
P = (1 − P2)/(NI), which has been shown in [8]

to be the CRLB of DOP estimation in the presence of Pois-

son noise. The contribution of additive noise to intensity es-

timation is κa
I = 2g/N, which is simply the CRLB in the

presence of the sum of two independent noises of variance

g (one from the parallel channel and one from the orthogo-

nal channel). The additive contribution to DOP estimation is

κa
P = 2g(1 + P2)/(NI2). In [9], the CRLB in the presence of

an additive Gaussian noise of variance σ2 has been shown to

be 2σ2(1 + P2)/(NI2). We can see a great similarity with κa
P,

since the variance of the Poisson additive noise is g.

One can also note that the CRLB of I is independent of the

actual DOP, P, whereas the CRLB of P depends on P. More

precisely, κsd
P decreases with P and is null for totally polarized

light. This is understandable since in this case, the average in-

tensity in the orthogonal channel mY is 0 and thus the noise

has also a zero variance in this channel. On the other hand, the

additive contribution κa
P increases with P, and never reaches

0. Indeed, since the noise is independent of the intensity of the

useful signal, it is always present even if the signal is zero.

4 COMPARISON OF ADDITIVE AND
SIGNAL-DEPENDENT POISSON NOISES

It is of interest to analyze the influence of an increasing level of

additive Poisson noises on the global estimation uncertainty.

Let us first consider estimation of I. It is clear from Eq. 8 that

the estimation variance increases with g. We have plotted in

Figure 1 the ratio

ρI(g) =
κI(g)

κI(0)
= 1 + 2

g

I
, (9)

which represents the ratio between the CRLB for a given value

of g and the CRLB without additive noise, that is, g = 0. It in-

creases linearly with the ratio g/I, which can be considered as

a signal to noise ratio associated with the additive contribu-

tion to noise. Let us now consider estimation of the DOP. We

have plotted on Figure 1 the ratio:

ρP(g) =
κP(g)

κP(0)
= 1 + 2

(
1 + P2

1 − P2

)
g

I
. (10)

This ratio also depends linearly on g/I, but the slope depends

on the value of the DOP P. This slope tends to infinity as P

tends to 1, that is, when light becomes highly polarized. It thus

clearly appears that the influence of a given level of additive

noise is higher on DOP estimation than on intensity estima-

tion when light is highly polarized.

As another way of characterizing this effect, one can fix the pa-

rameter g and define ”crossover” values of I that correspond

to the situation where the CRLB corresponding to the signal-

dependent and additive contributions are equal. This corre-

sponds in Figure 1 to the intersections of the lines representing

ρI and ρP and the horizontal line of equation ρ = 2. For inten-

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

g/I

ρ

P=0.8 P=0.5 P=0.2

ρ
I

ρ
P

FIG. 1 Ratio ρI(g) and ρP(g) as a function of g/I for different values of P.

sity estimation, κsd
I = κa

I is obtained when intensity is equal

to:

I I
c = 2g,

that is, when the average intensity of the useful signal is twice

that of the additive contribution. This value does not depend

on the degree of polarization. When I < I I
c , additive noise is

dominant, whereas signal-dependent noise is dominant when

I > I I
c . Let us now consider estimation of P. The crossover

happens when κsd
P = κa

P, that is, when intensity is equal to:

IP
c = 2g

1 + P2

1 − P2
.
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Contrary to the case of intensity estimation, this value de-

pends on P. We have plotted in Figure 2 the ratio of the in-

tensity and DOP crossover values IP
c /I I

c as a function of P.

For totally depolarized light, one has IP
c = I I

c . On the other

0 0.2 0.4 0.6 0.8 1
10

0

10
1

10
2

I cP
฀/

฀I
cI

P

FIG. 2 Ratio IP
c /I I

c as a function of P.

hand, when P tends to 1, the ratio tends to infinity. For highly

polarized light, IP
c can thus be quite larger than I I

c . For exam-

ple, when P = 0.9, IP
c = 9.5 I I

c . This means that to be lim-

ited by signal-dependent Poisson noise, one needs a number

of photons which is 9 times larger than for intensity estima-

tion. In other words, when light is highly polarized, additive

noise must be taken into account for estimating the DOP even

if it is negligible for intensity estimation.

To visualize the relative influence of the two sources of noise,

it is useful to plot figures of merit. We have chosen to plot

the noise variance as a function of the intensity of the useful

signal with a log-log scale. For intensity estimation, one has:

log10[κI ] = log10

[
κsd

I + κa
I

]
. Below the crossover (I < I I

c ), the

approximation is:

log10[κI ] ≃ log10 [κa
I ] = − log10[2g] − log10[N], (11)

that is, a constant. Above the crossover, the approximation is:

log10[κI ] ≃ log10

[
κsd

I

]
= log10[I] − log10[N], (12)

that is, an increasing line of slope equal to 1. This is the well

known figure of merit for intensity estimation [10]. It is plot-

ted in Figure 3 for N = 1. Increasing N only shifts the curve

downwards of a value − log10[N].

Let us now consider DOP estimation. One has log10(κP) =

log10

[
κsd

P + κa
P

]
. Below the crossover, (I < IP

c ), an approxi-

mation is:

log10[κP] ≃ log10 [κa
P] = − 2 log10[I] − log10[1 + P2]

− log10[2g] − log10[N], (13)

that is, a decreasing line with slope 2. Above the crossover, an

approximation is:

log10[κP] ≃ log10

[
κsd

P

]
= − log10[I]− log10[1−P2]− log10[N],

(14)

that is, an decreasing line with slope 1. We have plotted this

curve in Figure 4 for N = 1 and different values of P. It is
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FIG. 3 Estimation precision of I as a function of the actual value of I, g = 10 photons,

bold line : κI , dotted lines : κ
a
I and κsd

I , circle : crossover location(I
I
c ).
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FIG. 4 Estimation precision of P as a function of the actual value of I, g = 10 photons,

bold dotted line : κP for P = 0, bold continuous line : κP for P = 0.9 , dotted lines :

κa
I and κsd

I , circles : crossover locations(I
P
c ).

seen that higher values of P lead to a significant shift of the

crossover value.

The main result of this work is that the influence of additive

Poisson noise on DOP estimation depends on the actual value

of the DOP. When P is large, the additive Poisson noise re-

mains dominant for much higher values of the mean pho-

ton flux. This result is important for processing of polarimet-

ric images (estimation, target detection . . . ). Indeed, the algo-

rithms used for extracting information from polarimetric im-

ages must be adapted to the dominant type of noise.

5 CONCLUSION

We have studied precision of DOP estimation when the

observed materials are purely depolarizing and the mea-

surements are perturbed with both signal-dependent and

additive Poisson noises. This precision depends on the value

of the DOP and, when light is highly polarized, the crossover
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between additive and signal-dependent noise-dominant

regimes occurs for significantly higher signal levels than for

intensity estimation. This fact must be taken into account

when designing algorithms for extracting information from

DOP images. The present study is based on CRLB, which

represents a potential estimation precision. An interesting

perspective is to determine and analyze the performance of

actual DOP estimators adapted to this noise model.
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