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Tailoring Anderson localization by disorder correlations in 1D speckle potentials

We study Anderson localization of single particles in continuous, correlated, one-dimensional disordered potentials. We show that tailored correlations can completely change the energy-dependence of the localization length. By considering two suitable models of disorder, we explicitly show that disorder correlations can lead to a nonmonotonic behavior of the localization length versus energy. Numerical calculations performed within the transfer-matrix approach and analytical calculations performed within the phase formalism up to order three show excellent agreement and demonstrate the effect. We finally show how the nonmonotonic behavior of the localization length with energy can be observed using expanding ultracold-atom gases.

Introduction

Coherent transport in disordered media shows considerable interest in condensedmatter physics, with applications to normal solids [START_REF] Lee | Disordered electronic systems[END_REF][START_REF] Janssen | Statistics and scaling in disordered mesoscopic electron systems[END_REF], superconductors [START_REF] De Gennes | Superconductivity of Metals and Alloys[END_REF] and superfluids [38]. Coherent process can lead to the spatial localization of wave functions as a result of a subtle interference effect between multiple scattering paths, which survives disorder averaging. This effect, known as Anderson localization (AL), was first predicted for electronic matter waves [START_REF] Anderson | Absence of diffusion in certain random lattices[END_REF]. It was later shown to be a universal phenomenon in wave physics [START_REF] John | Electromagnetic absorption in a disordered medium near a photon mobility edge[END_REF], which permitted the first evidence of AL of classical waves [START_REF] Wiersma | Localization of light in a disordered medium[END_REF][START_REF] Störzer | Observation of the critical regime near Anderson localization of light[END_REF][START_REF] Schwartz | Transport and Anderson localization in disordered two-dimensional photonic lattices[END_REF][START_REF] Lahini | Anderson localization and nonlinearity in one-dimensional disordered photonic lattices[END_REF][START_REF] Hu | Localization of ultrasound in a three-dimensional elastic network[END_REF]. The observation of AL in ultracold gases in one (1D) [START_REF] Billy | Direct observation of Anderson localization of matter waves in a controlled disorder[END_REF][START_REF] Roati | Anderson localization of a non-interacting Bose-Einstein condensate[END_REF] and three (3D) [START_REF] Kondov | Three-dimensional Anderson localization of ultracold fermionic matter[END_REF][START_REF] Jendrzejewski | Three-dimensional localization of ultracold atoms in an optical disordered potential[END_REF] dimensions has triggered a renewed interest on matter wave localization [START_REF] Piraud | Matter wave transport and Anderson localization in anisotropic three-dimensional disorder[END_REF][START_REF] Piraud | Quantum transport of atomic matterwaves in anisotropic 2d and 3d disorder[END_REF], and paves the way to further investigation of many open questions [START_REF] Sanchez-Palencia | Disordered quantum gases under control[END_REF].

Correlated disorder makes AL fascinatingly rich. Disorder correlations can change the localization properties, not only quantitatively but also qualitatively. For instance, disorder correlations with a finite support in momentum space were shown to induce effective mobility edges in 1D disorder [START_REF] Izrailev | Localization and the mobility edge in one-dimensional potentials with correlated disorder[END_REF][START_REF] Sanchez-Palencia | Anderson localization of expanding Bose-Einstein condensates in random potentials[END_REF][START_REF] Sanchez-Palencia | Disorder-induced trapping versus anderson localization in Bose-Einstein condensates expanding in disordered potentials[END_REF], which was used to create materials with alternating localizing and almost transparent frequency windows [START_REF] Kuhl | Experimental observation of the mobility edge in a waveguide with correlated disorder[END_REF], to enhance localization in microwave systems [START_REF] Kuhl | Enhancement of localization in one-dimensional random potentials with long-range correlations[END_REF], and to propose realization of atomic band-pass filters [START_REF] Sacha | Matter-wave analog of an optical random laser[END_REF]. Such correlations are also responsible for algebraic localization of matter waves with broad energy distributions [START_REF] Billy | Direct observation of Anderson localization of matter waves in a controlled disorder[END_REF][START_REF] Sanchez-Palencia | Anderson localization of expanding Bose-Einstein condensates in random potentials[END_REF][START_REF] Piraud | Localization of a matter wave packet in a disordered potential[END_REF]. It was also shown that in certain models of disorder with infinite-range correlations (i.e. such that the correlation function does not decay to zero at infinite distance) [START_REF] Kotani | Proc. Int. Symp. Kyoto[END_REF][START_REF] Garc´ia-Garc´ia | Differentiable potentials and metallic states in disordered one-dimensional systems[END_REF] or dimer-like correlations [START_REF] Sedrakyan | Localization-delocalization transition in a presence of correlated disorder: The random dimer model[END_REF][START_REF] Sedrakyan | Proposed signature of anderson localization and correlation-induced delocalization in an n-leg optical lattice[END_REF], multiple localization-delocalization transition points can appear. Interestingly, tailoring the disorder correlations can lead to a counter-intuitive behavior of the energy dependence of the localization strength [START_REF] Piraud | Anderson localization of matter waves in tailored disordered potentials[END_REF]. It can serve to discriminate quantum versus classical localization of particles, which is of particular interest for ultracold atoms where disordered potentials can be controlled [START_REF] Clément | Experimental study of the transport of coherent interacting matter-waves in a 1D random potential induced by laser speckle[END_REF][START_REF] Shapiro | Cold atoms in the presence of disorder[END_REF].

The latter effect is the subject of the present paper. For the sake of clarity, consider matter waves in free space and subjected to a 1D disordered potential. The macroscopic behavior of AL is intimately related to the microscopic properties of single scattering from the asperities of the disorder. This shows up in the strong dependence of the localization length L loc (E) -i.e. the characteristic length scale of exponential decay of localized wavefunctions -on the energy E and the Fourier component of the disordered potential V at twice the typical particle wave vector, k E ≡ 2mE/ : The 1D localization of a particle is dominated by the interference of quantum paths that are backscattered twice in the disorder with the forward propagating one. For weak disorder, the leading term is L loc (E) -1 ∝ C2 (2k E )/E, where C2 is the structure factor (correlation function of the disordered potential in Fourier space, see below) [START_REF] Lifshits | Introduction to the Theory of Disordered Systems[END_REF]. For most models of disorder (e.g. for δ-correlated, Gaussiancorrelated or usual speckle [START_REF] Clément | Experimental study of the transport of coherent interacting matter-waves in a 1D random potential induced by laser speckle[END_REF] disorder), C2 is a constant or decreasing function, so that L loc (E) is an increasing function of the particle energy E, which finds an intuitive interpretation as the higher energy the weaker localization.

Structured disorder correlations can however completely change the picture. If the disordered potential exhibits structures on a length scale of the order of k -1 E , the scattering might not strictly increase with energy 1 , and L loc (E) can counter-intuitively decrease for increasing E [START_REF] Piraud | Anderson localization of matter waves in tailored disordered potentials[END_REF]. In this work, we study this effect for particles in continuous disordered potentials with tailored correlations in one dimension. We first calculate the localization of the single-particle eigenstates, using both numerical calculations, based on the transfer-matrix approach, and the so-called phase formalism, which is well suited for perturbative expansion in 1D transmission schemes for a matterwave of fixed energy. Lowest-order analytical calculations reproduce the main physics and allow design of disorder correlations to realize the desired effect [START_REF] Piraud | Anderson localization of matter waves in tailored disordered potentials[END_REF]. We study two alternative possibilities, which require only slight modifications of existing experimental schemes [START_REF] Billy | Direct observation of Anderson localization of matter waves in a controlled disorder[END_REF][START_REF] Clément | Density modulations in an elongated Bose-Einstein condensate released from a disordered potential[END_REF][START_REF] Chen | Phase coherence and superfluid-insulator transition in a disordered Bose-Einstein condensate[END_REF][START_REF] Dries | Dissipative transport of a Bose-Einstein condensate[END_REF]. These calculations however show significant deviations with numerical data, but we show that they are quantitatively accounted for by next-order calculations. We finally discuss how to observe the nonmonotonic behavior of the localization length with energy with expanding ultracold-atom gases, and explicitly show that standard schemes should be adapted.

Tailoring disorder correlations in speckle potentials

Disorder realized by optical speckle [START_REF] Goodman | Speckle Phenomena in Optics: Theory and Applications[END_REF][START_REF] Clément | Experimental study of the transport of coherent interacting matter-waves in a 1D random potential induced by laser speckle[END_REF][START_REF] Shapiro | Cold atoms in the presence of disorder[END_REF] is relatively easy to obtain and its statistical properties are -to some extent-controllable, hence making a good candidate for tailoring correlations. Such disordered potentials have been used in several experiments to investigate the effect of disorder in ultracold-atom systems [START_REF] Billy | Direct observation of Anderson localization of matter waves in a controlled disorder[END_REF][START_REF] Clément | Density modulations in an elongated Bose-Einstein condensate released from a disordered potential[END_REF][START_REF] Chen | Phase coherence and superfluid-insulator transition in a disordered Bose-Einstein condensate[END_REF][START_REF] Dries | Dissipative transport of a Bose-Einstein condensate[END_REF][START_REF] Kondov | Three-dimensional Anderson localization of ultracold fermionic matter[END_REF][START_REF] Jendrzejewski | Three-dimensional localization of ultracold atoms in an optical disordered potential[END_REF]. A 1D speckle pattern [START_REF] Goodman | Speckle Phenomena in Optics: Theory and Applications[END_REF] is obtained by shining a coherent light beam onto an elongated aperture with a ground-glass plate diffuser, and observing the diffraction pattern that is created, for example in the focal plane of a lens (see Fig. 1). The role of the diffuser is mainly to imprint a random phase on the electric field at each point of its aperture. It follows from direct application of the laws of diffraction, that the electric field at a point z on the focal plane, E(z), is the sum of many complex independent random variables that corresponds to the components originating from every point of the plate and interfering in z. It is then a complex Gaussian random variable. In ultracold atom experiments, the atoms are sensitive to the light intensity, proportional to |E(z)|2 . More precisely the atoms experience a potential that can be written [START_REF] Clément | Experimental study of the transport of coherent interacting matter-waves in a 1D random potential induced by laser speckle[END_REF][START_REF] Shapiro | Cold atoms in the presence of disorder[END_REF]. The amplitude of the disorder, V R , can be positive (so called 'blue detuned speckle') or negative ('red detuned speckle'), depending on the sign of the difference of the atom and laser frequencies. More generally, all statistical properties of the disordered potential V (z) follow from basic laws of optics. For instance, one can show that the Fourier transform of the autocorrelation function of the potential is the auto-convolution of the pupil function I D (intensity pattern exiting the diffuser):

V (z) = V R |E(z)| 2 /|E| 2 -1 , so that V = 0 and V 2 = V 2 R [
C2 (k) ∝ dZ I D Z - λ 0 l 4π k I D Z + λ 0 l 4π k , (1) 
where λ 0 is the laser wavelength and l is the focal length [START_REF] Goodman | Speckle Phenomena in Optics: Theory and Applications[END_REF]. For a thin slit of length 2R uniformly lit, which is the usual manner to obtain a speckle, we have

I D (Z) = I 0 Θ(R -|Z|), with Θ the Heaviside function [Θ(x) = 1 if
x > 0 and 0 otherwise], and we find 2

C2 (k) = πV 2 R σ R [1 -|k|σ R /2] ⊕ , (2) 
where [x] ⊕ = xΘ(x) and σ R = λ 0 l/2πR is the disorder correlation length. Therefore, the power spectrum of the speckle pattern is strictly decreasing with k. Note that this model has a cut-off in the Fourier components at k c = 2σ -1 R . This is a characteristics of speckle potentials, which in particular leads to the existence of effective mobility edges, as discussed in Refs. [START_REF] Sanchez-Palencia | Anderson localization of expanding Bose-Einstein condensates in random potentials[END_REF][START_REF] Sanchez-Palencia | Disorder-induced trapping versus anderson localization in Bose-Einstein condensates expanding in disordered potentials[END_REF][START_REF] Lugan | One-dimensional anderson localization in certain correlated random potentials[END_REF][START_REF] Gurevich | Lyapunov exponent for the laser speckle potential: A weak disorder expansion[END_REF].

Modifying the pupil function I D (Z) (i.e. changing the aperture of the diffusive plate or the spatial profile of the incident beam) allows us to tailor the disorder correlations [START_REF] Sacha | Matter-wave analog of an optical random laser[END_REF][START_REF] Piraud | Anderson localization of matter waves in tailored disordered potentials[END_REF]. In this work, we consider two configurations. In the first configuration, we propose to put a mask of width 2r at the center of the aperture, creating a double-slit. When doing so, a gap is created in the pupil function

[I D (Z) = I 0 Θ(|Z|-r)Θ(R-|Z|)],
leading, for ρ = r/R > 0, to an increase of the integral (1) on a certain interval of k, which is all the more marked that ρ is large:

C2 (k) = πV 2 R σ R (1 -ρ) 2 [1 -ρ -|k|σ R ] ⊕ + 1 2 [1 -ρ -||k|σ R -(ρ + 1)|] ⊕ . (3) 
In the second configuration, we propose to illuminate an infinitely-long slit by two mutually coherent Gaussian laser beams of waist w along Z and centered at Z = ±∆/2. The two-point correlation function is then given by

C2 (k) = √ πV 2 R σ R 4 e -(kσ R -κ 0 ) 2 4 + 2e -(kσ R ) 2 4 + e -(kσ R +κ 0) 2 4 , (4) 
with σ R = λ 0 l/πw and κ 0 = 2∆/w. For κ 0 3.7, this function also increases on a certain interval of k. We will see in the following that the increase of C2 (k) in both the double-slit and the double-Gaussian configurations can lead to an enhancement of localization with energy.

Anderson localization in 1D tailored speckle potentials

We now study AL of a single particle in these disordered potentials using the socalled phase formalism [START_REF] Lifshits | Introduction to the Theory of Disordered Systems[END_REF], which allows for efficient perturbative expansions [START_REF] Lugan | One-dimensional anderson localization in certain correlated random potentials[END_REF]. Consider a particle of mass m and given energy E in the disordered potential. The corresponding eigenstate φ E (z) is governed by the 1D Schrödinger equation

-( 2 /2m)∂ 2 z φ E (z) + V (z)φ E (z) = Eφ E (z). (5) 
Then, write the (real-valued) eigenfunction φ E (z) = r(z) sin [θ(z)] and its spatial derivative

∂ z φ E (z) = k E r(z) cos [θ(z)].
In this representation, Eq. ( 5) transforms into the set of equations

∂ z θ(z) = k E 1 - V (z) E sin 2 [θ(z)] (6a) ln r(z) r(0) = k E z 0 dz ′ V (z ′ ) 2E sin[2θ(z ′ )]. (6b) 
Equation (6a) can be solved in the form of a Born-like perturbative series for the phase θ in powers of the external potential V . Then, the Lyapunov exponent γ(E) ≡ L loc (E) -1 ≡ lim |z|→∞ ln[r(z)]/|z| can be calculated at each order in V by inserting the result of Eq. (6a) into Eq. (6b). It yields

3 γ(E) = n≥2 γ (n) (E) with γ (n) = 1 σ R V R √ E 2mσ 2 R 2 n f n (k E σ R ), (7) 
where each function f n depends on the n-point correlation function of the disorder, [START_REF] Lugan | One-dimensional anderson localization in certain correlated random potentials[END_REF]. In particular, the leading term of the series (Born approximation) is

C n (z 1 , ..., z n-1 ) = V (0)V (z 1 )...V (z n-1 )
f 2 (κ) = 1 8 C2 (2κ/σ R ) V 2 R σ R . ( 8 
)
This term generally captures most localization properties in 1D disorder, in particular the effect of the tailored correlations we consider here. Previous work has ). Shown are the numerical results extracted from a transfer matrix method (space step of ∆z = 0.1σR and total system size of Ltot = 411775σR with random initial conditions) averaged over 5000 disorder realizations (blue squares: VR > 0, red diamonds: VR < 0), and analytical results obtained from the phase formalism up to order 2 (solid black line) and up to order 3 (dotted blue and red lines).
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however shown some discrepancies between analytic calculations in the Born approximation and numerical calculations [START_REF] Piraud | Anderson localization of matter waves in tailored disordered potentials[END_REF]. Therefore, we will also include the next-order term [START_REF] Lugan | One-dimensional anderson localization in certain correlated random potentials[END_REF]:

f 3 (κ) = -1 4 0 -∞ du u -∞ dv C 3 (uσ R , vσ R ) V 3 R sin(2κv). (9) 
In addition, we will perform numerical calculations for the transmission through the 1D disordered potential of a particle governed by Eq. ( 5), using transfer matrix techniques [START_REF] Müller | Ultracold Gases and Quantum Information[END_REF].

Let us start with the standard (single-slit) configuration where the pupil function is uniform and nonzero in the interval -R < Z < +R, which corresponds to the correlation function given by Eq. (2). Figure 2 shows the Lyapunov exponent in this configuration, for both blue-and red-detuned speckle potentials, with parameters relevant for current experiments [START_REF] Billy | Direct observation of Anderson localization of matter waves in a controlled disorder[END_REF]. The numerical data (blue squares and red diamonds) are averaged over 5000 realizations for each value of k E . The analytic calculations of the Lyapunov exponent in the Born approximation [γ (2) (E) given by Eq. ( 7) with n = 2 and Eq. ( 8); solid black line], which do not depend on the sign of V R , fairly reproduce the numerical data. In this standard configuration, both numerics and analytic calculation in the Born approximation confirm that the Lyapunov exponent, i.e. the localization strength, decreases with increasing particle energy, hence following the intuitive behavior. We however find a significant discrepancy, which depends on the sign of V R , between the numerics and the analytics. A similar discrepancy was also observed in Ref. [START_REF] Piraud | Anderson localization of matter waves in tailored disordered potentials[END_REF] but the numerics were not calculating γ(E) in a direct way as in the present work. As is seen on Fig. 2, this discrepancy is very well accounted for by analytic calculations to the next order in the perturbative series, γ (2) (E) + γ (3) (E), where γ (3) (E) is given by Eq. ( 7) with n = 3 and Eq. ( 14) with ρ = 0. Note that γ (3) depends on the sign of V R .

Figure 2 shows the average values of the Lyapunov exponent, which we write γ(E) in this paragraph. For the sake of completeness, we show in Fig. 3 at four values of the energy, together with the Gaussian distribution

P(γ)/σ R γ σ R k E σ R =0.36 k E σ R =0.54 k E σ R =0.67 k E σ R =0.81
P (γ) = 1 √ 2π∆ γ exp - (γ -γ) 2 2∆ 2 γ ( 10 
)
with ∆ γ = γ/L tot and L tot the system size, which is expected for δ-correlated disorder when L tot ≫ 1/γ. For low energy, we find a good agreement. Since γ(E) = -ln(T )/2L tot , where T is the transmission probability of the wave through a sample of finite length L tot , it shows that the transmission probability T follows a log-normal distribution also in the correlated disorder we are considering. At high energy (k E σ R 0.8) the numerical distributions differ from Eq. [START_REF] De Gennes | Superconductivity of Metals and Alloys[END_REF]. This is expected because for k E σ R = 0.81, we find 1/γ ∼ 5000σ R , which is of the order of magnitude of L tot = 13333σ R .

As discussed above, for standard disorder, i.e. with a power spectrum C2 that is a constant or decreasing function of k, the Lyapunov exponent γ (2) (E) decreases with the energy E. Let us now consider the double-slit configuration, of correlation function given by Eq. ( 3). Inserting the latter into Eq. ( 8), we find that, for ρ > 0.25, γ (2) (E) shows an increase in a certain interval of k, which is all the more pronounced that ρ approaches 1. This indicates that in those tailored potentials, γ(E) can counterintuitively increase with energy. In order to study this effect precisely, we performed numerical (transfer-matrix approach) and analytical (phase formalism approach) calculations for the considered tailored speckle potential with ρ = 1/3, as done for the standard speckle potential. The results of the numerical calculations (blue squares and red diamonds) and of analytical calculations up to order three in the phase formalism (dotted blue and red lines) are shown on Fig. 4. They confirm that, for both blue and red detunings, γ(E) exhibits an increase with E for k E σ R ∈ [0.35, 0.6]. As for the standard speckle potential, the numerical results follow the trend of the 2 nd order term in the phase formalism (solid black line in Fig. 4). The 3 rd order term is given in the appendix [Eq. ( 14)]. For k E σ R ∈ [0.4, 1], it accounts very well for the discrepancy between the numerics and the 2 nd order term (solid black line). For low energy (i.e. k E σ R 0.4), the 4 th and higher order terms play a more important role, which is expected as we are approaching the limits of validity of the perturbative development. 

γ(E) σ R k E σ R 2 nd order V R >0 : 3
rd order V R >0 : numerics V R <0 : 3 rd order V R <0 : numerics 3) with ρ = 1/3, using the same methods and parameters as in Fig. 2. Blue squares: numerics with VR > 0; Red diamonds: numerics with VR < 0; Solid black line: order 2 in the phase formalism; Dotted blue and red lines: order 3 in the phase formalism. and4 (with a total system size of Ltot = 30880σR and random initial conditions) averaged over 500 disorder realizations. Blue squares: numerics with VR > 0; Red diamonds: numerics with VR < 0; Solid black line: order 2 in the phase formalism; Dotted blue and red lines: order 3 in the phase formalism.
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In the above double-slit configuration, γ(E) has a slope break near its maximum [see Eqs. (3), and ( 14) and Fig. 4], which is reminiscent of the sharp edges of the pupil function. As it will presumably be inconvenient for experimental observations, we now consider the double-Gaussian configuration, which is obtained using two mutually coherent Gaussian beams shone onto an infinite diffusive plate, giving the power spectrum (4) [START_REF] Piraud | Anderson localization of matter waves in tailored disordered potentials[END_REF]. For this configuration, γ (2) (E) shows an increase when κ 0 5.3, which is all the more marked than κ 0 is large. In Fig. 5, we show the Lyapunov exponents obtained in this case for κ 0 = 8.88, with transfer matrices (blue squares and red diamonds) and with the phase formalism, up to order 2 (solid black line) and up to order 3 (dotted blue and red lines; see Eq. ( 15) in the appendix for the 3 rd order term). In this configuration, we recover the same trend as in the other configuration, namely the Lyapunov exponent shows a significant increase in a given energy window, k E σ R ∈ [2.3, 4.2], the second order term, γ (2) (E), captures the main physics, and the discrepancy between the numerical results and γ (2) (E) are well accounted by the third order term, except at very low energy where the perturbative expansion breaks down.

As expected, the behavior of γ(E) is smoother for the double-Gaussian configuration compared to the double-slit configuration.

Observation scheme with ultracold atoms

In order to probe the nonmonotonous behavior of γ(E) discussed above, one can use ultracold atoms, which proved a good means to observe 1D AL of matter waves with pseudo-periodic [START_REF] Roati | Anderson localization of a non-interacting Bose-Einstein condensate[END_REF] and speckle [START_REF] Billy | Direct observation of Anderson localization of matter waves in a controlled disorder[END_REF] potentials. The preceding calculations of the Lyapunov exponent (a self-averaging quantity) directly apply to a 1D transmission scheme of a wave with fixed energy E. In ultracold-atom experiments [START_REF] Billy | Direct observation of Anderson localization of matter waves in a controlled disorder[END_REF][START_REF] Roati | Anderson localization of a non-interacting Bose-Einstein condensate[END_REF][START_REF] Kondov | Three-dimensional Anderson localization of ultracold fermionic matter[END_REF][START_REF] Jendrzejewski | Three-dimensional localization of ultracold atoms in an optical disordered potential[END_REF] however, a matter-wavepacket with a broad energy distribution should be considered, and the measured quantity is the density profile obtained after releasing the atoms in the disorder, which is not directly related to the above calculations. The average stationary density of a noninteracting atomic gas, with initial negligible width, after evolution in the disorder reads [START_REF] Sanchez-Palencia | Anderson localization of expanding Bose-Einstein condensates in random potentials[END_REF][START_REF] Sanchez-Palencia | Disorder-induced trapping versus anderson localization in Bose-Einstein condensates expanding in disordered potentials[END_REF][START_REF] Piraud | Localization of a matter wave packet in a disordered potential[END_REF] 

n ∞ (z) = dE D E (E)P ∞ (z|E), where D E (E)
is the energy distribution of the atoms and

P ∞ (z|E) = π 2 γ 8 ∞ 0 du u sinh(πu) 1 + u 2 1 + cosh(πu) 2 × exp{-(1 + u 2 )γ|z|/2} , (11) 
with γ = γ (2) (E) given by Eqs. ( 7) and ( 8), is the probability of quantum diffusion calculated in the weak disorder approximation [START_REF] Berezinskii | Kinetics of a quantum particle in a one-dimensional random potential[END_REF]14,13].

A first attempt to observe the nonmonotonous behavior of γ(E) may be to consider the experimental scheme of Ref. [START_REF] Billy | Direct observation of Anderson localization of matter waves in a controlled disorder[END_REF]. In this case an interacting condensate is first produced in the Thomas-Fermi regime in a harmonic trap of frequency ω, and the trap is then switched-off at time t = 0. In a first stage the expansion of the atoms is driven by their interaction energy, and one can neglect the disordered potential. For t ≫ 1/ω, it produces an almost noninteracting gas with momentum distribution [START_REF] Yu | Evolution of a Bose-condensed gas under variations of the confining potential[END_REF][START_REF] Castin | Bose-Einstein condensates in time dependent traps[END_REF] 

D i (p) = (3/4p cut ) 1 -(p/p cut ) 2 ⊕ . (12) 
We have performed numerical integration of the time-dependent Schrödinger equation for a particle with the initial momentum distribution [START_REF] Garc´ia-Garc´ia | Differentiable potentials and metallic states in disordered one-dimensional systems[END_REF] in the two-Gaussian tailored disordered potential with correlation function (4) and disorder parameters as in Fig. 5, for six realizations of the disordered potential [three with blue (V R > 0) and three with red (V R < 0) detuning]4 . After averaging the stationary density profiles over the six realizations, we fit ln[P ∞ (z)] as given by Eq. ( 11) to ln[n ∞ (z)] with γ as the only fitting parameter 5 . The results, plotted on Fig. 6, show that the fitted Lyapunov exponent (black dots) slightly decreases with k cut and saturates roughly beyond the minimum of the calculated γ (2) . This is because the long distance behavior of n ∞ (z) is dominated by the energy components with the largest localization lengths, i.e. those with the smallest γ(E) [START_REF] Sanchez-Palencia | Anderson localization of expanding Bose-Einstein condensates in random potentials[END_REF][START_REF] Sanchez-Palencia | Disorder-induced trapping versus anderson localization in Bose-Einstein condensates expanding in disordered potentials[END_REF][START_REF] Piraud | Localization of a matter wave packet in a disordered potential[END_REF]. Therefore this scheme does not enable us to probe the region where γ(E) increases.

In order to observe the upturn of γ(E), one can use an atomic energy distribution much narrower in energy and strongly peaked at a given E at , so that n ∞ (z) ≃ P ∞ (z|E at ). As discussed in Ref. [START_REF] Piraud | Anderson localization of matter waves in tailored disordered potentials[END_REF], it can be realized by either giving a momentum 8) (solid black line) and from fits of Eq. ( 11) to the numerical data (points). The figure shows the values of γfit extracted from the average profile n∞(z), with initial Thomas-Fermi [TF, Eq. ( 12), full dots] and Gaussian [Eq. ( 13), open circles] momentum distributions.

kick to a noninteracting initially trapped gas or using an atom laser, both with a narrow energy width [START_REF] Robins | Achieving peak brightness in an atom laser[END_REF][START_REF] Guerin | Guided quasicontinuous atom laser[END_REF][START_REF] Bernard | Quasi-continuous horizontally guided atom laser: coupling spectrum and flux limits[END_REF]. Using the momentum distribution

D i (p) = (1/ √ 2πp w ) exp -(p -p at ) 2 /2p 2 w . (13) 
with parameters relevant to current experiments, one can then extract the values of γ(E at ) by the same fitting procedure as above. The results, displayed on Fig. 6 (grey circles, reproduced from Fig. 2(a) of Ref. [START_REF] Piraud | Anderson localization of matter waves in tailored disordered potentials[END_REF]), show a strong increase of γ(E) as a function of k at , which follows quite well Eq. ( 8). The scheme, which requires a small change in current experiments hence allows one to directly observe the nonmonotonic behavior of γ(E) induced by the tailored correlations.

Conclusion

In summary, we have studied Anderson localization of noninteracting ultracold matterwaves in correlated disordered potentials. Tailoring of the disorder correlations can strongly affect the localization behavior, namely the localization length can increase with particle energy. Here we focused on the 1D case, providing more details compared to earlier works [START_REF] Sacha | Matter-wave analog of an optical random laser[END_REF][START_REF] Piraud | Anderson localization of matter waves in tailored disordered potentials[END_REF]. In particular, we show that although the Born approximation reproduces the overall behavior of the localization length, next-order terms are significant. We have found good agreement between exact numerical calculations and perturbation theory up to order three. We have compared two disorder configurations ('double-slit' and 'double-Gaussian') to realize the above effect. We finally discussed how to observe the effect with expanding ultracold atoms, explicitly showing that the scheme usually used in experiments [START_REF] Billy | Direct observation of Anderson localization of matter waves in a controlled disorder[END_REF][START_REF] Roati | Anderson localization of a non-interacting Bose-Einstein condensate[END_REF][START_REF] Kondov | Three-dimensional Anderson localization of ultracold fermionic matter[END_REF][START_REF] Jendrzejewski | Three-dimensional localization of ultracold atoms in an optical disordered potential[END_REF] should be adapted.

Third-order term in phase-formalism calculations For the double-slit configuration, the f 3 function that intervenes in Eq. ( 7) reads where g(x) ≡ x ln(x).

f 3 (κ) = π 8(1 -ρ) 3 Θ 1-ρ 2 -κ f 3,1 (κ) + Θ 1-ρ 2 -κ -ρ+1 2 × Θ κ -ρ+1 2 f 3,2 (κ) + Θ ρ+1 2 -κ f 3,3 (κ) , (14) 
For the double-Gaussian configuration, we find : where erfi (z) ≡ -i erf (iz) is the imaginary error function, with erf (x) ≡ 2

f 3 (κ) = 1 32 √ 3 4πe -4 3 κ 2 erfi κ √ 3 + 2πe -κ 2 × (15) 
x 0 dt e -t 2 / √ π the error function.

Figure 1 .

 1 Figure 1. Optical scheme to create a speckle pattern: A laser beam is diffracted by a ground-glass plate diffuser (D) with a 1D slit of pupil function ID(Z), where Z spans the diffuser. The latter imprints a random phase on the various light paths. The intensity field, I(z), observed in the focal plane of a converging lens, is a speckle pattern, which creates a disordered potential V (z) for the atoms.

Figure 2 .

 2 Figure 2. (Color online) Lyapunov exponent for both blue-and red-detuned speckles with the standard correlation function (2) and VR = ±0.01625( 2 /mσ 2 R). Shown are the numerical results extracted from a transfer matrix method (space step of ∆z = 0.1σR and total system size of Ltot = 411775σR with random initial conditions) averaged over 5000 disorder realizations (blue squares: VR > 0, red diamonds: VR < 0), and analytical results obtained from the phase formalism up to order 2 (solid black line) and up to order 3 (dotted blue and red lines).

  some distributions of the Lyapunov exponents γ(E) obtained for the different realizations of the potential

Figure 3 .

 3 Figure 3. (Color online) Probability distributions of the Lyapunov exponents obtained by transfer matrix calculations (dotted lines) with the disorder parameters of Fig.2, VR > 0 (space step of ∆z = 0.1σR and total system size of Ltot = 13333σR with random initial conditions), and various energies (indicated on the figure). The solid lines are the corresponding theoretical distributions[START_REF] De Gennes | Superconductivity of Metals and Alloys[END_REF].

Figure 4 .

 4 Figure 4. (Color online) Lyapunov exponent for speckles with the tailored correlation function (3) with ρ = 1/3, using the same methods and parameters as in Fig.2. Blue squares: numerics with VR > 0; Red diamonds: numerics with VR < 0; Solid black line: order 2 in the phase formalism; Dotted blue and red lines: order 3 in the phase formalism.

Figure 5 .

 5 Figure 5. (Color online) Lyapunov exponent for speckles with the tailored correlation function (4) with κ0 = 8.88 and VR = ±0.72( 2 /mσ 2 R ), using the same methods as in Figs. 2and 4(with a total system size of Ltot = 30880σR and random initial conditions) averaged over 500 disorder realizations. Blue squares: numerics with VR > 0; Red diamonds: numerics with VR < 0; Solid black line: order 2 in the phase formalism; Dotted blue and red lines: order 3 in the phase formalism.

Figure 6 .

 6 Figure 6. (Color online) Lyapunov exponent versus particle energy for speckles in the double-Gaussian configuration with κ0 = 8.88 and VR = ±0.72( 2 /mσ 2 R ), obtained from Eq. (8) (solid black line) and from fits of Eq. (11) to the numerical data (points). The figure shows the values of γfit extracted from the average profile n∞(z), with initial Thomas-Fermi [TF, Eq. (12), full dots] and Gaussian [Eq. (13), open circles] momentum distributions.

with f 3 , 1

 31 (κ) = g(2) -g[2(1 -κ)] -2g(2κ) + 2g (1 -ρ) -g (2ρ) -2g (1 -ρ -2κ) +g (1 -2κ + ρ) + g [2 (κ + ρ)] -g (1 + 2κ + ρ) , f 3,2 (κ) = -g(2κ) -g (1 -ρ) + g (2ρ) + g (2κ + 1 -ρ) +g (2κ -2ρ) -g (1 + ρ) + g (1 -2κ + ρ) ,andf 3,3 (κ) = g(2) -g[2(1 -κ)] -g(2κ) + g (1 -ρ) -g (-1 + 2κ -ρ) -g (1 + ρ) + g (2κ -1 -ρ)

2

 2 erfi κ -κ 0 /2 √ 3

This effect is similar to the well-known example of single scattering from double barriers (see for instance Ref.[START_REF] Basdevant | Quantum Mechanics[END_REF])

We use the conventions f (κ) = f (u)e -iκu du.

Note that the first-order term vanishes because V = 0.

As in Refs.[START_REF] Piraud | Localization of a matter wave packet in a disordered potential[END_REF][START_REF] Piraud | Anderson localization of matter waves in tailored disordered potentials[END_REF], we use a Crank-Nicolson algorithm with the following numerical parameters: space step ∆x = 0.03σR, time step ∆t = 1.1 /Eσ R , boxes of size 12 × 10 3 σR.

The fits are performed in the space windows -300σR < z < -50σR and +50σR < z < +300σR, corresponding to an experimentally accessible width of 1 mm for σR = 1.6 µm.
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