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We report on the direct observation of coherent backscattering (CBS) of ultracold atoms in a
quasi-two-dimensional configuration. Launching atoms with a well-defined momentum in a laser
speckle disordered potential, we follow the progressive build up of the momentum scattering pattern,
consisting of a ring associated with multiple elastic scattering, and the CBS peak in the backward
direction. Monitoring the depletion of the initial momentum component and the formation of the
angular ring profile allows us to determine microscopic transport quantities. We also study the time
evolution of the CBS peak and find it in fair agreement with predictions, at long times as well as at
short times. The observation of CBS can be considered a direct signature of coherence in quantum
transport of particles in disordered media. It is responsible for the so called weak localization
phenomenon, which is the precursor of Anderson localization.

PACS numbers: 03.75.-b, 67.85.-d, 05.60.Gg, 42.25.Dd, 72.15.Rn

Quantum transport differs from classical transport by
the crucial role of coherence effects. In the case of trans-
port in a disordered medium, it can lead to the com-
plete cancelling of transport when the disorder is strong
enough: this is the celebrated Anderson localization
(AL) [1]. For weak disorder, a first order manifestation of
coherence is the phenomenon of coherent backscattering
(CBS), i.e., the enhancement of the scattering probability
in the backward direction, due to a quantum interference
of amplitudes associated with two opposite multiple scat-
tering paths [2–4] (see inset of Fig. 1). Direct observation
of such a peak is a smoking gun of the role of quantum
coherence in quantum transport in disordered media.

CBS has been observed with classical waves in op-
tics [5–8], acoustics [9, 10], and even seismology [11]. In
condensed matter physics, CBS is the basis of the weak
localization phenomenon (see e.g. [12]), which is respon-
sible for the anomalous resistance of thin metallic films
and its variation with an applied magnetic field [13, 14].
In recent years, it has been possible to directly observe
Anderson localization with ultracold atoms in one dimen-
sion [15, 16] and three dimensions [17, 18]. Convincing
as they are, none of these experiments includes a direct
evidence of the role of coherence.

In this Letter, we report on the direct observation of
CBS with ultracold atoms, in a quasi-two-dimensional
(2D) configuration [19]. Our scheme is based on the pro-
posal of Ref. [21] that suggested observing CBS in the
momentum space. A cloud of noninteracting ultracold
atoms is launched with a narrow velocity distribution in
a laser speckle disordered potential (Fig. 1). Time of
flight imaging, after propagation time t in the disorder,
directly yields the momentum distribution, as shown in
Fig. 2. As expected for elastic scattering of particles, we
observe a ring that corresponds to a redistribution of the

momentum directions over 2π while the momentum mag-
nitude remains almost constant. The evolution of the ini-
tial momentum peak and of the angular ring profile yields
the elastic scattering time and the transport time. But
the most remarkable feature is the large visibility peak,

FIG. 1. Experimental set-up. A cloud of noninteracting ul-
tracold atoms, released from an optical trap (beams along y
and z axis, red) and suspended against gravity by magnetic
levitation (horizontal coils, yellow), is launched with a well-
defined momentum pi along the z axis. It is submitted to
an anisotropic laser speckle disordered potential (blue beam),
propagating along the x axis and elongated along that direc-
tion, leading to a quasi-2D diffusive motion in the y− z plane
(see text). The atomic momentum distribution in this plane
is monitored by fluorescence imaging after a time of flight
of 150 ms. Inset: physical origin of CBS. The coherent en-
hancement of scattering in the backward direction originates
from the interference between each multiple scattering path
(solid line) and its reversed counterpart (dashed line).
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FIG. 2. Observed momentum distributions after different
propagation times t in the disorder. The images correspond
to an averaging over 20 experimental runs. Note that the ver-
tical scale is different in the three first images (t =0, 0.5, and
1 ms), whereas it is the same in the three last images (t =1.5,
2, and 2.5 ms).

which builds up in the backward direction. The height
and width of that peak, and their evolution with time,
are an indisputable signature of CBS, intimately linked
to the role of coherence.

To understand the origin of that CBS peak, let us con-
sider an input plane matter wave with initial momentum
pi that experiences multiple scattering towards a final
momentum pf (inset of Fig. 1). For each multiple scat-
tering path, we can consider the reversed path with the
same input pi and output pf . Since the initial and final
atomic states are the same, we must add the two cor-
responding complex quantum amplitudes, whose phase
difference is δφ = (pi + pf) ·R/~ (R is the spatial sepa-
ration between the initial and final scattering events and
~ = h/2π the reduced Planck constant). For the ex-
act backward momentum pf = −pi, the interference is
always perfectly constructive, whatever the considered
multiple scattering path. This coherent effect survives
the ensemble averaging over the disorder, so that the to-
tal scattering probability is twice as large as it would
be in the incoherent case. For an increasing difference
between pf and −pi, the interference pattern is progres-
sively washed out as we sum over all interference patterns
associated with all multiple scattering paths. It results
in a CBS peak of width inversely proportional to the
spread ∆R in the separations [22]. For diffusive scat-
tering paths, the distribution of R is a Gaussian whose
widths increase with time as t1/2, and the CBS widths
decrease according to ∆pCBS,α = ~/

√
2Dαt for each di-

rection of space (α = y, z), Dα being the diffusion con-
stant along that direction. This time resolved dynamics
of the CBS peak has been observed in acoustics [9, 10]
and optics [23, 24].

The crux of the experiment is a sample of noninteract-
ing paramagnetic atoms, suspended against gravity by a
magnetic gradient (as in [18]), and launched along the z
axis with a very well-defined initial momentum pi (see

Fig. 1). This is realized in four steps. First, evaporative
cooling of an atomic cloud of 87Rb atoms in a quasi-
isotropic optical dipole trap (trapping frequency ' 5 Hz)
yields a Bose-Einstein condensate of 9 × 104 atoms in
the F = 2, mF = −2 ground sublevel. Second, we sup-
press the interatomic interactions by releasing the atomic
cloud and letting it expand during 50 ms. At this stage,
the atomic cloud has a size (standard half-width along
each direction) of ∆rα = 30 µm, and the residual inter-
action energy (Eint/h ∼ 1 Hz) is negligible compared to
all relevant energies of the problem. Since the atomic
cloud is expanding radially with velocities proportional
to the distance from the origin, we can use the “delta-
kick cooling” technique [26], by switching on a harmonic
potential for a well chosen amount of time. This almost
freezes the motion of the atoms, and the resulting veloc-
ity spread ∆vα = 0.12±0.03 mm/s is just one magnitude
above the Heisenberg limit (∆rαm∆vα ∼ 5~, with m the
atom mass). Last, we give the atoms a finite momentum
pi along the z direction, without changing the momen-
tum spread, by applying an additional magnetic gradient
during 12 ms. The first image of Fig. 2 shows the result-
ing 2D momentum distribution. The average velocity is
vi = 3.3±0.2 mm/s (ki = pi/~ ' 4.5 µm−1), correspond-
ing to a kinetic energy EK = p2i /2m (EK/h ' 1190 Hz).
This momentum distribution is obtained with a stan-
dard time of flight technique that converts the veloc-
ity distribution into a position distribution. Because
of the magnetic levitation, we can let the atomic cloud
expand ballistically for as long as 150 ms before per-
forming fluorescence imaging along the x axis. The
overall velocity resolution of our experiment that takes
into account the initial momentum spread, which writes
∆vres = [∆vα

2 + (∆rα/ttof)
2]1/2 = 0.23 mm/s, is nev-

ertheless mainly limited by the size ∆rα of the atomic
cloud.

To study CBS, we suddenly switch on an optical dis-
ordered potential in less than 0.1 ms, let the atoms scat-
ter for a time t, then switch off the disorder and mon-
itor the momentum distribution at time t. The disor-
dered potential is the dipole potential associated with
a laser speckle field [27, 28], obtained by passing a laser
beam through a rough plate, and focusing it on the atoms
(Fig. 1). It has an average value VR (the disorder ”am-
plitude”) equal to its standard deviation. Its autocor-
relation function is anisotropic, with a transverse shape
well represented by a Gaussian of standard half-widths
σy = σz = σ⊥ ' 0.2 µm, and a longitudinal Lorentzian
profile of half-width σx ' 1 µm (HWHM) [29]. The
laser (wavelength 532 nm) is detuned far off-resonance
(wavelength 780 nm), yielding a purely conservative and
repulsive potential. The disorder amplitude VR is ho-
mogenous to better than 1% over the atom cloud (profile
of half-widths 1.2 mm along y,z, 1 mm along x).

The anisotropy of the speckle autocorrelation function
(elongated along x) allows us to operate in a quasi-two-
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dimensional configuration by launching the atoms per-
pendicularly to the x axis (along the z axis). In the y-z
plane, the atoms are scattered by a potential with a corre-
lation length shorter than the reduced atomic de Broglie
wavelength (kiσ⊥ ' 0.9), so that the scattering proba-
bility is quasi-isotropic, and we will replace the subscript
α = y, z by ⊥ in the rest of this Letter. The dynamics
within this plane develops on the typical time scale of a
single scattering event, that is, the elastic scattering time
τs. In contrast, the correlation length along the x axis
is larger than the reduced atomic de Broglie wavelength
(kiσx ' 4.5), so that each scattering event produces but
a small deviation out of the y-z plane [30]. The diffusive
dynamics along x is then slower than in the y − z plane,
and for short times the dynamics is quasi 2D.

Figure 2 shows the time evolution of the momentum
distribution for a disorder amplitude VR/h = 975±80 Hz.
In order to analyze these data quantitatively, we perform
a radial integration of the 2D momentum distribution on
a thin stripe between pi −∆pres and pi + ∆pres (inset of
Fig. 3) (∆pres = m∆vres is the momentum resolution).
This yields the angular profile n(θ, t), displayed in Fig. 3
for increasing diffusion times.

We first extract the elastic scattering time τs from
the exponential decay of the initial peak n(θ = 0, t) ∝
e−t/τs [31]. We find τs = 0.33± 0.02 ms (mean free path
ls = viτs = 1.1 µm). Note that this quantity also plays a
role in the radial width of the ring (inset of Fig. 3), which
is associated to a Lorentzian energy spread ∆Edis = ~/τs
(HWHM) acquired by the atoms when the disorder is
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FIG. 3. Normalized angular profiles n(θ, t)/n̄ corresponding
to the distributions shown in Fig. 2. The red solid lines cor-
respond to the double structure fit around the backscattering
direction [a parabola for the incoherent background (dashed
line) and a Gaussian for the CBS peak, see text]. Inset: false
color representation of the momentum distribution (t = 2 ms).
The angle θ refers to the scattering direction with respect to
the initial direction (pi).

suddenly switched on. Combining the corresponding mo-
mentum spread with the resolution of our measurement,
we find a width in agreement with the observed ring
width. The measured value of τs is in accordance with
numerical simulations adapted to our configuration, but
is about 2 times the value predicted by a perturbative
calculation [29]. This is consistent with the fact that
we are not fully in the weak disorder regime defined by
∆Edis/EK = 2/kils � 1. Here we have ∆Edis/EK ∼ 0.4
(kils ∼ 5) [32].

Monitoring the isotropization of the momentum dis-
tribution, we obtain another important quantity: the
transport time τ?, after which, in the absence of coher-
ence, the information about the initial direction would be
lost. It is determined from the exponential decay e−t/τ

?

of the first component of the Fourier series expansion of
n(θ, t) [21, 34]. We find τ? = 0.4±0.05 ms, also in agree-
ment with numerics. Note that τ? takes into account the
CBS phenomenon and its calculation must include weak
localization corrections. It is only slightly larger than τs,
as expected for a nearly isotropic scattering probability
(kiσ⊥ = 0.9). The transport time sets the time scale of
the onset of the diffusive dynamics, which is well estab-
lished only after several τ?. In the experiment, we ob-
serve that the momentum distribution has become fully
isotropic after t ∼ 2.5 ms (i.e. ∼ 6 τ?), with a steady
and flat angular profile of mean value n(θ, t) = n̄, except
around θ = π where the CBS peak is still present.

To analyze the evolution of the CBS signal, we fit (see
Fig. 3) the angular profiles by the function nincoh(θ, t) +
ncoh(t) exp[−(θ−π)2/2∆θ(t)2]. In this formula, nincoh is
(within higher order terms) the multiple scattering back-
ground that would be obtained in the absence of coher-
ence [35] and we assume that nincoh(θ, t) has a parabola
shape around θ = π. The fit allows us to measure the
contrast C(t) = ncoh(t)/nincoh(π, t) and the width ∆θ(t)
of the CBS peak, and to compare them to the results
of theoretical predictions. Their evolutions are shown in
Fig. 4. A CBS peak appears as soon as scattering in the
backward direction is significant, but the contrast starts
decreasing before reaching the ideal value of 1. For the
width, we observe the predicted monotonic decrease, but
it tends asymptotically towards a non-null value rather
than zero.

To compare these observations with theoretical pre-
dictions, we must take into account our finite resolution.
The black line in Fig. 4(b) represents the calculated CBS
width that results from the convolution of our resolu-
tion ∆θres = ∆pres/pi = 0.07 with the expected CBS
width ∆θCBS = ∆pCBS,⊥/pi = ~/pi

√
2D⊥t in the diffu-

sive regime (the widths are added quadratically). The
diffusion constant is evaluated using the standard rela-
tion D⊥ = v2i τ

?/2, so that the solid line does not involve
any adjustable parameter. We see that the agreement
with the data is good when we enter the multiple scat-
tering regime [for t & 1.5 ms in Fig. 4(b)], but not at
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FIG. 4. Time resolved dynamics of the CBS peak: evolution
of the contrast C (a) and the width ∆θ (b) versus the scat-
tering time t. The blue points are experimental data and the
error bars correspond to the 95% confidence intervals for the
fitted values (±2 standard deviations). The theoretical pre-
dictions for the multiple scattering regime are represented by
the solid black lines at long times (t & 4τ?; τ? = 0.4 ms),
and by dotted black lines at short times. The dashed-dotted
red lines correspond to the calculation of [36] at short times
(i.e. for t ∼ τs; τs = 0.33 ms), where single scattering events
cannot be neglected.

short times.

The broadening of the CBS peak by the finite resolu-
tion is also responsible for a decrease of the contrast, as
represented in Fig. 4(a). Here also, we observe that the
prediction (which again involves no adjustable parame-
ter) is very different from the observed values at short
times, but is in reasonable agreement with the measure-
ments around t ∼ 1.5 ms. On the other hand, the mea-
sured contrast is definitely smaller than the theoretical
prediction when t increases yet more. We relate this ob-
servation at long times to the onset of the dynamics in
the third direction x. Using a second imaging system
yielding the momentum distribution in the x − y plane,
we estimate a typical time of 4 ms for this out-of-plane
dynamics to become significant, and render the 2D ap-
proach wanting.

Deviations at short times were to be expected. In-
deed, CBS demands multiple scattering, or at least dou-
ble scattering, to happen (see inset of Fig. 1), whereas
single scattering events do not participate to the CBS
peak. At short times (t ∼ τs), the contribution of single
scattering to backscattering is not negligible compared to
multiple scattering. This entails a reduction of the con-
trast (see e.g. [3]), and a modification of the shape (no
longer Gaussian), whose width decreases at this stage

as 1/t (ballistic motion between the first two scatter-
ers). In the case of light, a calculation for isotropic scat-
tering [36] predicts a short time evolution of the con-
trast C = (2t/πτs)/(1 + 2t/πτs) and width ∆θCBS ∼
3/kils(τs/t). This prediction is plotted in Fig. 4 and is
found in fair agreement with the observations in this time
domain. Finally, note that the width around t ∼ τs is
linked to the disorder strength quantified by kils. Here
we find a maximum value of ∆θmax ∼ 0.3 rad, that is
∆θmax ∼ 1.5/kils (kils ∼ 5, see above).

Similar measurements and analysis have been repeated
for weaker disorder (VR/h = 525, 750 Hz) and smaller
initial momentum pi (EK/h = 160, 220, 620 Hz), and we
have found a similar agreement between data and the-
ory. In contrast to the observed moderate changes in the
maximum peak contrast (Cmax ∼ 0.5 − 0.7), the maxi-
mum peak width ∆θmax increases significantly with the
amplitude of the disorder and the inverse of pi. The
highest observed width of 1.2 rad (from which we infer
kils ∼ 1.25) suggests that we are very close to the strong
disorder regime, where AL is expected to be experimen-
tally observable in 2D systems. Such an observation,
however, would demand a longer 2D evolution in the dis-
order, which is limited in the present experiment because
of the cross over to the 3D regime. Increasing this time,
as for instance in [37], will then constitute the next step
towards AL, with the possibility to observe the coherent
forward scattering peak predicted in [38].

In conclusion, we have demonstrated experimentally
that the time resolved study of the momentum distribu-
tion of ultracold atoms in a random potential is a pow-
erful tool to study quantum transport properties in dis-
ordered media. We have been able to extract the elastic
scattering time, the transport time, and to observe and
study the evolution of the CBS peak. Let us emphasize
that the theoretical analysis as well as numerical simu-
lations render an account of the observations not only
in the multiple scattering regime but also at short time,
during the onset of multiple scattering. Such agreement
gives a strong evidence of the fundamental role of coher-
ence in that phenomenon. Further evidences of the role
of coherence could be sought in the predicted suppression
of the CBS peak [39] when scrambling the disorder, or
when dephasing the counter-propagating multiple scat-
tering paths using artificial gauge fields [40], in the spirit
of pioneering works in condensed matter physics [14]
or optics [41]. Finally, this work also opens promising
prospects to study the effect of interactions on CBS (see
e.g. [42, 43]).
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