
HAL Id: hal-00714837
https://hal-iogs.archives-ouvertes.fr/hal-00714837v2

Submitted on 29 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An acoustic analog to the dynamical Casimir effect in a
Bose-Einstein condensate

Jean-Christophe Jaskula, Guthrie B. Partridge, Marie Bonneau, Raphaël
Lopes, Josselin Ruaudel, Denis Boiron, Christoph I Westbrook

To cite this version:
Jean-Christophe Jaskula, Guthrie B. Partridge, Marie Bonneau, Raphaël Lopes, Josselin Ruaudel,
et al.. An acoustic analog to the dynamical Casimir effect in a Bose-Einstein condensate. Physical
Review Letters, 2012, 109, pp.220401. �10.1103/PhysRevLett.109.220401�. �hal-00714837v2�

https://hal-iogs.archives-ouvertes.fr/hal-00714837v2
https://hal.archives-ouvertes.fr


An acoustic analog to the dynamical Casimir effect in a Bose-Einstein condensate

J.-C. Jaskula,1, ∗ G. B. Partridge,1, † M. Bonneau,1 R. Lopes,1 J. Ruaudel,1 D. Boiron,1 and C. I. Westbrook1

1Laboratoire Charles Fabry, Institut d’Optique, CNRS,
Univ Paris-Sud, 2 avenue Augustin Fresnel, 91127 Palaiseau France

(Dated: November 29, 2012)

We have modulated the density of a trapped Bose-Einstein condensate by changing the trap
stiffness, thereby modulating the speed of sound. We observe the creation of correlated excitations
with equal and opposite momenta, and show that for a well defined modulation frequency, the
frequency of the excitations is half that of the trap modulation frequency.

PACS numbers: 03.75.Kk, 67.10.Jn, 42.50.Lc

Although we often picture the quantum vacuum as
containing virtual quanta whose observable effects are
only indirect, it is a remarkable prediction of quantum
field theory that the vacuum can generate real particles
when boundary conditions are suddenly changed [1–4].
Known as the dynamical Casimir effect, a cavity with ac-
celerating boundaries generates photon pairs. Recent ex-
periments have demonstrated this effect in the microwave
regime using superconducting circuits [5, 6]. Hawking
radiation [7] is another situation characterized by spon-
taneous pair creation and work on sonic analogs to the
Hawking problem [8] has led to the realization that Bose-
Einstein condensates (BEC) are attractive candidates to
study such analog models [9–11], because their low tem-
peratures promise to reveal quantum effects. Here we
exhibit an acoustic analog to the dynamical Casimir ef-
fect by modulating the speed of sound in a BEC. We
show that correlated pairs of elementary excitations,
both phonon-like and particle-like, are produced, in a
process that formally resembles parametric down conver-
sion [4, 12].

The first analyses of the dynamical Casimir effect con-
sidered moving mirrors, but it has been suggested that
a changing index of refraction could mimic the effect
[13, 14]. Our experiment is motivated by a suggestion
in Ref. [12] that one can realize an acoustic analog to
the dynamical Casimir effect by changing the scatter-
ing length in an interacting Bose gas. The change in
the interaction strength is analogous to an optical in-
dex change: the speed of sound (or light) changes. Seen
in a more microscopic way, the ground state of such a
gas is the vacuum of Bogoliubov quasi-particles whose
makeup is interaction-dependent. Changing the interac-
tion strength projects this old vacuum onto a new state
containing pairs of the new quasi-particles [12], which
appear as pairwise excitations. Instead of changing the
interaction strength, we have simply modified the confin-
ing potential, which in turn changes the density. Sudden
changes such as these have also been suggested as analogs
to cosmological phenomena [15–17].

We study two situations, in the first the confining po-
tential is suddenly increased and in the second the poten-

tial is modulated sinusoidally. The sinusoidal modulation
of the trapping potential was studied in Ref. [18–20] in
the context of the observation of Faraday waves. Our
results on sinusoidal modulation are similar to this work
and we have extended it to observe correlated pairs of
Bogoliubov excitations. We produce these excitations
in both the phonon and particle regimes, and observe
correlations in momentum space. Parametric excitation
of a quantum gas was also studied in optical lattices in
which the optical lattice depth was modulated [21, 22],
although in that experiment, the excitation was observed
as a broadening of a momentum distribution.

The experimental apparatus is the same as that de-
scribed in Refs. [23, 24] and is shown schematically in
Fig. 1a. We start from a BEC of approximately 105

metastable helium (He*) atoms evaporatively cooled in
a vertical optical trap to a temperature of about 200 nK.
The trapped cloud is cigar shaped with axial and radial
frequencies of 7 Hz and 1500 Hz. In the first experiment
we raise the trapping laser intensity by a factor of 2 with a
time constant of 50 µs using an acousto-optic modulator
(see inset to Fig. 1b). The trap frequencies thus increase
by
√

2. The compressed BEC is held for 30 ms before
the trap laser is switched off (in less than 10 µs). The
cloud falls onto a position sensitive, single atom detector
which allows us to measure the atom velocities[25]. After
compression, the gas is excited principally in the vertical
direction: transversely we only observe a slight heating
(about 100 nK). Figure 1b shows a single shot distribu-
tion of vertical atom velocities relative to the center of
mass and integrated horizontally, while Fig. 1c shows the
same distribution averaged over 50 shots. These distri-
butions are more than one order of magnitude wider than
that of an unaffected BEC. The individual shots show a
complex structure which is not reproduced from shot to
shot, as is seen from the washing out of the peaks upon
averaging.

We consider the correlations between atoms with ver-
tical velocities vz and v′z, by constructing a normalized
second-order correlation function, g(2)(vz, v

′
z)[25], aver-

aged over the x-y plane and shown in Fig. 2a. The plot
exhibits two noticeable features along the v′z = vz and
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FIG. 1. Effects of time-varying potentials (color online). a, Schematic view of the experiment. Pairs of Bogoliubov quasiparticles
are created by varying the trap stiffness. After the flight to the detector these excitations appear as a broadening or sidebands
on the atom cloud in the vertical (z) direction. In the following plots we convert arrival times to relative velocities and average
over the transverse dimensions. b, Single shot velocity distribution for a cloud which was subjected to a sudden increase in the
trap stiffness. The inset shows the time evolution of the trap stiffness. c, As in b but averaged over 50 shots. d, Single shot
velocity distribution for a cloud which was subjected to a weak, sinusoidal modulation of the trap stiffness at 2.17 kHz. The
inset shows the time evolution of the trap stiffness. e, As in d but averaged over 780 shots.

v′z = −vz diagonals. The former reflects the fluctua-
tions in the momentum distribution, as in the Hanbury
Brown and Twiss effect [26], except that this cloud is far
from thermal equilibrium. The v′z = −vz correlation is
a clear signature of a correlation between quasi-particles
of opposite velocities. A projection of this off-diagonal
correlation is shown in Fig. 2b. At low momentum, the
excitations created by the perturbation are density waves
(phonons) which in general consist of superpositions of
several atoms traveling in opposite directions. In the con-
ditions of our clouds, a phonon is adiabatically converted
into a single atom of the same momentum during the re-
lease by a process referred to as “phonon evaporation”
[27]. Therefore in the phonon regime as well as in the
particle regime, we interpret the back-to-back correlation
in Fig. 2a as the production of pairs of Bogoliubov ex-
citations with oppositely directed momenta as predicted
in the acoustic dynamical Casimir effect analysis [12].

To further study this process, we replace the com-
pression by a sinusoidal modulation of the laser inten-
sity I(t) = I0(1 + δ cosωmt) (inset of Fig. 1d). We
choose δ such that the trap frequencies are modulated
peak to peak by about 10%. The modulation is applied

for 25 ms before releasing the condensate. Figures 1d and
1e show respectively single shot and averaged momentum
distributions resulting from the modulation. One sees
that the momentum distribution develops sidebands, ap-
proximately symmetrically placed about the center. Fig-
ure 3a shows the normalized correlation function, plotted
in the same way as in Fig. 2a, for a modulation frequency
ωm/2π = 2170 Hz. We again observe anti-diagonal cor-
relations as for a sudden excitation except that the cor-
relations now appear at a well defined velocity, which
coincides with that of the sidebands (see Fig. 3b).

We have examined sinusoidal modulation for frequen-
cies ωm/2π between 900 Hz and 5000 Hz and observed
excitations similar to those in Fig. 3. We summarize our
observations in Fig. 4a in which we plot the excitation
frequency as a function of the sideband velocity. We also
plot the locations of the peaks in the correlation functions
on the same graph. For modulation frequencies much
above 2 kHz, the antidiagonal correlation functions are
quite noisy preventing us from clearly identifying correla-
tion peaks. This noise may have to do with the proximity
of the parametric resonance with the transverse trap fre-
quency (∼ 3 kHz) [19].
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FIG. 2. Density correlations after a sudden compression (color

online). a, Normalized correlation function g(2)(vz, v
′
z) of the

data in Fig. 1c (50 shot average). The signal on the diago-
nal results from the density fluctuations in the cloud. The
anti-diagonal line indicates the creation of correlated quasi-
particles with opposite momenta, and is the signature of the
dynamical Casimir effect. b, Anti-diagonal correlation func-
tion g(2)(vz, v

′
z = −vz). The smooth line shows the result of

smoothing the data over a window of about 1 cm/s. The cor-
relations apparently persist over a scale comparable to that
of the density distribution. c, Correlation function along the
dashed line and integrated over a region indicated by the dot-
ted arrows, as a function of δvz = v′z − vz. The dips on either
side the peak may be related to the effect reported in [28].

A weakly interacting quantum gas obeys the well
known Bogoliubov-de Gennes dispersion relation between
the frequency ωk and wavevector k:

ωk = α

√
c2k2 +

(
~k2
2m

)2

(1)

with α = 1 and c, the sound velocity. This relation
describes both phonons (long wavelength excitations)
whose dispersion is linear and free particles, whose dis-
persion is quadratic. If our observation indeed corre-
sponds to the creation of pairs, we expect the total exci-
tation energy to be shared between the two excitations.
Momentum conservation, on the other hand, requires
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FIG. 3. Density correlations after a periodic modulation
(color online). a, Normalized correlation function g(2)(vz, v

′
z)

measured after sinusoidal modulation of the trap frequency
at a frequency ωm/2π = 2.17 kHz, averaging over 243 exper-
imental shots. We observe a strong correlation between well
defined, oppositely directed velocities. b, Plot of the density
distribution (blue) and of the anti-diagonal velocity correla-

tion function, g(2)(vz, v
′
z = −vz) (red).

that the two energies be equal, implying ωm = 2ωk.
Therefore the relation between the modulation frequency
and the sideband velocity should also be given by Eq. 1
but with α = 2 and k = mvz/~. Fitting the points in
Fig. 4a to (1) with α and c as free parameters, we obtain
α = 2.2± 0.3. The fitted sound velocity, 8± 3 mm/s, is
consistent with the value one can calculate from the trap
parameters and the estimated number of atoms [25].

We can further corroborate our interpretation of pair-
wise excitations by a method more direct and robust than
the 2 parameter fit to the data in Fig. 4a. In Fig. 4b, we
compare the dispersion relation resulting from modula-
tion with that obtained by Bragg scattering. Bragg scat-
tering produces single excitations of quasiparticles at a
definite energy and momentum [29]. We excited the BEC
with two lasers in the Bragg configuration to determine
the frequency for a given k-vector [25]. Then, under the
same experimental conditions, using sinusoidal trap laser
modulation, we excited the BEC at various frequencies
and found the corresponding velocities. The lower curve
in Fig. 4b is a fit to the Bragg data in which we fix α = 1



4

 M
od

ul
at

io
n 

fr
eq

ue
nc

y 
(H

z)
 

a 

1000 

0 

b 

2000 

3000 

4000 

5000 

Vertical velocity      (cm/s) v z 

2.0 1.5 1.0 0.5 0.0 

1000 

0 

2000 

3000 

4000 

5000 
 M

od
ul

at
io

n 
fr

eq
ue

nc
y 

(H
z)

 

FIG. 4. Dispersion relation observed by modulating the trap
depth (color online). a, The orange squares show the side-
band velocity determined from the density distributions. The
green triangles are derived from the correlation functions of
the same data. The curve is a fit to the dispersion relation
(1) as described in the text. Only the solid squares were in-
cluded in the fit: these points were all taken on the same day,
whereas the open squares were taken under slightly different
trap conditions, with possibly different density. The error
bars are statistical estimates based on the fits to the velocity
distributions such as in figure 3b. b, Comparison between
trap modulation and Bragg scattering. The black circles are
observations of the dispersion relation by Bragg spectroscopy.
The orange squares are found as in (a), and clearly show that
the corresponding frequency is about a factor of two higher
than in the Bragg data at a given velocity. The curves show
the two fits discussed in the text. The vertical error bars on
the Bragg data are determined by fits to the Bragg resonances.

and fit the speed of sound. The upper curve is a fit to the
trap modulation data in which we set the speed of sound
to that found in the first fit and we allowed α to vary.
This second fit yields α = 2.07± 0.2. The fitted speed of
sound for this data set (about 13 mm/s) is higher than in
the data of Fig. 4a, because during these runs the number
of atoms in the condensate was larger.

An even more dramatic confirmation of our interpreta-
tion would be the observation of sub-Poissonian intensity
differences in the two sidebands, as was observed in the
experiment of Ref. [5], as well as in Refs. [30]. The latter
experiment modulated the center of a trapped, one di-
mensional gas producing transverse excitations which in
turn produced twin beams. Equivalently, one could ask
whether the Cauchy-Schwarz inequality is violated [31],

indicating a non-classical correlation. Comparing inten-
sity differences in the sidebands we observe a reduction
of the fluctuations compared to uncorrelated regions of
the distribution. However, we observe no sub-Poissonian
fluctuations or Cauchy-Schwarz violation, probably be-
cause of a background under the sidebands (see Fig. 1d).
The background is due to atoms spilling out of the trap
before release.

Another difference between our experiment and an
ideal realization of the dynamical Casimir effect is that
the temperature is not negligible. This means that the
pair generation did not arise from the vacuum but rather
from thermal noise. For our temperature of 200 nK, the
thermal occupation of the mode of frequency 2 kHz is
1.6. In the absence of a thermal background, the nor-
malized correlation function would show an even higher
peak. Using the perturbative approach of Ref. [12], one
can show that g(2)(vz, v

′
z = −vz) is a decreasing function

of the temperature, since thermal quasi-particles are un-
correlated and only dilute the correlation.

Many authors have discussed the relationship of the
dynamical Casimir effect to Hawking and Unruh radia-
tion (see [4] for a recent review). It has also been pointed
out that the two-particle correlations arising in the sonic
Hawking problem constitute an important potential de-
tection strategy [10, 32], although the above authors dis-
cussed correlations in position space. The present study
has confirmed the power of correlation techniques, and
shown in addition that momentum space is a good place
to look for them. We expect that a similar approach can
be applied to Hawking radiation analogs as well as the
general problem of studying the physics of curved space-
time by laboratory analogies.
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Supplemental material

Detection and data analysis. The atoms are detected
after falling 46.5 cm to a position sensitive detector which
allows reconstruction of the arrival time and horizontal
position of individual atoms [26]. The mean time of flight
is 307 ms. Given the value of the vertical Thomas-Fermi
radius (0.5 mm), this time is long enough for the arrival
time to reflect the vertical velocity, provided this velocity
is well above 1.5 mm/s.

The experimental correlation function corresponds to
a 2D-histogram of the vertical velocities vz and v′z of
each possible pair of atoms originating from a single con-
densate, and averaging over all realizations. For normal-
ization we divide this first histogram by a second 2D-
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histogram obtained with pairs of atoms originating from
separate realizations. We observe shot to shot fluctua-
tions in the arrival times and widths of the condensate.
To avoid spurious correlation signals arising from fluctu-
ations in arrival time, we recentered each shot by aligning
the condensate peaks before averaging and normalizing.
The fluctuations in the width were reduced by selecting
two different width classes and normalizing them sepa-
rately before adding them to obtain Fig. 3.

Speed of sound in a quasi-condensate. For our typi-
cal atom number and trap frequencies, the atomic clouds
are in the 1D-3D cross-over. We follow the model of
Ref. [33] to calculate the speed of sound of atoms confined
in a cylindrical trap and obtain mc2 = ~ω⊥

2 (µ̃− 1/µ̃)
where ω⊥/2π is the transverse frequency of the trap and
µ̃ > 1 the chemical potential in units of ~ω⊥. We then
apply a local density approximation for the longitudinal
confinement on the dynamical structure factor [29] to re-
late the speed of sound of equation (1) with the atom
number.

Bragg spectroscopy. In the Bragg spectroscopy mea-
surement of Fig. 4, we use two laser beams at an an-
gle θ to provide an excitation wavevector k = 2 ×
sin (θ/2)klaserez. The angles were approximately 6◦ and
9◦. The wave vector was measured by applying an in-
tense 10 µs pulse which populated many diffraction or-
ders. The positions of the diffraction orders permitted
an accurate fit to find the wavevector. For Bragg diffrac-
tion, the excitation pulse was of 5 ms duration. We then
varied the relative frequency of the two laser beams to
find the Bragg resonances for both positive and nega-
tive frequency differences. The difference in the position
of the resonances divided by 2 was used as the frequency
ωk. The Bragg spectra exhibit a single sideband, showing
that phonon excitations appear with a single momentum,
as predicted by the phonon evaporation scenario.

∗ Present address: Harvard-Smithsonian Center for Astro-
physics, Cambridge, Massachusetts 02138, USA

† Present address: Agilent Laboratories, Santa Clara, CA
95051, USA

[1] G. T. Moore, J. Math. Phys. 11, 2679 (1970), ISSN
00222488.

[2] S. A. Fulling and P. C. W. Davies, P. Roy. Soc. A-Math.
Phy. 348, 393 (1976), ISSN 1364-5021.

[3] V. V. Dodonov, Phys. Scripta 82, 038105 (2010).
[4] P. D. Nation, J. R. Johansson, M. P. Blencowe, and

F. Nori, Rev. Mod. Phys. 84, 1 (2012).
[5] C. M. Wilson, G. Johansson, A. Pourkabirian,

M. Simoen, J. R. Johansson, T. Duty, F. Nori, and
P. Delsing, Nature 479, 376 (2011).
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