Measurement of the non linear index n^2 of BSO crystals
Gilles Le Saux, François Salin, Patrick Georges, Gérard Roger, Alain Brun

To cite this version:
Gilles Le Saux, François Salin, Patrick Georges, Gérard Roger, Alain Brun. Measurement of the non linear index n^2 of BSO crystals. Applied optics, 1988, 27 (14), pp.2812. hal-00700648

HAL Id: hal-00700648
https://hal-iogs.archives-ouvertes.fr/hal-00700648

Submitted on 23 May 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Measurement of the nonlinear index n_2 of BSO crystals

G. Le Saux, F. Salin, P. Georges, G. Roger, and A. Brun

Institut d'Optique Théorique et Appliquée, Centre Universitaire d'Orsay, B.P. 43, 91406 Orsay CEDEX, France.

Received 8 March 1988. 0003-6935/88/142812-02$02.00/0. © 1988 Optical Society of America.

Photorefractive materials are now widely studied for their large nonlinear optical properties. Large gain values in two-beam coupling or degenerate four-wave mixing experiments are easily available using a low-power continuous laser beam, making them attractive materials for such uses as real-time holography, reconfigurable optical connections, and gain media for self-oscillating laser cavities.

For these crystals, the photoinduced variation of the refraction index can arise from two different origins. The first one is the photorefractive effect (PRE), the second is a nonlinear optical Kerr effect related to the third-order susceptibility tensor. In the case of the PRE the index variation results from the building of a space charge field created by a separation of positive and negative charges inside the crystal. Often considered as slow materials, response times in the nanosecond time scale are now demonstrated for BSO crystals. Even BaTiO crystals and doped photorefractive semiconductors exhibit response times in the picosecond range. On the contrary, in these materials, the n_2 component of the refraction index ($n = n_0 + n_2I$), where I is the incident light intensity and n_0 is the linear component of the index, is believed to arise from electronic effects and is expected to have a response time in the femtosecond time scale. Unfortunately, the magnitude of the nonlinear coefficient n_2 is not well determined. We present the results of measurement of n_2 for undoped BSO crystals in the femtosecond domain.

To measure the n_2 coefficient we use a classical optical Kerr effect setup described in Fig. 1. In this configuration, an intense laser beam linearly polarized induces a variation of the refraction index in the direction of the optical field. We detect the index variation by measuring the transmission of a weak probe through the crystal placed between polarizer and analyzer. The probe beam is polarized at 45° from the pump beam. The pump and probe beams are produced by a colliding pulse mode-locked dye laser with internal Brewster prisms for group velocity compensation and amplified by a frequency-doubled Nd:YAG laser pumping a chain of dye amplifiers. That produces single amplified pulses of 500-μJ energy at a 620-nm wavelength and a 10-Hz repetition rate. At the exit of the amplifier the pulse duration is ~150 fs. The two beams are focused on the sample to an area of 3×10^{-4} cm2. The temporal coincidence between the two pulses can be adjusted with 15-fs accuracy by means of an optical delay line. The analyzer is a Glan prism with antireflection coatings, allowing one to obtain a very high extinction ratio. The crystal thickness is 1 mm, and the two beams propagate along the (001) axis. The signal is detected by an optical multichannel analyzer placed at the exit of a monochromator to suppress all the noised light. The signal is obtained after an averaging over 100 successive laser shots.

The use of femtosecond optical pulses to determine the n_2 value presents many advantages. First, we have high-intensity levels and a high temporal resolution. The wavelength is weakly absorbed by the sample ($\alpha = 0.1$ cm$^{-1}$), thus allowing one to neglect variation of the sample transmission as a function of the pump beam intensity. Furthermore, on this time scale, the contribution of the PRE via optical beam coupling can be neglected.

![Fig. 1. Experimental setup. A, analyzer; P, polarizer.](image)

![Fig. 2. Comparison between BSO (*) and toluene (O) samples. Toluene exhibits two different relaxation times. Solid line, the third-order correlation function of the pulse (supposed to be bi-exponential).](image)
The experimental results are given in Fig. 2. The temporal response is found to fit well the third-order correlation function of the pump pulse temporal profile (supposed to be bi-exponential), thus indicating, as expected, an instantaneous response time for this nonlinearity. The magnitude of \(n_2 \) is obtained by comparison with the \(n_2 \) coefficient of the toluene. The temporal resolution of our experiment allows us to separate clearly the two components of the toluene response: the electronic response (instantaneous) and the molecular contribution (response time, 1.8 ps). If we compare the BSO response to the electronic component of toluene we obtain \(n_2 = 5 \times 10^{-13} \) esu. Nevertheless, these materials exhibit a large rotary power (22°/mm at 620 nm). The \(n_2 \) measurement is not affected, because at each point inside the crystal the difference between the two directions of polarization is always equal to 45°; furthermore, we have verified that the \(n_2 \) value does not depend on the polarization orientation with respect to the crystals axes. The \(n_2 \) value has already been estimated by means of a classical degenerate four-wave mixing method. The estimated value was deduced from a comparison with the CS\(_2\) response. Unfortunately, this experiment used a 30-ps laser pulse, and the authors cannot resolve the different components of the liquid response. Thus in their case it is hazardous to compare the two results, due only to electronic contribution for BSO and resulting from both electronic and molecular effects in CS\(_2\).

Summarizing: we have measured the \(n_2 \) coefficient for BSO crystals in the transparency region and in the femtosecond domain. The \(n_2 \) coefficient is of the same order of magnitude as for alkali halides such as NaCl, KCl, KBr, and transparent glasses such as BK7. It is interesting to notice that using femtosecond optical pulses, index variations as large as those observed using the PRE can be easily obtained with an instantaneous response time.

References