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A design of a miniaturized stationary Fourier transform IR spectrometer has been developed that produces a two-
dimensional interferogram. The latter is disturbed by effects like parasitic interferences or disparities in the cutoff
wavelength of the pixels. Thus, a simple Fourier transform cannot be used to estimate the spectrum of the scene.
However, as these defects are deterministic, they can be measured and taken into account by inversion methods. A
regularization term can also be added. The first experimental results prove the efficiency of this
processing methodology. © 2011 Optical Society of America

OCIS codes: 040.3060, 300.6190, 100.3190.

We have recently proposed a new design of Fourier
transform IR (FTIR) spectrometer [1] that operates with-
out the need for a scanning mechanism. The approach
consists of designing and building an IR focal plane array
(FPA) containing a simple modification that turns it into
a stationary FTIR spectrometer. Thus, the spectrometer
can be made quite compact, and, ultimately, the entire IR
system could be integrated in a Dewar, leading to a hand-
held and cryogenic FTIR spectrometer [2]. Such an in-
strument is dedicated to specific applications requiring
high radiometric performances, such as the spectral
analysis of natural samples at room temperature or the
time-resolved measurements of spectra emitted by che-
mical agents. The innovative process of the FPA leaves
a wedge-shaped and uncoated substrate on the active
layer of the array. When this device is illuminated by an
IR source, we obtain a two-dimensional (2D) interfero-
gram, which is the result of interferences inside the
wedge. Figure 1 illustrates examples of images produced
by an FTIR FPA under quasi-monochromatic light. These
images have been obtained thanks to a spectral charac-
terization [3] that leads to a hyperspectral cartography
of our spectrometer.

Usually, a Fourier transform (FT) is used to process
the 2D interferogram in order to estimate the spectrum
of the source. However, in our case, three principal
reasons prevent us from using a classic FT. First of all,
because of the nonplanarity of the wedge, the interfero-
gram is not regularly sampled on the detector, leading to
curved optical fringes, as illustrated in Fig. 1(a). A solu-
tion to this problem is to compute the FT over a one-
dimensional (1D) interferogram extracted from the
image using a precise 2D cartography of the optical path
difference in front of each pixel of the array [1]. Second,
the interferogram is not the result of two wave interfer-
ences (as in the Michelson interferometer case). In par-
ticular, at high wavelengths (near the cutoff wavelength
of the absorbing layer, see Fig. 1(b)), a third wave inter-
feres that encodes thickness inhomogeneities of the
absorbing (HgCdTe) layer [3]. It leads to a wavelength-
dependent distortion of the optical fringes contrast. In
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this case, the technique of rearranging the interferogram
can no longer be applied. Third, spatial inhomogeneities
of pixel responses generate additional noise called fixed
pattern noise (FPN) that spreads out the peaks of the FT.
As for imagers, strategies of correction can be implemen-
ted. But these strategies (two-point correction for exam-
ple) are valuable for a given spectral bandwidth. In our
case, wavelength-dependent FPN appears due to inho-
mogeneities of the cutoff wavelengths of the pixels.
For all these reasons, FT-based processing cannot be ap-
plied to our device. In this Letter, we introduce a more
sophisticated processing methodology.

The FTIR FPA delivers an m, elements x m,, elements
interferogram. The optical path difference evolves on the
detector from the null path difference on the edge of the
wedge-shaped substrate to d,.; on the opposite side.
Each pixel of the detector has its own optical path differ-
ence, but we notice a lot of redundancies because of
the near-planarity of the wedge. The interferogram’s data
are concatenated into a 1D vector denoted Y of size
m(equal tom,, x m,). The spectrum is a vector of data de-
noted X of size n, where n is the number of wavenum-
bers. Thanks to the linearity of the detection process,
we can write the direct problem equation as

Y = MX + noise. (1)

The transition matrix M of size m x n must be filled with
the responses of the m pixels of the detector at the n
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Fig. 1. (a) Hyperspectral cartography at 4 um; (b) hyperspec-
tral cartography at 5.2 ym.
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wavenumbers, i.e., with the hyperspectral cartographies
of each wavelength. In order to estimate the spectrum,
we need to invert Eq. (1). Because M is not square, we
can not use a simple inversion. An estimation of the pseu-
doinverse M' can be obtained by singular value decom-
position (SVD) of M, and X = (M"M)'M"Y is then the
classic least squares solution arg min(||Y - MX|[3). In or-
der to make the most of a priort information and spectra,
one can apply instead regularized inversion methods.
The estimation of X is then the result of the minimization
of the data-fidelity term plus a regularization term R(X).
We have

X = argmin(||Y - MX||3 + aR(X)). (2)

Many forms of regularization terms exist in the literature.
The most popular ones in the context of spectral estima-
tion have been tested on our experimental data.

In this Letter, we present three inversion methods that
led to promising results. The first method (method (a)) is
truncated SVD (TSVD). TSVD is a standard approach that
does not introduce a priori knowledge of the searched
spectrum (positivity, smoothness). As M is ill condi-
tioned, many of the singular values of the SVD decompo-
sition, while not zero, can become quite small, causing
the data inversion to blow up if there is any noise. This
explains why we resort to TSVD by neglecting compo-
nents of the solution corresponding to the smallest
singular values. The truncation order adjustment is the
main difficulty of this approach. The next two methods
are regularized approaches [4] that include a priori
knowledge of the spectrum (method (b)) or of the coef-
ficients of the spectrum decomposition on a wavelet
basis (method (c)). The second method assumes a regu-
larization operator R that takes the form of a finite differ-
ence operator, leading to smooth solutions for X: we
assume that the spectrum does not vary very fast. The
third method takes advantage of compressed sensing
results [5]: a small number of random projections of a
sparse signal can contain its salient information. R then
takes the form of a penalization on the L1 norm of the
coefficients of X decomposition on a wavelet basis,
where the L1 norm is defined as the sum of the modulus
of X coordinates,. The L1 term compels small coefficients
to become exactly zero, thus promoting sparse solutions.
For the two last methods, the « is currently tuned by the
user in order to reach an appropriate trade-off between a
priort information and data fidelity. In the same way,
for the TSVD processing, the truncation order must be
optimized.
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Fig. 2. (Color online) Experimental setup for the measure-
ment of spectral filters.
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(Color online) Preprocessing of an interferogram
[in (c) and (d), the dead pixels are indicated in red].

Fig. 3.

To demonstrate the validity of our processing method,
we have carried out the following experiment (Fig. 2): we
illuminate our FTIR FPA with a black body at a tempera-
ture of 1000K and a collimator. A reference filter is
placed after the black body. The source spectrum en-
coded by the interferogram is the product of the black
body spectrum, the atmospheric transmission spectrum,
and the filter spectral transmission. In order to estimate
the spectrum, we need to fill in M and to inverse it. For
this, we use the experimental data produced by our hy-
perspectral study. The result of the spectral characteriza-
tion is a three-dimensional [m,, m,, 2| data set made of z
images of size [m,, m,], with z the number of wavenum-
bers and [m,, m,] the size of the FPA. Each image is the
monochromatic response of our FPA, as illustrated in
Figs. 1(a) and 1(b). We are able to fill M with a spectral
resolution of 1cm™!. The acquired 2D interferogram,
as well as the hyperspectral cartography, are prepro-
cessed before applying inversion methods. Indeed, we
want to fill M with the response of the sensor in the same
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Fig. 4. (Color online) Filter A transmission estimations by the
three methods: method (a), TSVD; method (b), regularized in-
version; method (c), regularized inversion on a wavelet basis.
Around 2400 cm™!, CO, absorption is eliminated in the refer-
ence spectrum.
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Fig. 5. (Color online) Filter B transmission estimations by
the three methods: method (a), TSVD; method (b), regularized
inversion; method (c), regularized inversion on a wavelet
basis.

conditions as the experimental ones. First, a raw image
[Fig. 3(a)] is tainted by the electric offset. We measure
this offset by illuminating the instrument with a cold
(77K) background and we subtract it on each image
(on the experimental interferogram and on each image
of the hyperspectral cartography), leading to Fig. 3(b).
Second, we detect dead pixels. All the detected dead pix-
els are eliminated both from the interferogram and from
the hyperspectral cartography. Dead pixels are depicted
in red in Fig. 3(c). Third, we process the images in order
to obtain interferograms that have a constant average.
A low-pass filter is applied to each image, giving the
low frequency profile of the image. This profile is divided
on the image [Fig. 3(d)] to correct the variations of the
lighting conditions. We fill the M matrix with the pro-
cessed hyperspectral cartography and the Y vector with
the processed interferogram. We can now proceed to the
inversion step.

Figures 4 and 5 show estimations of two filters’ (A and
B) transmissions with the three methods. A reference
transmission has been measured for both filters with a
commercial FTIR. For each method, we present the

estimation obtained with the optimal truncation order
or the optimal a value. The match between the reference
transmission and the transmission curves estimated with
the three methods is very good despite repeatable arti-
facts at wavenumbers beyond the cutoff of the filter
and random noise appearing at low wavenumbers. These
differences come from the calibration and preprocessing
steps that are not yet optimal. It should be mentioned that
we are currently working on them to obtain more reliable
spectra. The regularized methods seem to be a little more
accurate than the TSVD, leading to smoother results.
Note that the gap between the estimated A spectra and
the reference in the 2350-2420 cm™! range is due to the
absorption of the atmospheric CO,, which is experimen-
tally eliminated in the reference spectrum measurement.

In conclusion, inversion methods applied to Fourier-
transform spectrometry are a promising way to process
stationary interferograms. A key element is the charac-
terization of the instrument. Different inversion methods
have been tested on experimental data. It seems that
the three methods presented in this Letter give an
effective estimation of a filter transmission. Note that
our processing method can be used with other FT
spectrometers [6,7].
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