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Transport of atoms in a quantum conveyor belt
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We have performed experiments using a three-dimensional Bose-Einstein condensate of sodium atoms in a
one-dimensional optical lattice to explore some unusual properties of band structure. In particular, we inves-
tigate the loading of a condensate into a moving lattice and find nonintuitive behavior. We also revisit the
behavior of atoms, prepared in a single quasimomentum state, in an accelerating lattice. We generalize this
study to a cloud whose atoms have a large quasimomentum spread, and show that the cloud behaves differently
from atoms in a single Bloch state. Finally, we compare our findings with recent experiments performed with
fermions in an optical lattice.
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An optical lattice is a practically perfect periodic potential
for atoms, produced by the interference of two or more laser
beams. An atomic-gas Bose-Einstein condensate �BEC� �1,2�
is a coherent source of matter waves, a collection of atoms,
all in the same state, with an extremely narrow momentum
spread. Putting such atoms into such a potential provides an
opportunity for exploring a quantum system with many simi-
larities to electrons in a solid state crystal but with unprec-
edented control over both the lattice and the particles. In
particular we can easily control the velocity and acceleration
of the lattice as well as its strength, making it a variable
“quantum conveyor belt.” This allows us to explore situa-
tions that are difficult or impossible to achieve in solid state
systems. The results are often remarkable and counterintui-
tive. For example, atoms that are being carried along by a
moving optical lattice are left stationary when the still-
moving lattice is turned off, in apparent violation of the law
of inertia.

A few experiments have studied quantum degenerate at-
oms in moving optical lattices �3–6�. Bragg diffraction of a
Bose condensate is a special case of quantum degenerate
atoms in a moving lattice �7�. Here, using a Bose-Einstein
condensate and a moving lattice, we achieve full control over
the system, in particular its initial quasimomentum and band
index as well as its subsequent evolution. We also show the
difference in behavior when the atom sample has a large
spread of quasimomenta, as compared with the narrow qua-
simomentum distribution of a coherent BEC.

Our lattice is one dimensional along the x axis, produced
by the interference of two counterpropagating laser beams,
each of wave vector k=2� /� ���589 nm is the wave length
of the laser beams�. This results in a sinusoidal potential,
V sin2 kx, with a spatial period � /2.

We will use Bloch theory, emphasizing the single particle

character of the problem. An overview of Bloch theory, as it
applies to this one-dimensional system, is supplied in Ref.
�3�. Briefly, the wave function of the atoms in the lattice can
be decomposed into the Bloch eigenstates un,q�x�eiqx charac-
terized by a band index n and a quasimomentum q, defined
in the rest frame of the lattice. The eigenenergies of the sys-
tem, En�q�, as well as the eigenstates are periodic in q with a
periodicity 2�k, the reciprocal lattice vector of the lattice. A
wave packet in band n with quasimomentum distribution
centered at q, has a group velocity vg=dEn�q� /dq. Figure 1
shows the band structure in the repeated-zone scheme �8� for
a lattice with a depth V=4Er �Er is the single photon recoil
energy given by Er=�2k2 /2M and is related to the recoil
velocity vr by vr=Mvr

2 /2, M being the mass of an atom�.
Note that for convenience the band energies En are offset
such that they coincide at large band index with the free
parabolas; this shows more clearly the avoided crossings be-
tween free particle states due to the laser-induced coupling.
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FIG. 1. Band structure for a 4Er deep lattice in the repeated-
zone scheme. The dotted lines represent the free particle parabolae
to which the bands adiabatically connect as V→0. The region in
dark gray corresponds to the first Brillouin zone. The region in light
gray corresponds to the second Brillouin zone.
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These avoided crossings create the band gaps that separate
energy bands with different indices n.

I. EXPERIMENTAL SETUP

The experimental setup has been described previously �7�.
An almost pure Bose-Einstein condensate �no discernable
thermal component� of about 2�106 sodium atoms is pre-
pared in a triaxial time orbiting potential �TOP� trap �7,9�.
We adiabatically expand the condensate by lowering the
mean trapping frequency �10� from 200 Hz to a value rang-
ing from 100 Hz to 19 Hz. This reduces the atom-atom in-
teraction, the strength of which is given by the chemical
potential �=4��2na /M �2�, n being the density at the center
of the cloud and a�2.8 nm the scattering length. During the
expansion, the calculated Thomas-Fermi diameter, 2R, of the
condensate along the lattice direction increases from 18 �m
up to values ranging from 24 �m to 48 �m. The wave func-
tion of each atom thus covers more than a 100 lattice sites
and is an excellent approximation of a Bloch state. The rms
width of the momentum distribution of the atoms in the con-
densate along the axis of the lattice is �3� /R �11�. Therefore
the rms width of the quasimomentum distribution of each
atom is �q��� /4R��k�0.01�k.

To form the lattice we use two counterpropagating laser
beams perpendicular to gravity. Each has a power of up to
10 mW and is detuned either 200–350 GHz to the blue of
the sodium D2 transition �experiments of Secs. II and IV� or
700 GHz to the red of the D1 transition �Sec. VI�. They are
focused to a beam waist of about 200 �m full width at half
maximum, leading to a calculated spontaneous emission rate
�30 s−1, negligible during the time of the experiments. The
lattice depth, measured by observing the Bragg diffraction
�3�, is up to 13Er. We use acousto-optic modulators to inde-
pendently control the frequencies and intensities of the
beams. The unmodulated intensity is kept constant to within
5% by active stabilization. A frequency difference � between
the two beams produces a “moving standing wave” of veloc-
ity v=� /2k. Numerically, a difference of � /2�=100 kHz
corresponds to a lattice velocity of one recoil velocity, vr
=�k /M �3 cm/s.

The cloud’s momentum is analyzed using time of flight.
The time-of-flight period, typically a few milliseconds, con-
verts the initial momentum distribution into a position distri-
bution, which we determine using near-resonance absorption
imaging along an axis perpendicular to the axis of the lattice.

II. DRAGGING A CONDENSATE IN A MOVING
LATTICE

In the first set of experiments, we begin with a BEC in a
magnetic trap with a 19 Hz mean frequency. This weak trap
makes the interactions between atoms almost negligible on
the time scale of the experiment, i.e., � /� is generally longer
than the duration of the experiment �12�. After turning off the
magnetic trap, we adiabatically apply a moving lattice with a
final depth of 4Er. The turn-on time of the lattice intensity is
200 �s, an interval chosen to ensure adiabaticity with respect
to band excitation �13� �see Sec. III�. The fixed velocity of

the lattice, v, is between 0 and about 3vr. In the lattice frame
the atoms have a quasimomentum q=−Mv. Because the
width of the quasimomentum distribution is very narrow, this
procedure produces a good approximation of a single Bloch
state with a freely chosen q.

Atoms loaded in this way are dragged along with the
moving lattice. In the limit that the lattice is very deep so that
the bands are flat �i.e., dE�q� /dq=0�, the group velocity with
respect to the lattice, vg, is 0 and the atoms are dragged in the
laboratory frame at the velocity of the lattice. For finite depth
lattices the dragging velocity in the laboratory frame is
v+vg. �Note that for v	0, vg
0 so that this dragging ve-
locity in the laboratory frame v+vg�v.�

In order to experimentally measure the dragging velocity
we suddenly �on the order of 200 ns� turn off the moving
lattice, projecting the Bloch state onto the basis of free-
particle momentum eigenstates while preserving the momen-
tum distribution. Figure 2�a� shows the lattice depth as a
function of time. Images of the resulting diffraction pattern
for various lattice velocities are presented in Fig. 2�b�. The
average velocity seen from the diffraction pattern �the
weighted average of the velocities of the individual diffrac-
tion components� increases with the lattice velocity through
the first Brillouin zone. In fact for this rather flat band the
dragging velocity is roughly equal to the lattice velocity.
�The details for higher velocities are discussed in the follow-
ing section.�

An alternate method to study the atomic momentum is to
release the condensate adiabatically ��200 �s� rather than
suddenly, thus avoiding diffraction. Figure 3�a� shows the
lattice intensity time sequence for this method. The corre-
sponding images for various lattice velocities appear in Fig.
3�b�. These pictures show that �apart from when the lattice
velocity is very close to an integer multiple of vr, a situation
discussed in Sec. III� the atoms are back at rest in the labo-
ratory frame, despite the fact that the lattice is still moving
during the ramping down of its intensity. This is true even in
the first Brillouin zone where the lattice drags the condensate
at roughly the lattice velocity. This result is especially sur-
prising when one considers that atoms moving with the lat-
tice return to zero velocity as if they had no inertia. One
might also ask how do the dragged atoms “know” that they
should be at rest when the lattice is turned off. One way of
understanding this is to note that the lattice turns on adiabati-
cally and turns off adiabatically along the same path. This
must necessarily return an eigenstate of the Hamiltonian to
the same eigenstate. A more detailed explanation involving
band structure will be presented in the next section.

III. ANALYSIS OF THE EXPERIMENTS

All experiments described in this paper start with an adia-
batic turn on of a lattice moving at a velocity v. In the lattice
frame, in the limit of a vanishingly small lattice depth, the
atomic wave function of a momentum eigenstate has a phase
gradient −Mv /� corresponding to the velocity −v of the at-
oms with respect to the lattice. This free particle state is also
a Bloch state with a quasimomentum q corresponding to a
phase gradient q /�, so that q=−Mv. All changes in the lat-
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tice intensity preserve this quasimomentum �as can be seen
by calculating that the matrix elements of the periodic poten-
tial between Bloch states of different q, are zero�. When the
lattice is fully turned on, the quasimomentum is still −Mv
and if the turn on has been adiabatic �so that no change in
band index occurs�, we end up in a single Bloch state.

Referring to Fig. 1 we see that, when atoms are loaded
adiabatically into the lattice with the quasimomentum in the
first Brillouin zone, the free particle momentum connects to
the corresponding quasimomentum in the lowest, n=0, band.
For quasimomenta outside the first Brillouin zone, the free
particle momenta connect to the corresponding quasimo-
menta in the appropriate band. For example, if the velocity
of the lattice is 1.5vr, i.e., in the second Brillouin zone, the
atoms will end up in the second, n=1, band with a quasimo-
mentum q=−1.5�k. There is thus a strict relation between
the range of quasimomenta and the band index into which
the atoms are loaded: if the quasimomentum is in the nth
Brillouin zone, the atoms are loaded into band n−1. On the
other hand, if for example we wish to prepare the atoms in
q=−1.5�k and n=0, we would have to accelerate the lattice,
as described in Sec. IV.

The condition for adiabaticity with respect to band exci-
tation during the loading has been detailed in Ref. �3�: in
order to avoid transition from a given band to an adjacent
band, the rate of change of the lattice depth V must fulfill
�dV /dt��	n ,q
sin2 kx
n±1,q����E2 /�. �E is the energy dif-
ference between the given band and its nearest neighbor.
When �E approaches 0 �as is usually the case near a Bril-
louin zone boundary when V→0� the process cannot be
adiabatic. For q=0, n=0, �E�4Er, and the natural time
scale for adiabaticity with respect to band excitation is on the
order of h /4Er. We emphasize that in the limit of V→0 there
is a natural energy gap due to the periodicity of the lattice,
�E�0 �except at the edge of the Brillouin zones�. The ex-
istence of this nonzero energy gap when the lattice depth
goes to zero is in contrast to, for example, a harmonic oscil-
lator for which the spacing between energy levels does go to
zero as the strength of the potential vanishes.

We now analyze in more detail the two methods for
studying the momentum distribution described in the previ-
ous section.

In the first method we turn off the lattice potential sud-
denly, i.e., diabatically. This sudden turn off leaves the
atomic momentum distribution unchanged from what it was
in the lattice. If the atoms are in a Bloch state, corresponding
to a single value of q, the wave function as viewed in the rest
frame of the lattice is a superposition of plane waves with
momenta q+2m�k �m is an integer�. The population-
weighted average of the momentum components gives the
mean momentum of the atoms in the lattice, which is Mvg
�8�. In the laboratory frame these momentum components are
shifted by the velocity of the lattice and are observed as a
diffraction pattern. The time-of-flight spatial distribution of
these momentum components is analogous to the diffraction
pattern of any wave from a periodic structure. The spacing
between the momentum components gives the reciprocal lat-
tice vector, 2�k in our case. This diffraction is characteristic
of sudden turn off �or on� of the lattice.

Figure 2�c� shows the measured dragging velocity in the
laboratory frame as a function of the lattice velocity

v=−q /M. Also shown is the calculated dragging velocity
�dE�q� /dq�+v for a 4Er deep lattice. When the atoms are in
the first Brillouin zone and in the n=0 band they are dragged
along at close to the lattice velocity, because the n=0 band is
nearly flat �see Fig. 1�. The next, n=1, band is much less flat
and the atoms are not dragged at the lattice velocity except at
the edge of the Brillouin zone where vg= �dE�q� /dq� van-
ishes. In the third Brillouin zone, the n=2 band is so close to
a free particle that there is almost no dragging and experi-
mentally we do not even see good dragging near the zone
boundary at 3vr because the feature is too narrow. This be-
havior is rather intuitive in that the lattice drags atoms effec-
tively up to a velocity for which the atomic kinetic energy in
the lattice frame is about equal to the lattice depth. Reference
�4� reported similar results, measuring the dragging velocity
using the displacement of the cloud rather than diffraction.
�Note that they plot the group velocity.� This dragging pro-
cess is also discussed in Ref. �6�.

Now let us consider the rather counterintuitive results ob-
tained by adiabatically ramping off the lattice intensity. As
noted earlier, turning off the lattice either adiabatically or
nonadiabatically does not change the quasimomentum distri-
bution, although it may change the momentum distribution.
�This assumes that no other forces besides the lattice act on
the atoms in the rest frame of the lattice. This assumption
would be violated, for example, in the presence of interaction
between the atoms or if the lattice were accelerated.�

Consider a single Bloch state in the lattice, as is the case
in the previous section. In contrast to the sudden turn off
method described above, the multiple momentum states
q+2m�k coalesce into a single momentum component,
whatever the depth of the lattice was. Looking at Fig. 1, we
can see that any single Bloch state 
n ,q� will adiabatically
connect to a single free particle parabola, unless there is a
degeneracy and adiabaticity fails. For the specific experiment
described in Sec. II, where a lattice moving at a constant
velocity is turned on and off, this parabola is always the one
labeled 0�k. In this case the Bloch state produced is such
that the single momentum component is p=q=−Mv in the
frame of the lattice. Transforming into the laboratory frame
we find the velocity of the atoms to be zero, as observed.

As an alternate explanation we recall posing the question
“how do the dragged atoms ‘know’ that they should be at rest
when the lattice is turned off?” We now can see that this
information is stored in the phase gradient, or the quasimo-
mentum, which does not change as the lattice is ramped on
and off. We again emphasize that, in the absence of interac-
tions, this phase information is preserved no matter how
deep the lattice was or how fast the lattice was turned on and
off.

Let us now return to the failure of adiabaticity near the
edge of the Brillouin zones. Referring to Fig. 1, consider free
atoms, stationary in the laboratory frame, but at the edge of
a Brillouin zone in the lattice rest frame, for example at
q=�k or q=2�k. At q=�k atoms will, as the lattice is turned
on, be loaded into both bands n=0 and n=1; at q=2�k atoms
will be loaded into n=1 and n=2. Upon turning off the lat-
tice, the two populated states will each connect to two free
particle parabolas. For example at q=�k atoms will be in
both the 0�k and 2�k parabolas �at q=2�k, they will be in
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both 0�k and 4�k�. In the lattice frame �with the lattice off�
atoms at q=�k in the 0�k parabola are moving with a group
velocity +vr; atoms at q=�k in the 2�k parabola are moving
with a group velocity −vr. Transforming back into the labo-
ratory frame, these atoms are moving at 0vr and −2vr respec-
tively. Similarly at q=2�k in the lattice frame the atoms are

FIG. 2. �Color� Dragging of atoms in a moving lattice followed
by a sudden turn off of the lattice. �a� presents the time sequence.
�b� shows the absorption image of the cloud after a 1.5 ms time of
flight following a sudden turn off of the lattice for different lattice
velocities v, related to the quasimomentum by q=−Mv. The num-
bers on the vertical axis refer to the atomic velocity in units of vr.
The average velocity of the atoms in the laboratory frame, deduced
from �b�, is shown in �c� vs the velocity of the lattice. The initial
velocity of the condensate in the magnetic trap fluctuates with an
rms value of 0.03vr. The mean velocity, after suddenly turning off
the lattice, thus exhibits the same fluctuations. The solid curve is the
mean velocity of the atoms calculated from the band structure for a
4Er deep lattice.

FIG. 3. �Color� Dragging of atoms in a moving lattice followed
by an adiabatic turn off of the lattice. �a� presents the time se-
quence. �b� shows the absorption image of the cloud after a 1.5 ms
time of flight following the adiabatic turn off of the lattice for
different lattice velocities. The numbers on the vertical axis refer to
the atomic velocity in units of vr.

FIG. 4. �Color� Acceleration of atoms in the ground state
�n=0� band starting from q=0. The lattice is adiabatically raised up
to 13Er, accelerated and then adiabatically turned off at constant
velocity. �a� shows images of the condensate after time of flight for
increasing final lattice velocities. �b� shows the position of the cen-
ter of mass of the cloud in the laboratory frame. The circles are the
positions measured in �a�, whereas the crosses represent the position
of the cloud minus the displacement due to the dragging of the
lattice. It therefore gives the momentum of the atoms.

FIG. 5. �Color� Acceleration of the lattice with atoms initially
loaded into the band n=1, starting from q=1.5�k. The 13Er lattice
is raised adiabatically, accelerated, and then turned off adiabatically.
�a� shows the images of the cloud in the laboratory frame after a
1.2 ms time of flight for various final lattice velocities. �b� presents
the momentum deduced from the positions of the cloud, after cor-
rection for the dragging.
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moving at +2vr and −2vr, corresponding to 0 and 4vr in the
laboratory frame. This is exactly what is experimentally seen
in Fig. 3�b�. �It is exactly the same as first- and second-order
Bragg diffraction �7��. The fraction of population in each
momentum component depends on the details of the loading
and the unloading. For higher bands the adiabaticity condi-
tion becomes easier to satisfy near a band edge. Even though
the band gap at the level anticrossing at the Brillouin zone
edge gets smaller for larger band index, the energy differ-
ence �E between adjacent bands at a fixed distance in qua-
simomentum from the Brillouin zone edge, is larger for
higher bands �see Fig. 1�. This larger �E leads to greater
adiabaticity for a given rate of change of the lattice depth at
given distance in quasimomentum from the zone edge. This
partially explains why so little population in nonzero mo-
mentum states is seen near the band edges for high velocities
in Fig. 3�b�. In addition the coupling between adjacent bands
gets smaller for higher bands �because it represents a higher
order process�, as reflected by the narrowing of the band gap,
and this smaller coupling further reduces the population of
nonzero momentum states.

This method to analyze the quasimomentum distribution
by adiabatically ramping down the amplitude of the lattice
is independent of the way this distribution has been created,
and thus allows the analysis of complex quasimomentum
distributions. In order to understand this point, we recall
that there is a unique correspondence �except at the Brillouin
zone boundary� between any given Bloch state 
n ,q� in
the lattice and a momentum state in the laboratory frame
when the lattice is adiabatically turned off. For example two
Bloch states with the same q�0
q
�k� in a lattice moving
with a velocity v, but in two adjacent bands, let us say
n=0 and n=1, will connect to momentum states q+Mv and
q+Mv−2�k. respectively. In the same way two Bloch states
with the same band index and two different q’s will end up in
two different momentum states. Suppose now we prepare a
given quasimomentum distribution in the lattice frame, con-
sisting of many q’s in many bands, and suppose we adiabati-
cally ramp down the intensity of the lattice. If during that
ramping down time the quasimomentum distribution does
not significantly evolve �e.g., under the influence of interac-
tion, or under acceleration�, the adiabaticity ensures that the
population in a given state of quasimomentum q in band n is
conserved during the process. The quasimomentum distribu-
tion is thus mapped onto a momentum distribution in the
laboratory frame �14�. This method, which has also been
used in Ref. �15�, then allows us to fully reconstruct the
quasimomentum and band distribution.

We will give other examples of such mappings in the next
two sections.

IV. ACCELERATION OF A CONDENSATE IN A SINGLE
BLOCH STATE

In this section, we revisit the behavior of atoms under
acceleration of the lattice, already studied in �3,5,16�, using
the adiabatic ramp down analysis described in the preceding
section. For this particular experiment, we again decrease the
mean oscillation frequency of the magnetic trap to 19 Hz

before turning the trap off. Starting with the condensate at
rest in the laboratory frame, we linearly turn on the station-
ary lattice intensity over 40 �s in order to ensure adiabatic-
ity. The final depth for this experiment is V=13Er. All the
atoms are now approximately in the state 
n=0,q=0�. We
then accelerate the lattice for 400 �s up to a given velocity
vf, with a constant acceleration a�800 m/s2. The quasimo-
mentum q of the atoms evolves during the acceleration ac-
cording to a lattice version of “Newton’s law” q̇=−Ma �8�.
In the lattice frame this is equivalent to adding a linear po-
tential −Max. Provided that 
Ma	1,q
x
0,q�
�E1−E0 �17�,
there is no transition between the first two bands and the
atoms stay in the lowest band. This implies that the accelera-
tion should be smaller than 4�104 m/s2, a condition well
satisfied in our experiment. This acceleration allows us to
produce any q in the lowest band. We note that combined
with the loading in a moving lattice described in Sec. II we
can therefore prepare the atoms in any Bloch state 
n ,q�.

At the end of the acceleration period we ramp down the
intensity of the lattice in 200 �s, while still moving at vf.
After a 1.2 ms time-of-flight we take an absorption image of
the cloud. A series of pictures corresponding to different final
lattice velocities is shown in Fig. 4�a�.

Those pictures show that if the final lattice velocity re-
mains within the first Brillouin zone �that is 
vf

vr� the
cloud comes back to rest in the laboratory frame after the
adiabatic ramping down of the lattice. This behavior is now
well understood in light of Sec. III. On the other hand, each
time the lattice final velocity reaches �2m+1�vr �m being an
integer� the atom momentum, after ramping down the lattice,
in the laboratory frame, increases by steps measured to be
around 2�k. This momentum remains constant for any lattice
velocity between �2m+1�vr and �2m+3�vr.

As another way to understand this behavior in the first
Brillouin zone, we again note that when the lattice, moving
with constant speed vf=−qf /M, is ramped down adiabati-
cally the velocity of the atoms with respect to the lattice
varies from �dE0 /dq��qf� to qf /M when the depth of the
lattice goes to 0. The velocity of the atoms in the laboratory
frame is thus qf /M +vf=0.

On the other hand, if the final velocity is, say, between
vr and 3vr, the velocity of the atoms in the lattice frame
is no longer qf /M after ramping down the lattice, but
�qf+2�k� /M. For example if the lattice is accelerated to
vf=2.5vr, on ramping down, the velocity in the lattice frame
is −0.5vr. When the depth of the lattice approaches 0, the
velocity of the cloud in the laboratory frame thus goes to
�qf+2�k� /M −qf /M = +2vr. This explains the jump in mo-
mentum observed each time the velocity of the lattice
reaches an odd number of recoil velocities. As in Sec. II, the
final momentum is independent of the intermediate lattice
intensity. We have repeated the experiment for V=1.5Er, 5Er,
and 8Er and found exactly the same behavior, apart from the
small nonadiabaticity at the edge of a Brillouin zone. In the
case of a shallow lattice, we interpret this jump in momen-
tum in the laboratory frame as a first order Bragg diffraction:
when the velocity of the lattice reaches an odd integer mul-
tiple of vr thus satisfying the Bragg condition, the momen-
tum in the laboratory frame changes by 2�k in the same
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direction as the acceleration. This Bragg diffraction is evi-
denced by the fact that the state of the atoms in the lattice
connects to a different free parabola when the lattice is
ramped down, as seen in Fig. 1.

One should not be misled by the fact that the condensate
is back at rest in the laboratory frame when 
vf

vr. The
cloud has been displaced, dragged along by the lattice. The
displacement is given by

x = �
0

 dE

dq
�q�t�� − q�t�/M�dt , �1�

where  is the duration of the experiment �600 �s�. For lat-
tices deeper than about 3Er, the derivative almost vanishes
and we approximate the displacement by x=vf�1/2accel

+rampdown�. In order to determine whether the observed jump
in momentum is exactly 2�k at the crossing of the edge of
the Brillouin zone, one has to subtract this displacement due
to the dragging of the lattice. This is shown in Fig. 4�b�. The
circles are the actual positions of the center of the cloud in
the laboratory frame. The crosses represent the positions cor-
rected by the displacement due to the dragging. The disper-
sion of the data on a given plateau is due to a fluctuation of
the position and velocity of the condensate, with rms values
of about, respectively, 10 �m and 0.03vr.

We next consider essentially the same experiment except
that we now load the condensate in a lattice already moving
with an initial velocity vi=−1.5vr. Referring to Fig. 1 we see
that adiabatic loading �100 �sec� prepares the atoms in the
Bloch state 
n=1,q=1.5�k�. When the lattice is accelerated
for 400 �sec in the positive direction in the laboratory
frame, the atoms follow the first band and the quasimomen-
tum in the lattice frame decreases linearly with time. Figure
5�a� shows the position of the cloud in the laboratory frame
after the adiabatic ramp down of the lattice �100 �sec� and
the subsequent 1.2 ms time of flight. In Fig. 5�b� we show
the average momentum of the cloud. This includes compen-
sation for the dragging of the atoms during the time the
lattice is on �600 �sec�, as described earlier. Figure 5�b�
shows an alternation of −2�k and +4�k momentum jumps in
the laboratory frame. According to the interpretation in terms
of Bragg diffraction, when the final velocity of the lattice
reaches −vr �or the quasimomentum reaches +�k�, the atoms
undergo a first order Bragg diffraction in the direction oppo-
site to the acceleration of the lattice in the laboratory
�equivalently they change from the 0�k to the +2�k free
parabola, see Fig. 1�. After being adiabatically released from
the lattice, they now travel at −2vr in the laboratory frame, in
the direction opposite to the acceleration. Despite the lattice
being constantly accelerated in the direction of positive mo-
mentum, at this stage the atoms gain a momentum in a di-
rection opposite to the acceleration. Further acceleration to
vf=0 leads to a second-order Bragg reflection that gives an
impulse of +4�k, in the direction of the acceleration �corre-
sponding to a change from the +2�k parabola to the −2�k
parabola in the lattice frame, see Fig. 1�. After adiabatic re-
lease the atoms’ momentum in the laboratory frame is +2�k.

As a conclusion of this section, we discuss the difference
between the experiments presented here and earlier experi-

ments investigating Bloch oscillations. In Ref. �5�, for ex-
ample, using the sudden turn-off method, the authors present
the variation of the mean velocity of the atoms in the labo-
ratory frame, after having accelerated the lattice. Their Fig.
2�a� shows steps of amplitude 2vr �note that their VB=2vr�.
The sharpness of the steps depends on the depth of the lattice
and becomes more gentle when the lattice gets deeper (see
their Figs. 2�c� and 13 �upper panel� of Ref. �3�). On the
other hand our Fig. 4�b� exhibits sharp steps very similar to
Figure 2�a� of Ref. �5� taken with a 0.29Er deep lattice, de-
spite the fact we were using a 13Er deep lattice, the same as
Fig. 13 of Ref. �3�. The adiabatic turn off method with any
depth lattice thus produces results equivalent to the sudden
turn off method using a vanishingly small lattice depth. This
is because when we turn the lattice intensity off adiabatically
the states connect continuously to the Bloch states for a van-
ishingly shallow lattice. Figure 6�a� shows the velocity of the
atoms with respect to the lattice when the lattice is off. This
is equivalent to Fig. 2�b� of Ref. �5�, with even sharper tran-
sitions. Our transitions are nevertheless not infinitely sharp
because we are not adiabatic very close to the zone bound-
ary, as explained earlier.

Based on this discussion and the data of Fig. 5 we can
infer what Bloch oscillations would look like in a weak lat-
tice for a Bloch state in the first excited band. The velocity of
the atoms in the lattice frame is presented in Fig. 6�b�. This
figure was again obtained from Fig. 5�b� by subtracting the
velocity of the lattice. Note that in contrast to the usual
Bloch oscillations in the lowest band, here the Bloch oscil-
lations in the first excited band consist of a series of first and
second order Bragg diffractions, at integer multiples of �k
�half a reciprocal lattice vector� each reversing the velocity
in the lattice frame. The first order Bragg diffraction changes
the velocity in the direction of the force acting on the atoms

FIG. 6. Same experiment as in Figs. 4 and 5. Velocity of the
atoms in the lattice frame after acceleration of the lattice for differ-
ent final lattice velocities. The velocities are deduced from Figs.
4�b� and 5�b� by subtracting the velocity of the lattice. In �a� the
atoms are prepared in the ground state band, whereas they are pre-
pared in the first band for the results of �b�. The plain lines are the
theoretical group velocity calculated for a 0.1Er deep lattice.
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in the lattice frame, whereas the second order Bragg diffrac-
tion changes the velocity by twice as much in the direction
opposite to the force. This is in contrast with Bloch oscilla-
tions in the ground band where Bragg reflection occurs at
multiples of 2�k �one reciprocal lattice vector�, always in the
direction opposite to the force.

V. ACCELERATION OF ATOMS WITH A BROAD
QUASIMOMENTUM DISTRIBUTION

In the last set of experiments, we investigate the behavior
of the atoms under acceleration of the lattice when the atoms
do not occupy a single quasimomentum, but rather have a
wide spread of quasimomenta.

In order to prepare a broad distribution of quasimomenta,
we first reproduce the experiment of Ref. �15�: while the
magnetic trap is still on at a relatively high mean oscillation
frequency of 100 Hz in order to increase the interaction
strength, we adiabatically turn on a 5Er deep lattice in
300 �s. We then suddenly turn off the magnetic trap �18� and
let the atoms sit in the lattice for a duration ranging from
100 �s to 12 ms. We follow the evolution of the quasimo-
mentum distribution of the atoms in the lattice by adiabati-
cally turning off the lattice � in 300 �s� and taking an ab-
sorption image of the cloud after a 3 ms time of flight. The
results are shown in Fig. 7: Fig. 7�a� shows an image of the
undisturbed condensate after the time of flight, as well as the

density profile along the lattice direction, integrated along
the perpendicular direction, with no lattice having been ap-
plied; in Fig. 7�b�, the lattice has been switched off suddenly,
immediately after adiabatic loading of the lattice �19�. The
momentum components at ±2�k appear and provide a cali-
bration of the scale; in the two last pictures, Figs. 7�c� and
7�d� the condensate sits for, respectively, t=0.5 ms and
t=9 ms in the lattice after which the lattice is ramped down
in 300 �s. After 9 ms of evolving time, when ramping down
the lattice, the momentum distribution of the cloud looks
essentially like a convolution of the profile of Fig. 7�a� with
an almost uniformly populated momentum distribution with
a 2�k width. This corresponds to an almost completely filled
first Brillouin zone. More quantitatively, from the integrated
profiles we calculate the rms width of the momentum distri-
bution of the atoms in the laboratory frame, after ramping
down the lattice �see Fig. 8�. Since the observed distributions
result from convolution of the quasimomentum distribution
with the distribution represented by Fig. 7�a�, we could in
principle deconvolve them in order to get only the contribu-
tion of the quasimomentum. Instead, as a reference, we show
in Fig. 8 the expected rms width, convolving the experimen-
tal distribution of Fig. 7�a� with a quasimomentum distribu-
tion filling the first Brillouin zone.

An explanation for this broadening comes from the mean
field inhomogeneity across the cloud. In the magnetic trap,
the chemical potential is independent of the position. When
the lattice is superimposed onto the magnetic trap, this is
roughly still the case, provided that the lattice is not too
deep. When the magnetic trap is suddenly turned off, the
magnetic energy no longer compensates for the mean field
energy and the chemical potential varies quadratically along
the direction of the lattice. The rate of change of the phase
difference between two neighboring sites then varies linearly
along the lattice direction. This inhomogeneity of the density
across the condensate results in a different phase evolution at
each lattice site and consequently in an effective dephasing

FIG. 7. Dephasing of a condensate sitting in a 5Er deep lattice
for a time t. The time-of-flight has the same 3 ms duration for all
the images. The right column shows the density profiles of the
images in the left column, integrated perpendicular to the axis of the
lattice. In �a�, no lattice was applied. In �b� the lattice was suddenly
switched off. In �c� and �d� the cloud stays in the lattice for 0.5 and
9 ms, respectively.

FIG. 8. Evolution of the rms value of the observed the quasi-
momentum distribution of the atoms as a function of the time spent
by the atoms in the lattice. The dotted line represents the expected
width when we convolve the distribution of Fig. 7�a� with a uni-
formly populated first Brillouin zone.
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of the single particle wave function. Remembering that the
quasimomentum characterizes the phase difference from one
site to another, the apparent randomization of this phase
leads to a broadening of the quasimomentum distribution.
Roughly speaking, when the phase difference between adja-
cent sites at the edge of the condensate reaches 2�, the wave
function of an atom looks dephased, meaning that it is a
superposition of all quasimomenta in the first Brillouin zone.
This phase difference between neighboring sites at the edge
of the condensate being on the order of �t / �N�� �where
2N+1 is the total number of sites�, after a time evolution of
duration t, the time scale for dephasing is �Nh /�. Numeri-
cally, the condensate had a chemical potential � /h=5 kHz.
The estimated dephasing time �the time to create a 2� phase
difference between adjacent wells� is then 8 ms, which is
approximately equal to the observed time to fill the Brillouin
zone. This treatment neglects tunneling between lattice sites,
which would tend to equalize the phases. However, we cal-
culate a tunneling rate of 2��1.5 kHz for a 5Er deep lattice,
that is, the well-to-well tunneling rate is faster than the dif-
ferential well-to-well phase evolution. Therefore, our simple
picture of dephasing is questionable, although it seems to
give a reasonable description of the experiment. We believe
this point deserves further study. �A more detailed study of
some aspects of mean-field dephasing in a lattice has been
performed in Ref. �20�.�

As an additional, albeit equivalent, demonstration for the
randomization of the phase, we look for diffraction after let-
ting the condensate sit for a period of time. When we sud-
denly turn off the lattice, we do not observe resolved diffrac-
tion peaks when the atoms have spent more than 2 ms in the
lattice. We conclude that even though we may not have uni-
formly filled the Brillouin zone after 2 ms, we broaden the
quasimomentum distribution sufficiently that diffraction is
not evident. We note that in Ref. �21�, the authors saw a
diffraction pattern from an array of about 30 independent
condensates. The difference is in their smaller number of
lattice sites, and may also be influenced by differences in
experimental details such as the optical resolution for ob-
serving the diffraction pattern, the number of diffraction
peaks, and the fact that the diffraction of Ref. �21� appears
not to be observed in the “far field” �22�. We apply the theory
of Ref. �21� to our about 80 interfering condensates �assum-
ing they are indeed independent which is only partially valid
in our case� and found no diffraction pattern, in agreement
with our observations.

We finally turn to the behavior of the dephased cloud
under acceleration. After letting the cloud sit in a 5Er deep
lattice for 5 ms, more than a sufficient time to broaden the
quasimomentum distribution enough that the diffraction is
unresolved, we accelerate the lattice in 500 �s to a chosen
final velocity. After this acceleration period, we ramp down
the lattice depth to zero in 100 �s and allow for a 3 ms time
of flight, as described earlier in the paper. The results are
presented in Fig. 9. In this figure, the mean momentum of the
cloud after ramping down the lattice intensity shows no sign
of the plateaus seen in Fig. 4. This mean momentum is pro-
portional to the lattice velocity, in contrast to the behavior
described in Sec. IV. In fact the atoms are dragged at the
velocity of the lattice, which means that in the frame of the
lattice their motion is frozen.

We reconcile this more intuitive behavior with the odd
behavior of Sec. IV by assuming that the first Brillouin zone
is completely filled, and considering a small component of
the quasimomentum distribution, centered around q0. Upon
acceleration, this population does undergo Bragg diffraction
when the velocity of the lattice reaches q0+�k, and exhibits
the same step behavior as the one seen in Fig. 4, the only
difference being that the horizontal axis is shifted by q0. All
the other quasimomentum components are also Bragg re-
flected but at different velocities of the lattice. When one
averages the different “staircase” patterns like the one shown
in Fig. 4 for all the quasimomenta in the first Brillouin zone,
the average velocity in the laboratory frame is the velocity of
the lattice. Another way to understand this is to calculate the
average group velocity for a uniformly populated first Bril-
louin zone. That velocity is proportional to the average of the
slope of the E0�q�. As the band is symmetric with respect to
q=0, this average velocity with respect to the lattice is zero
and there is no motion of the center of mass of the cloud with
respect to the lattice.

We now compare our above results with two recent ex-
periments looking at thermal bosons and degenerate fermi-
ons in an optical lattice �23,24�. In �23�, a condensate sur-
rounded by its thermal cloud is created in a several Er deep
lattice and a magnetic trap. The center of the magnetic trap is
then shifted and the subsequent behavior of the two compo-
nents is monitored. The authors observed that whereas the
thermal component is pinned and does not oscillate in the
magnetic trap, the condensate does oscillate with an oscilla-
tion frequency modified by the effective mass of the atoms in
the lattice. The authors proposed an explanation based on the
superfluidity of the condensate that allows it to move through
the corrugated potential created by the lattice, whereas the
thermal cloud does not move due to its nonsuperfluid nature.
In light of the experiment we described above in this section,
we propose an alternate explanation for those results, based

FIG. 9. Acceleration of a cloud of incoherent atoms in a 5Er

deep lattice. The circles represent the momentum of the center of
mass of the cloud, in the laboratory frame, after acceleration of the
lattice. The adiabatic ramp down is followed by a 3 ms time of
flight. The line represents the velocity of the lattice.
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only on single-particle band structure theory. In the experi-
ment of Ref. �23�, the condensate is prepared directly in the
lattice, and occupies the Bloch state 
n=0, q=0�. Let us now
assume that the thermal component has a temperature that
corresponds to an energy between the ground state band and
the first band of the lattice. The ground band is then almost
uniformly populated, meaning that the single-particle wave
function of the atoms effectively contains all quasimomenta
in the first Brillouin zone. Shifting the position of the mag-
netic trap is equivalent to accelerating both the lattice and the
trap with respect to the laboratory and therefore equivalent
to applying a uniform force to the atoms. As described
above, the thermal cloud filling the Brillouin zone does not
move with respect to the lattice �Fig. 9�. This is what the
authors of Ref. �23� observed and it is completely consistent
with a single particle description, without any reference to
superfluidity or critical velocity, phenomena dependent on
interactions.

We finally discuss briefly the recent experiment dealing
with degenerate fermions in a one dimensional optical lattice
�24,25�. In Ref. �24�, a Fermi sea of 40K is produced in an
optical lattice. The authors observe the absence of peaks in
the diffraction pattern after sudden turn off of the lattice.
This implies that the Fermi momentum is comparable to or
larger than �k so that the quasimomentum extends through-
out the Brillouin zone, similar to our dephased cloud of
bosons. In the same work the authors repeat, with the Fermi
gas, the experiment of Ref. �23� where they shift the mag-
netic trap with respect to the lattice. Consistent with our
single-particle interpretation of the experiment �and with the
single particle interpretation given in Ref. �24��, they do not
observe oscillation of the Fermi cloud in the magnetic trap.
In Ref. �25�, the authors again produce the Fermi sea in a
lattice but this time they only partially fill the first Brillouin
zone. As a result they do observe a diffraction pattern con-
sisting of resolved peaks when suddenly releasing the atoms
from the lattice. They also observe Bloch oscillations in their
vertical lattice, due to gravity, as should be the case for a
partially filled Brillouin zone. As ultracold indistinguishable
fermions are essentially noninteracting �no s-wave colli-
sions�, the experiments of �24,25� illustrate single particle,
i.e., noninteracting particle, behavior of a cloud of cold at-
oms in a lattice, as those authors point out. Collisions imply
a coupling between quasimomentum states and thus the fail-
ure of the single particle �Bloch theory� description. The be-
havior of ultracold fermions is identical to our experiment
and the experiment of Ref. �23� with interacting bosons,
when the influence of interactions is negligible on the time
scale of the experiment. It is particularly striking that fermi-
ons and bosons can behave exactly in the same way under
some circumstances: all that matters is the way the Brillouin

zone is filled, although the way this filling occurs may de-
pend on the quantum statistics.

VI. CONCLUSION

In summary, we have presented a series of experiments in
which a condensate is adiabatically loaded into an optical
lattice, preparing the atoms in a single Bloch state. In a first
set of experiments, the lattice is initially moving, and the
atoms come back to rest in the laboratory frame after the
adiabatic turn off the lattice, leading to nonintuitive behavior
for this “quantum conveyor belt.” In a second set of experi-
ments, we act on the prepared quasimomentum distribution
by accelerating the lattice. We then analyze the new quasi-
momentum distribution by again adiabatically ramping down
the lattice, and again observed nonintuitive behavior. We ob-
serve discrete jumps in the resulting momentum distribution,
depending upon the velocity of the lattice. These jumps are
reminiscent of Bragg diffraction at each avoiding crossing
due to the laser coupling and are equivalent to Bloch oscil-
lations. In a last set of experiments, we let the initial quasi-
momentum distribution evolve under the influence of inter-
actions between the atoms, leading to the filling of the first
Brillouin zone. The resulting cloud now exhibits a different
behavior under acceleration of the lattice, i.e., the cloud ap-
pears to be frozen in the frame of the lattice. Finally we
showed the similarities between the behavior of a cold ther-
mal cloud and that of a cloud of degenerate fermions in an
accelerated optical lattice, when the quasimomentum extends
throughout the first Brillouin zone.

Among the issues that we believe deserve further studies,
both experimentally and theoretically, is the competition be-
tween phase winding and tunneling, that is to say how atoms
lose their well-to-well phase coherence. Furthermore, we
considered in this paper the dephasing of the wave function
due to the density profile of the cloud, but the quantum fluc-
tuation of the atom number in each well is also a source of
effective decoherence that should be explored. We also em-
phasize that the time scales of our experiments are very short
with respect to other experiments, such as the one described
in Refs. �20,23�.

Finally we note that the method of Sec. IV could be useful
for precision measurements, as described in Ref. �26�.
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