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Abstract : 
 We develop a theoretical model that shows that the overlap integral of two 
counterpropagating waves is an invariant along propagation in a reciprocal optical system. We use 
this property to implement a method that allows a quantitative measurement of the conjugation 
fidelity of a phase conjugate mirror. Applied to the double phase conjugate mirror (DPCM) this 
invariant can be rewritten as an equality between the ratio of the conjugation fidelity of the two 
ports of the DPCM and the ratio of the phase conjugate transmission of the two beams. If restricted 
to a plane wave case this relation becomes the well known equality of the diffraction efficiencies in 
both directions. 
 We use the model to implement an experimental characterization of the DPCM, measuring 
its conjugation fidelity, and demonstrating that it is a reciprocal optical system. 
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I. INTRODUCTION 

 A phase conjugate mirror is a device that creates a wavefront that is the phase conjugate of 
an incident wavefront, i.e. it is a wave that has exactly the same structure than the incident wave 
but that is counterpropagating to it. This property is very important as it allows to compensate 
distortions encountered by an optical wave through propagation in an optical system. The phase 
conjugate wave follows exactly the same path as the incident wave and sees exactly the same 
distortions but with opposite sign and what compensates them. This is, for example, efficiently 
used in laser systems to generate high peak power high quality laser beams [1]. Due to this 
important property, a lot of studies were devoted to the problem of the reconstruction of a 
wavefront with phase conjugation from a theoretical point of view as well as experimentally [2-5]. 
Nevertheless most of these works supposed that the propagation media was lossless and that the 
phase conjugate mirrors were perfect, what is a particular case far from reality. It is only recently 
[6-8], that the problem of partial phase conjugation (i.e. the case of a phase conjugate mirror that 
conjugates only a part of the incident wave) had been tackled.  
 These works are the starting points in our characterization of the Double Phase Conjugate 
Mirror (DPCM) [9-11]. Our aim is to characterize the quality of this DPCM, and especially to 
measure quantitatively a very important parameter, the conjugation fidelity, that measures the part 
of the returned wave that is exactly the phase conjugate of the incident wave. In a first section of 
the paper we develop a theoretical model that gives the background of the study. It allows to define 
a set-up to quantitatively measure the conjugation fidelity, and to show that if the DPCM is a 
reciprocal device a relation links the ratio of conjugation fidelities on both beams to the ratio of the 
phase conjugate transmissions. In a second part, we experimentally measure the conjugation 
fidelity of the DPCM and demonstrate its reciprocity. 
 
II. THEORETICAL STUDY 

 We use the Butterwerk’s formalism [12] that defines an optical system by a transfer 
function with specific characteristics depending on the properties of the optical system (reciprocity, 
losslessness, symmetry,...). However, Butterweck’s formalism [12,13] is not exactly adapted to our 
problem as it considers only scalar field. That is why we use a derivation of this formalism 
developed to take care of vectorial fields [14, 15]. This formalism will allow to define invariant 
quantities along propagation, that in the following will permit to describe the properties of our set-
up. This reciprocity invariant will then be used to describe a method to measure the conjugation 
fidelity of a phase conjugate mirror, and a method to show that the DPCM is a reciprocal element 

 II.1. Position of the problem 
 The basic scheme that we will use (Fig. 1) is an optical system that transfers optical fields 
between two plane 1 and 2 (with position in the planes given by variables r1 and r2). All the fields 
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are considered monochromatic with pulsation ω. Field   
r 
E r,z( )ei !t" kz( )  propagates along   

r 
Z  from 

plane 1 towards plane 2, and field   
r 
F r, z( )ei !t+ kz( )  propagates from plane 2 towards plane 1. The 

fields are vectorial quantities, i.e. they are polarized. We only consider the case of paraxial waves 
(i.e. the highest spatial frequency is small compared to the wavenumber k=2π/λ) [13, 14], so the 
field vectors completely lie in the plane which is perpendicular to   

r 
Z . For each plane we define two 

perpendicular polarization axes   
r 
X  and   

r 
Y . The complex amplitude   

r 
E  and   

r 
F  of the fields are 

written :  
      

r 
E = EX

r 
X +EY

r 
Y  

Or in matricial notation :  

    
  

r 
E =

E X

EY

! 

" 
# $ 

% 
 

where EX and EY are complex quantities. 

For every vector   
r 
E  or   

r 
F  we can also determine the only associated scalar value, which 

characterises the average intensity of the field 
  
I z( ) = t

r 
E r, z( )

r 
E * r, z( )dr!  (integration is done on the 

whole plane). 

According to the Butterweck’s notations [12], adapted to the vectorial case by Van Weert [14], the 
transfer from plane 1 towards 2 occurs according to the following law :  

  

r 
E 2 r2( ) = T 2 1 r2 ,r1( )

r 
E 1 r1( )dr1!       (1) 

With the transfer matrix : 

   T 2 1 r2 ,r1( ) =
T2 1XX r2 ,r1( ) T2 1XY r2 ,r1( )
T2 1YX r2 ,r1( ) T2 1YY r2 ,r1( )
! 

" 
# 

$ 

% 
&  

similarly the transfer from 2 to 1 occurs according to the law:  

  

r 
F 1 r1( ) = T 1 2 r1, r2( )

r 
F 2 r2( )dr2!        (2) 

We also define the inverse transfer as (the propagation is still from plane 1 towards plane 2) : 

  

r 
E 1 r1( ) = T 2 1

!1 r1,r2( )
r 
E 2 r2( )dr2"       (3) 

The transfer matrix T 2 1 r2 ,r1( )  and its inverse T 2 1
!1 r1,r2( )  are linked by : 

T 2 1 r2 ,r1( )T 2 1
!1 " r 1, r2( )dr2# = $ r1 ! " r 1( )I      (4) 

I  being the identity matrix I =
1 0
0 1
! 

" 
# $ 

% 
 and ! r1 " # r 1( )  the Dirac distribution. 

 The general system we now consider has some specific properties, among which the most 
important and the most used are reciprocity and/or losslessness. In the following we will consider 
that the only property, that the studied systems possess, is reciprocity. The case of a lossless system 
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(very used theoretically but generally not obtainable in practice) will be considered in the appendix. 
The reciprocity (using the fact that we consider only paraxial fields) can be translated into relations 
between transfer matrices [14, 15] : 

T 1 2 r1,r2( )=tT 2 1 r2, r1( )        (5) 
tT  being the transpose of matrix T . 

 II.2. Reciprocity invariant 
 Equation (5) is our basic relation. It allows to define a quantity that is invariant along the 
propagation of the fields. We first calculate the overlap integral (i.e. the scalar product) of the two 
counterpropagating fields at the output of the system : 

  
t
r 
E 2 r2( )

r 
F 2 r2( ) dr2! = tT 2 1 r2 ,r1( ) t

r 
E 1 r1( )dr1!( )

r 
F 2 r2( )dr2 =

t
r 
E 1 r1( ) tT 2 1 r2, r1( )

r 
F 2 r2( )dr2!( )dr1!!  (6) 

We now use expression (5) : 

  
t
r 
E 2 r2( )

r 
F 2 r2( ) dr2! = t

r 
E 1 r1( ) T 1 2 r1, r2( )

r 
F 2 r2( ) dr2!( )dr1!     (7) 

what gives (with definition (2)) the expected results, i.e. that the overlap integral of two waves is 
conserved through propagation in a reciprocal system :  

  
t
r 
E 1 r1( )

r 
F 1 r1( )dr1! = t

r 
E 2 r2( )

r 
F 2 r2( )dr2!      (8) 

 This invariant relation is important as it says that the scalar product of two 
counterpropagating waves is identical in every point of the propagation path in a reciprocal optical 
system. In particular, two orthogonal waves (i.e. such that 

  
t
r 
E 1 r1( )

r 
F 1 r1( )dr1! = 0) in a plane of the 

propagation, remain orthogonal everywhere.  
 If now, we consider any plane parametrized by an abscissa z, the reciprocity invariant can 
be written as : 

  
t
r 
E r, z( )

r 
F r, z( )dr! = cz       (9) 

cz  being a constant independent of z,   
r 
E  and   

r 
F  being two fields that propagate in the optical 

system in the +  
r 
Z  and -  

r 
Z  directions respectively.  

 This equation is the basic relation that we will use in the following, firstly to describe a 
method that can be used to quantitatively measure the conjugation fidelity of a phase conjugate 
mirror, secondly to show that the double phase conjugate mirror is reciprocal.  

 II.3. Application to the measurement of the phase conjugation fidelity 

  II.3.a. Reciprocity and phase conjugation 
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 Relation (9) is verified along propagation as soon as the optical system is reciprocal, which 
is the case for most optical systems. In particular a multimode fiber is reciprocal, in the limit it is 
stable and its characteristics do not fluctuate temporally [16]. This stationary condition can be 
generalized to a quasi steady state condition as soon as the time of variation of the characteristics is 
slow compared to the transit time of the light through the fiber, what is usually the case.  
 Let us consider the returning field   

r 
F  (Fig. 1). It is written, at each z position, as a linear 

combination of two orthogonal fields (not necessarily normalized) :  

  
r 
F r, z( ) = a z( )

r 
E * r, z( ) +

r 
F ! r, z( )       (10) 

The first term is the phase conjugate of the incident field   
r 
E , at the same position z, multiplied by a 

constant a(z) (a constant regarding r but eventually depending on position z). The second one is a 
field   

r 
F !  orthogonal to   

r 
E , i.e. that verifies :  

  
t
r 
E r, z( )

r 
F ! r, z( )dr" = 0        (11) 

Using these definitions we can show that :  

  
t
r 
E r, z( )

r 
F r, z( )dr! = a z( )I z( ) = cz       (12) 

 Writing the field according to relation (10) shows that if we send the field   
r 
F ! r, z( )  in the 

optical system, this field will never create a phase conjugate component of the incident field, as 
there is conservation of the quantity 

  
t
r 
E r, z( )

r 
F r, z( )dr!  (if at a given position the reciprocity 

invariant between the two fields is null, it is null everywhere).  
 If a field component strictly non phase conjugated can never reconstruct a phase conjugate 
beam, the inverse proposition is generally wrong in presence of losses. To illustrate this point we 
take the example of a wave passing through an aperture in a screen (Fig. 2). Even if in the upper 
part of the screen we create a perfectly phase conjugated wave and if this wave is transmitted 
without any loss through the aperture, it is no more a perfectly conjugated wave in the lower part of 
the screen since the part of the field blocked by the screen is not reconstructed.  

  II.3.b. Transmission of a phase conjugate wave through an optical system 
 The last exposed point will be confirmed by looking at the losses that are seen by the phase 
conjugate component. Going back to expression (10) that gives   

r 
F , we now calculate the intensity 

of the phase conjugate component. It writes as :  

  
IPC z( ) =

t
a z( )

r 
E * r,z( )( ) a z( )

r 
E * r, z( )( )*

dr! = a z( ) 2 r 
E r, z( )

2
dr! = a z( )2 I z( )   (13) 

 According to this, the transmission of the phase conjugate component   a z( )
r 
E * r, z( )  between 

a plane parametrized by the abscissa z2 and a plane of abscissa z1, is defined as : 
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TPC z1,z2( ) = IPC z1( )
IPC z2( )

=
a z1( ) 2 I z1( )
a z2( ) 2 I z2( )

      (14) 

 Using relation (12), we then show that the transmission of the phase conjugate component 
of the returned wave   

r 
F  is strictly equal to T z2 ,z1( )  the transmission of the incident wave   

r 
E  

between the plane with abscissa z1 and the one with abscissa z2 :  

TPC z1,z2( ) = I z2( )
I z1( )

= T z2,z1( )      (15) 

 This relation is true whatever the nature of the loss that causes the decrease of the signal. 
This can be either an absorption loss, a masking by a screen or the loss induced by the necessity to 
repolarize a depolarized beam.  

  II.3.c. Measure of the conjugation fidelity 
 We now calculate the intensity of the returning field   

r 
F , using expression (10) and the fact 

that   
r 
F !  is orthogonal to   

r 
E * . We thus have :  

  
IR z( ) = t

r 
F r, z( )

r 
F * r, z( )dr! = a z( ) 2 I z( ) + I" z( )     (16) 

with 
  
I! z( ) =

r 
F ! r, z( )

2
dr" , the intensity of the non phase conjugate component of the wave. 

 
 We now come to the main point of our study, the quality of the phase conjugation that is 
characterized by the conjugation fidelity [10]:  

  

CF z( ) =
t
r 
E r,z( )

r 
F r, z( )dr!

2

r 
E r,z( )

2
dr!

r 
F r,z( )

2
dr!

     (17) 

what can be rewritten taking into account what precedes ((16) and (12)) as :  

CF z( ) =
a z( ) 2 I z( )

a z( ) 2 I z( ) + I! z( )
=

IPC z( )
IPC z( ) + I! z( )

    (18) 

 The transmission of the returned field   
r 
F  between a plane of abscissa z2 and a plane of 

abscissa z1 will then be, using relations (18) and (14) : 

TR z1, z2( ) = IR z1( )
IR z2( )

=
CF z2( )
CF z1( )

TPC z1,z2( )      (19) 

As the transmission of the phase conjugate component equals the transmission of the initial beam 
(15), we then have :  

TR z1, z2( ) = CF z2( )
CF z1( )

T z2 ,z1( )      (20) 
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 This relation is the main expression that we will now use in our experimental study as it is 
more practical than the reciprocity invariant. It links the conjugation fidelity in two planes to the 
transmission of the waves in both directions between these two planes. The problem will now be to 
find a way to separate the phase conjugate component from the non phase conjugate one. A method 
using a measurement of the quality of images reconstructed by phase conjugation was previously 
proposed [6,7,11]. We prefer to use a single mode filter (made of a polarization maintaining single 
mode fiber and a polarizer) for this selection. In such a filter one mode and only one can propagate. 
Thus both counterpropagating waves will be strictly phase conjugated to each other. Moreover the 
measurement of the image quality does not strictly give the conjugation fidelity as defined here. In 
one case [6,7], the measured image to background ratio (IBR), is a parameter that should goes to 
infinity for a perfect phase conjugation (no background noise present) and not to a maximum of 
one as in our case. In the other case [11], it is said that the fidelity measurement does not take into 
account the phase of the returned beam, what is done in our case.  

 Now we consider that we filter the phase conjugate component in the plane of abscissa z1, 
i.e. that we assure that in this plane the intensity of the non phase conjugate component is zero 
(I! z( ) = 0 ) and thus the conjugation fidelity is CF(z1)=1 (according to (18)). We thus obtain a 
relation that gives a measurement of the conjugation fidelity in the plane with abscissa z2 :  

CF z2( ) = TR z1,z2( )
T z2,z1( )

       (21) 

 The conjugation fidelity is in general a parameter very hard to evaluate quantitatively. We 
here propose a very simple way to obtain it through a simple measurement of the transmission of 
two beams.  

 The experimental set-up to evaluate the conjugation fidelity of a phase conjugate mirror is 
thus the following (Fig. 3). A laser beam is filtered by a single mode filter and then sent through a 
reciprocal optical system (i.e. in practice any classical optical system) on the phase conjugate 
mirror. We then measure the transmission of the incident beam through the single mode filter and 
the optical system, as well as the transmission of the beam returned by the phase conjugate mirror. 
The ratio of both transmissions directly gives the fidelity of the phase conjugate mirror, according 
to (20).  

 II.4. Reciprocity of the double phase conjugate mirror  
 Until now we have used the model to describe how a phase conjugate wave is transmitted 
through a reciprocal optical system and how we can use this to measure the conjugation fidelity of 
the phase conjugate mirror. We will now show how the same expression can be used to prove that 
an optical system is reciprocal and apply this to an important kind of phase conjugate mirror : the 
double phase conjugate mirror (DPCM) [9-11]. Until now the question of its reciprocity has only 
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be considered once and only theoretically [17]. It was shown that the equality of the diffraction 
efficiency in both directions (in a plane wave description of the DPCM) is a direct consequence of 
the reciprocity of the DPCM. Our model is an extension to the more general case of non plane 
incident waves and will give us an experimental method to show that the DPCM is reciprocal.  

  II.4.a. Conservation of the fidelity-transmission product 
 We consider the DPCM as our optical system (Fig. 4). The DPCM is a phase conjugate 
mirror in which two beams 1 and 2 that can be mutually incoherent are incident on a 
photorefractive crystal. The DPCM creates two beams 3 and 4 that have the phase conjugate 
structure of beams 1 and 2 respectively. Moreover the DPCM is a phase conjugate mirror that 
operates in transmission as beam 4 is issued from the diffraction of beam 1 on the grating written in 
the photorefractive crystal (with the same properties for beams 3 and 2). We can thus make the 
analogy between the different notations of Fig. 4 and Fig. 1,   

r 
E 1  is the field that characterizes wave 

1,   
r 
E 2  characterizes wave 4, whereas   

r 
F 1 and   

r 
F 2  characterize waves 3 and 2 respectively. Now if the 

DPCM is reciprocal, relation (20) is verified between the two planes of abscissa z1 and z2. We thus 
have : 

TR z1, z2( ) = CF z2( )
CF z1( )

T z2 ,z1( )        

This can be rewritten as a fidelity-transmission product conservation : 

CFcwTDPCMcw = CFccwTDPCMccw       (22) 
where CF is the conjugation fidelity of the two waves issued from the DPCM and TDPCM is the 
phase conjugate transmission of the waves that go through the DPCM (i.e. ratio of the intensity of 
the beam that goes in the direction of the phase conjugate beam I3 (resp. I4) on the intensity of the 
incident beam I2 (resp. I1)). Indices cw and ccw indicate that the waves propagate in the clockwise 
and counterclockwise directions respectively. Thus CFcw is the conjugation fidelity of wave 4 
(compared to the incident wave 2) whereas TDPCMcw is the ratio of intensity of wave 4 to the 
intensity of wave 1. Thus if the DPCM is reciprocal the product of the conjugation fidelity by the 
transmission of the phase conjugate wave is the same in both propagation directions. This 
expression generalizes the relation derived in Ref. [17] to the case of waves that are not plane 
waves. Indeed, in this plane wave case, as two counterpropagating plane waves are necessarily 
phase conjugate to each others, the conjugation fidelity is necessarily 1 and relation (22) becomes 
the equality between the diffraction efficiency of the grating in both directions as stated in Ref.[17]. 
This is no more true for non plane waves as illustrated in the case of a DPCM operated with two 
beams having different diameters (Fig. 5). The interaction area is limited to the area of the crystal 
covered by both beams, which in first approximation is the area covered by the smallest beam. The 
small beam is totally covered by the large beam, it thus interacts with the written grating on its 
entire aperture, and thus diffracts with a large efficiency. On the contrary a large portion of the 
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large beam does not participate to the grating and is thus not diffracted giving a small diffraction 
efficiency. We now look at the quality of the phase conjugation. On the side of the large beam, the 
structure of the diffracted wave corresponds to a small portion of the beam only and thus 
corresponds to a very bad quality of the phase conjugation, with the reverse phenomenon at the 
other side of the crystal. We see that on one side we have a good energetic efficiency, together with 
a bad quality of the phase conjugation, and, on the other side, a bad efficiency compensated by a 
very good quality of the phase conjugation. This example illustrates in a simple manner how 
relation (22) allows to characterize the DPCM, with the help of a new invariant that works 
whatever the structure of the incident waves and that thus works in all the operating cases of the 
DPCM. 

  II.4.b. Measure of the reciprocity of the DPCM 
 The previous invariant we derived, is a simple consequence of the reciprocity of the DPCM. 
We now have to prove that the DPCM is a reciprocal optical system. Once again we will use 
expression (20), but applied to a more complicated optical system (Fig. 6). Plane 1 (at abscissa z1) 
is a single mode filter (constituted of a polarization maintaining single mode fiber and a polarizer). 
Then the beam is transferred from the single mode filter to the DPCM through a multimode fiber. 
This multimode fiber send on the DPCM a speckled beam that allows to prevent the conical 
diffraction that can occur with plane waves and that is detrimental to the conjugation quality of the 
DPCM. The optical set-up is then duplicated for the other branch of the set-up until plane 2 (at 
abscissa z2). The optical system is thus the whole set-up (Fig. 6) :  

“ single mode filter -> multimode fiber -> DPCM -> multimode fiber-> single mode filter “. 

 With this optical system we have perfect single mode filters in the planes of abscissa z1 and 
z2, thus we have for both conjugation fidelities CF(z1)=CF(z2)=1. Expression (20) then becomes :  

TR z1, z2( ) = T z2 ,z1( )       (23) 

This relation tells us that if the system is reciprocal (i.e. if each of its elements are reciprocal [13]) 
the transmission coefficients in both propagation directions measured in place where CF=1 are 
strictly identical whatever the exact value of these transmissions. We have thus a very simple way 
to verify that our DPCM is a reciprocal device (since all the other elements are considered 
reciprocal), and this whatever the operating regime of the DPCM.  

III. EXPERIMENTAL VERIFICATION 

 We have developed a theoretical model that gives a way to characterize phase conjugation 
fidelity quantitatively and to control experimentally whether the DPCM is a reciprocal element. 
This is expressed by a relation that links phase conjugate fidelity on both sides to diffraction 
efficiency in both directions. We now present the experimental study, stressing the precautions that 
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have absolutely to be taken in order to have a meaningful and reliable proof of the reciprocity of 
the DPCM and of the measurement of the conjugation fidelity.  

 

 III.1. Experimental set-up 
 Our aim here is to characterize a double phase conjugate mirror in a certain configuration 
and not to optimize its performances. We choose a configuration of the photorefractive BaTiO3 
crystal that works quite well and that easily gives high efficiencies [18]. It is shown in Fig. 7. 
Typical phase conjugate transmission was around 40%, which taking into account the ≈50% loss in 
the crystal (absence of antireflection coatings, and absorption of the crystal) gives a corrected 
diffraction efficiency around 80% at the level of the crystal.  
 The experimental set-up (Fig. 8) is constructed around the DPCM with the architecture 
proposed above (Fig. 6). The laser beam is issued from an Argon laser emitting at λ=514nm in a 
single line highly multimode regime, in order to have a short coherence length. It is sent on a non 
polarizing beam splitter BS, in order to form the two pump beams of the DPCM. Each beam is sent 
on a polarization maintaining single mode fiber (PMSF), after passing a polarizer (P), in order to 
form our single mode filter. The half wave plate (λ/2) aligns the polarization along the proper 
polarization axis of the fiber. Just in front of the polarizers we place 50/50 beam splitters (BS1 and 
BS2) to extract the returning phase conjugate signal. At the output of the single mode fibers the 
beam is sent into a multimode fiber (MF) (core diameter 50µm). The multimode fibers have 
different lengths, in order to assure that both pump beams of the DPCM are mutually incoherent. 
This prevents the writing of reflection gratings between the pump beams. At the output of the 
multimode fibers the beams are polarized with a polarization beam splitter (PBS), in order to have 
extraordinary polarized pump beams incident on the photorefractive crystal (PRC). A thick glass 
plate (GP) in one of the pump beam extracts a part of the phase conjugate beam to follow the 
growth of the diffracted signal in the vicinity of the photorefractive crystal. The incident power of 
each pump beam on the DPCM is typically between 200µW and 2mW depending on the 
experiment. Three detectors (D1, D2 and D3) allow to follow the phase conjugate signal after the 
single mode filter for the first two and at the level of the DPCM for the third one (the diameter of 
D3 is adjusted to the diameter of the pump beam at this position, i.e. to the diameter of the expected 
phase conjugate beam). 

 III.2. Conjugation fidelity measurement  
 In order to measure the conjugation fidelity, we use our set-up (Fig. 8) that was made 
according to the principle proposed in Fig.3. According to this and using expression (21) a simple 
measurement of the different intensities defined in Fig.3, allows to evaluate the conjugation fidelity 
of the phase conjugate mirror. We perform this measurement and find values of the conjugation 



11  

fidelity that were much greater than 1. This result indicates that there is a problem either in the 
model or in the measurement procedure, as CF is evidently smaller or equal to 1.  
 In fact there is a problem in both. Indeed, using expression (21) we suppose that at the 
position of the measurement, i.e. at the entrance of the single mode filter, we have CF(z1)=1. This 
is certainly true inside the single mode fiber, but no more true if we consider that the measurement 
is performed outside the fiber. The coupling of the incident beam inside the single mode fiber is 
certainly not perfect, there are losses. Thus, as we saw previously, the phase conjugate component 
of the wave will see the same losses, that will give a decrease of the phase conjugate fidelity, just 
as in the case of masking by a screen we discussed previously (Fig. 2). So we can not use 
expression (21) in our evaluation. We have to go back to relation (20), with the problem that 
CF(z2) is no more evaluated directly. We have first to measure CF(z1) before having a value of 
CF(z2). Another way would be to assure that the coupling inside the single mode fiber is without 
any loss, but we think that it is hardly possible in practice.  
 In order to calculate CF(z1), we use the same expression (20) but exchanging the role of 
both planes. We replace the phase conjugate mirror to be evaluated by a system that is a perfect 
phase conjugator. In such a case we have CF(z2)=1 and from the measurement of the intensities 
defined in Fig. 3, we deduce the different transmissions that give CF(z1). It is equivalent to 
consider that we make a relative measurement in which we compare our phase conjugate mirror to 
a perfect phase conjugate mirror. This method is less accurate than the absolute measurement we 
expected to perform, but it nevertheless gives a good idea of the quality of the phase conjugation 
fidelity. The precision of the measurement will depend on the quality of the “perfect” phase 
conjugate reference we will choose.  
 To choose the “perfect” phase conjugate mirror we remind us that at the output of the single 
mode fiber, we have a good quality beam, which is collimated, and can thus be considered as a 
plane wave. When sent on a plane mirror along its normal, this plane wave generates another 
counterpropagating plane wave that is its exact phase conjugate (the non unity reflection coefficient 
of the mirror just reduces the efficiency of the “perfect” phase conjugate mirror but not the 
conjugation fidelity that stays equal to 1). So we experimentally replace the multimode fiber and 
the phase conjugate mirror by the plane mirror perpendicular to the collimated beam. A very 
accurate alignment both for the collimation of the beam at the output of the single mode fiber and 
the autocollimation of the plane mirror has been achieved. As we couple back the reflected signal 
in the single mode fiber, we are sure that only the phase conjugate component arrives at the 
entrance of the single mode fiber, and that the optimization of Iout (Fig. 3) is a characteristics of the 
quality of our “perfect” phase conjugate mirror. Once the returned signal optimized, we perform 
the measurement of CF(z1), using relation (20) with CF(z2)=1. We deduce CF(z1)=0.35, what is far 
from the supposed value of 1 we were assuming at the beginning.  
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 We can now evaluate the conjugation fidelity of the DPCM, using the proposed set-up, with 
relation (20) and the now known value of CF(z1). The measurement of Iout is given by detector D2, 
and IPCMout is given by detector D3, both independently calibrated regarding the exact value of the 
measured signal, whereas Iinc=34.2mW and IPCMinc=1.36mW. We are now able to follow the time 
response of the DPCM, both for the intensity reflectivity R=(IPCMout/IPCMinc) of the DPCM through 
D3 and the conjugation fidelity CF(z2)=CF(z1)*(Iout/IPCMout)*(Iinc/IPCMinc) through D2. The curves 
are presented in Fig.9. They are taken at the build-up of the DPCM and after some time in the 
“steady-state” regime. The curve shows that the reflectivity is stable whereas the conjugation 
fidelity strongly oscillates, reaching a value close to 1, at some instants. According to these results 
we conclude that the DPCM diffracts a beam that has the global structure of the incident beam 
(mainly same diameter), and that looks like a phase conjugate speckle beam if regarded near the 
DPCM (Fig. 10). The conjugate beam thus “seems” a real conjugate but the measurement of the 
conjugation fidelity reveals that in fact it is not. As we conjugate a speckle beam we can conclude 
that the large structure of the beam is conjugated but that its fine speckled structure fluctuates 
slowly in time, being at some moment perfectly non phase conjugated (CF=0 at t=0 in Fig. 9). This 
shows that the usual measurement of the conjugation reflectivity is not at all a measurement of the 
quality of the phase conjugation. Indeed this reflectivity can be important even if the returned beam 
is not at all phase conjugated. This oscillating operation of the DPCM has been chosen because it 
showed the decorrelation between the reflectivity value and the quality of the phase conjugation. It 
is obtained in a specific regime of alignment and intensity ratio of the pump beams incident on the 
DPCM. We have obtained alignments giving stable operation (to some percents) of the DPCM both 
for reflectivity and conjugation fidelity for more than one hour.  

 III.3. The double phase conjugate mirror is reciprocal 
 We have just seen that the problem of the quality of the coupling of the incident beam in the 
single mode fiber prevents a direct measurement of the conjugation fidelity. This problem also 
occurs in the experimental demonstration of the reciprocity of the DPCM, in preventing the direct 
use of expression (23). Here again we have to go back to relation (20). Nevertheless, the problem 
occurs to a lesser extent as we do not need to measure exactly both CF(z1) and CF(z2) but only 
their ratio. As the value of CF(z1) and CF(z2) are fixed and determined by the coupling at the 
entrance and output of the single mode filter only, they do not depend on the nature of the system 
between the single mode filters. Then relation (20) will be identical whatever the optical system we 
place between both single mode filters, as soon as this system is reciprocal. So in order to show 
that the DPCM is reciprocal, we just have to compare the ratio of the transmissions of the system in 
both directions for the total system (multimode fiber - DPCM - multimode fiber) and for a 
reference reciprocal system, in which the output of the single mode fiber is directly coupled in the 
other fiber by mirrors (insert in Fig. 8). Thus if we can show that we have the same ratio of 
transmissions for the DPCM and the reference system, we will prove that the DPCM is a reciprocal 
system.  
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 Experimentally, in our set-up the ratio of the transmissions is directly proportional to the 
ratio of the signals received by detectors D1 and D2, as the incident signal ratio is constant during 
the measurement. Moreover, in order to have a better accuracy, we make the transission 
measurements for several operating points by varying the transmission of the DPCM, i.e. its 
efficiency (changing the alignment and superposition of the pump beams) and by making the 
measurement during the build-up of the grating (or by choosing an unstable operation regime as the 
one presented in Fig. 9). This last point is justified by the fact that the durations involved in the 
measurements are very long compared to the transit time of the light in the optical system, assuring 
that the optical system is in a quasi steady state regime. This point is also a posteriori justified by 
the fact that in all the experiments performed with the DPCM, both signals given by D1 and D2 
were always exactly proportional to each other, demonstrating that the DPCM is reciprocal 
whatever its operation regime. For the reference system, we vary the transmission by using a 
variable diaphragm that cuts the beam. Moreover in order to allow a more direct comparison of 
both signals a neutral density is used to adjust the transmission of the reference system to the lower 
transmission value of the DPCM system.  
 Finally, to increase the accuracy of the measurement at very low transmission of the optical 
systems (when the returned phase conjugate signal becomes smaller than the returned signal due to 
the reflection on the entrance angle-cut facet of the single mode fiber), we use shutters (Sh1 and 
Sh2 in Fig. 8) that are alternatively shut. The signal received by each detector during the 
measurement is shown in Fig. 11. For example detector D2, when both shutters are opened receives 
light that comes from the DPCM and that is the signal we are interested in, but also receives 
retroreflected light that comes from the different optical elements placed between D2 and the single 
mode fiber. So we first close Sh1, D2 does not received light from the DPCM anymore, but it 
continues to receive the retroreflected light (RR2), which can thus be evaluated. Second we close 
Sh2 (Sh1 being still closed), no more light is sent in the system, we thus measure the zero signal of 
D2 (background light and electrical offset). Third, we open Sh1, D2 receives only the light 
transmitted through the DPCM (without the retroreflected light) what constitutes the real signal we 
are interested in (PC2). The same kind of signal (but inverted is seen by the other detector D1). This 
procedure allows to measure exactly the signal transmitted through the DPCM even in the presence 
of retroreflected light. Nevertheless this procedure has to be applied very carefully, as we have to 
assure that it does not disturb the measurement. Thus some precautions have to be taken. The main 
one is to prevent the erasure of the grating when only one beam is present (as well as the recovery 
of the induced absorption we have observed in our crystal). First we close the shutters for a very 
short time, typically about 150ms. Second we use a very low pump beam power (typically around 
200µW) to decrease at maximum the response time of the DPCM (typically several minutes). All 
these precautions assure that our measurement procedure is really non destructive and non 
perturbative.  
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 The result of a measurement is presented in Fig. 12 where we plot the signal received by 
detector D2 as a function of the signal received by detector D1, for the DPCM and for the reference 
system (each point is the phase conjugate signal only and is extracted from temporal curves 
identical to the one shown in Fig.11). We see that in both cases we have a straight line and that 
both straight lines have exactly the same slope. This measurement was performed several times 
with different alignments both of the DPCM and of the reference system, with always the same 
result. This assures that the DPCM is a reciprocal element and that thus expression (22) is true for 
the DPCM.  

IV. CONCLUSION 

 We have developed a model that allows to describe the transmission of a phase conjugate 
wave in a reciprocal optical system. Using this model we have shown that the scalar product (i.e. 
the overlap integral) of two counterpropagating waves is conserved through the propagation in a 
reciprocal system. Applied to the problem of the propagation of a phase conjugate wave in an 
optical system, this property allows to show that the phase conjugate component of the returning 
wave sees exactly the same losses than the incident wave. We also deduce from this model that the 
ratio of conjugation fidelity in two planes of the propagation equals the ratio of the transmission of 
the waves between these two planes in both directions. This gives an experimental method to 
measure quantitatively the phase conjugation fidelity of a phase conjugate mirror, using the 
filtering by a single mode filter. This method measures the conjugation fidelity of our phase 
conjugate mirror, compared to the fidelity of a “perfect” phase conjugate mirror used as a 
reference. 
 We also use this model to experimentally prove that the DPCM is a reciprocal element. This 
property allows to find a relation that links the conjugation fidelity on both ports of a DPCM to the 
phase conjugate transmission in both directions. This relation can be seen as a conservation of the 
phase conjugate fidelity-transmission product for the two incident beams of the DPCM. It 
generalizes the equality of the diffraction efficiencies in both directions that was previously 
proposed using plane wave description of the DPCM. 
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APPENDIX 
 
 

For a lossless system the transfer matrix is characterized by :  

T 2 1
!1 r1,r2( )=tT 2 1

* r2 ,r1( )          (A.1) 

T *  being the conjugate of the matrix T . 
 The invariant that is a consequence of losslessness, expresses classically the conservation of 
energy through the propagation. It is calculated from expressions (1)-(4), using relations (A.1) 
(integration is done on the whole space) : 

  
t
r 
E 1 r1( )

r 
E 1

* r1( )dr1! = t
r 
E 2 r2( )

r 
E 2

* r2( )dr2!      (A.2) 

This relation says that the energy of the field is the same at the entrance and at the exit of a lossless 
optical system. This relation is well known and commonly used, even if in fact only few systems 
can be considered as really lossless. 
 
 
 
 



16  

RÉFÉRENCES 

[1] “Optical phase conjugation”, Ed. R.A. Fisher, Academic Press, New York (1983) 

[2] E. Wolf, “Phase conjugacy and symmetries in spatially bandlimited wavefields containing 

no evanescent components” J.O.S.A. 70, 1311, (1980) 

[3] M. Nazarathy, J. Shamir, “Phase conjugacy and symmetries in general optical systems” 

J.O.S.A. 73, 910, (1983) 

[4] P.H. Beckwith, I. McMichael, P. Yeh, “Image distortion in multimode fibers and 

restoration by polarization preserving phase conjugation” Opt. Lett. 12, 510, (1987) 

[5] Y. Tomita, R. Yahalom, A. Yariv, “Theory of polarization and spatial information recovery 

by modal dispersal and phase conjugation” J.O.S.A. B 5, 690, (1988) 

[6] C. Gu, P. Yeh, “Partial phase conjugation, fidelity, and reciprocity” Opt. Commun. 107, 

135, (1994) 

[7] S. Campbell, P. Yeh, C. Gu, Q.B. He, “Fidelity of image restoration by partial phase 

conjugation through multimode fibers” Opt. Commun. 114, 50, (1995) 

[8] I. McMichael, M.D. Ewbank, F. Vachss, “Efficiency of phase conjugation for highly 

scattered light” Opt. Commun. 119, 13, (1995) 

[9] S. Weiss, S. Sternklar, B. Fisher, “Double phase-conjugate mirror: analysis, 

demonstration, and applications” Opt. Lett. 12, 114, (1987) 

[10] A.A. Zozulya, M. Saffman, D.Z. Anderson, “Double phase conjugate mirror: convection 

and diffraction” J.O.S.A. B 12, 255, (1995) 

[11] S. Orlov, M. Segev, A. Yariv, G.C. Valley, “Conjugation fidelity and reflectivity in 

photorefractive double phase-conjugate mirror:” Opt. Lett. 19, 578, (1994) 

[12]  H.J. Butterweck, “General theory of linear, coherent optical data-processing systems” 

J.O.S.A. 67, 60, (1977) 

[13]  H.J. Butterweck,“Principles of optical data-processing” in Progress in Optics Vol. XIX, 

211, (1981) 

[14]  M.J. van Weert, “A vectorial treatment of optical systems” J.O.S.A. 68, 1275, (1978) 

[15]  M.J. van Weert, “Losslessness of optical systems in a vectorial treatment” J.O.S.A. 70, 

565, (1980) 



17  

[16] H. Lefèvre, “Gyromètre interférométrique à fibre optique”, Thèse de 3ème cycle, Université 
d’Orsay, p.51 (1979). 

[17] C. Gu, P. Yeh, “Reciprocity in photorefractive wave mixing” Opt. Lett. 16, 455, (1991) 

[18] Ph. Delaye, A. Blouin, D. Drolet and J.-P. Monchalin. "Heterodyne detection of ultrasound 

from rough surfaces using a double phase conjugate mirror" Appl. Phys. Lett. 67, 3251 (1995). 
 
 
 



18  

FIGURE CAPTIONS 
 

Figure 1 : Schematic description of the propagation of a wave through a general optical system. 

Figure 2 : Illustration of the conjugation quality loss during the transmission of a wave through a 
mask like an aperture in a screen. 

Figure 3 : Schematic set-up for the measurement of the conjugation fidelity of a phase conjugate 
mirror (PCM). The locations where the different intensities I are measured are indicated.  

Figure 4 : Schematic principle of a double phase conjugate mirror. Beams 1 and 2 are the incident 
pump beams, whereas 3 and 4 are the conjugated beams. 

Figure 5 : Illustration of the conservation of the phase conjugate fidelity-transmission product in 
the DPCM. 

Figure 6 : Schematic set-up for the demonstration of the reciprocity of the double phase conjugate 
mirror. 

Figure 7 : Experimental configuration of the photorefractive crystal used for the operation of the 
DPCM.  

Figure 8 : Experimental set-up used for the conjugation fidelity measurement and demonstration of 
the reciprocity of the DPCM (see text for definition of the different elements). In the insert, the 
reference optical system used for the reciprocity measurement is shown.  

Figure 9 :  Temporal variation of the reflectivity and of the conjugation fidelity of the DPCM.  

Figure 10 :  Photographs of a screen intercepting the “phase conjugate” beam transmitted by the 
DPCM. (A) image of the beam fanning structure when only one pump beam is incident on the 
DPCM. (B) Image of the phase conjugate beam, after build-up of the grating, the beam fanning 
collapse in a well defined beam, whose diameter corresponds to the one of the pump beam at the 
same place. The fine speckled structure is not seen due to saturation of the camera. In both cases 
the bright spot at right is the transmitted pump beam.  

Figure 11 : Temporal signal registered by both detectors D1 and D2, when the shutters are closed 
successively.  
Figure 12 : Phase conjugate signal received by detector D2 as a function of the signal received by 
D1, for the reference system (grey signs and curve) and the DPCM (black signs and curve). Both 
slopes are equal within the accuracy of the measurement (3σ error bars). 
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