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Rémi Blandino,1, ∗ Marco G. Genoni,2, † Jean Etesse,1 Marco Barbieri,1

Matteo G.A. Paris,3, 4 Philippe Grangier,1 and Rosa Tualle-Brouri5, 1

1Laboratoire Charles Fabry, Institut d’Optique, CNRS, Université Paris-Sud,
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We address the experimental estimation of Gaussian quantum discord for two-mode squeezed state, and

demonstrate a measurement scheme based on a pair of homodyne detectors assisted by Bayesian analysis. Our

scheme provides nearly optimal estimation for small value of discord, where Bayesian analysis allows to greatly

improves performances. Although homodyne detection is not optimal for Gaussian discord, the noise ratio to

the ultimate quantum limit is limited to about 10 dB. Our results illustrate how suitable data processing can

decrease significantly the uncertainty when optimal detection schemes are not available.

Quantum correlations are thought to be central resources

for quantum technology. These tight connections empower

the advantages shown by the exploitation of quantum cod-

ing in applications to cryptography, computation and sensing.

While at first entanglement was recognized to be the unique

form of quantum correlations, novel concepts have been intro-

duced to capture either more specific aspects, such as quantum

steering [1, 2], or, to the other end of the spectrum, more gen-

eral occurrences. Quantum discord represents the most suc-

cessful attempt to broaden the understanding of the nature of

quantum correlations [3, 4]. It has recently attracted consid-

erable attention, due to its possible usefulness as a resource in

mixed-state quantum computing [5, 6], where entanglement

is shown to be exponentially small [7, 8]. Furthermore, it has

been demonstrated that discord does play a role in the acti-

vation of multipartite entanglement [9], entanglement gener-

ation by measurement [10], state merging [11], and for com-

plete positivity of evolutions [12, 13].

Direct experimental observation of quantum discord has

been undertaken either by direct inspection of the full density

matrix [14], or by using a witness [15, 16] with no concern

about the optimality of the scheme. A key challenge is then to

find strategies for the quantification of this resource with pre-

cision, and to understand its fundamental limit to the precision

of the estimation procedure by introducing proper Cramér-

Rao bounds (CRB) [17–19]. This has already been done for

the entanglement [20] and optimal estimators have been ex-

perimentally shown to attain the quantum limit for different

families of qubit states [21]. From the perspective of quantum

metrology, this is highly nontrivial, since there exists no ob-

servable directly related to quantum discord. A proper estima-

tor is then needed, which might depend on several character-

istic parameters of the quantum state. In such a multiparam-

eter problem, finding an optimized detection scheme might

be hard, and could demand complex experimental apparata or

heavy post-processing of the data.

In this Letter, we demonstrate homodyne estimation of

Gaussian quantum discord in continuous variable systems

[22, 23], and compare the achieved level of precision with the

classical CRB for homodyne detection, and with the quantum

CRB, which sets the ultimate precision allowed by quantum

mechanics. Our findings show how a suitable Bayesian data

processing may significantly improve precision, especially in

the estimation of small values of discord. More generally,

our results illustrate how a suitable data processing can de-

crease significatively the uncertainty when the optimal detec-

tion scheme is not available.

Our investigation is concerned with an important class of

Gaussian states, i.e. the two-mode squeezed thermal states

(STS) naturally produced by a non-collinear optical paramet-

ric amplifier (OPA). If we introduce the two-mode squeezing

operatorS2(s) = exp
(
s(a†0a

†
1−a0a1)

)
, and the thermal state

ν(N)= 1
N+1

∑
n(

N
N+1 )

n|n〉〈n|, we can write the STS as

̺(Ns, Nt) = S2(s)ν(Nt)⊗ ν(Nt)S2(s)
†, (1)

and thus can be fully described by the two parameters

Ns=sinh2 s and Nt, representing, respectively, the effective

amount of squeezing photons and thermal photons. In fact,

spurious effects such as unwanted amplification, result in a

loss of purity of the squeezed state by thermalisation, but do

not affect the Gaussian character of the emission, so the form

of the density matrix (1) provides a fully general description

of the output of a realistic OPA.

The study of quantum discord for continuous variable sys-

tems has been addressed so far uniquely for Gaussian states

and measurements; there exists a general closed formula for

discord given an arbitrary covariance matrix [23], but in the

following we will use a simplified expression holding for a

particular class to which STS belong [22]. We can estimate

the discord from Ns and Nt as we varied the pump power of

our OPA [24]. For each power setting, these two parameters

are extracted by the outcome of two homodyne detectors, one

on each mode, which measure pairs of quadratures {X0, X1}
and {P0, P1} (Fig.1). From these, we can evaluate the four

linear combinations

Q(1,2) =
X0 ±X1√

2
Q(3,4) =

P0 ± P1√
2

(2)
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FIG. 1: Conceptual layout of the discord estimation. Our non-

collinear OPA is based on a nonlinear KNbO3 crystal, pumped by

a frequency-doubled Ti:Sapph laser (repetition rate 800kHz, wave-

length λp=425nm, pulse duration 120fs). This produces a STS with

discord D depending on the pump power, i.e. on their average pho-

ton number. the two mode are measured by two homodyne detectors

DH0 and DH1. The relative phase between the local oscillators is

locked by mapping them to different polarizations on the same spa-

tial mode. In this way, we can record blocks of 20000 values of pairs

of quadratures for {X0, X1} and the same for {P0, P1}.

where Q(1) and Q(4) are squeezed quadratures, while Q(2)

and Q(3) are anti-squeezed; in particular Mq measurement

outcomes are recorded for each one of the four quadratures.

The corresponding variances, σ2(Qsq) and σ2(Qasq), that can

be obtained from the experimental data, can be rewritten as

function of Ns and Nt as follows

σ2(Qsq/asq) = (1 + 2Ns ∓ 2
√
Ns(1 +Ns))(1 + 2Nt) (3)

The expressions obtained can be then inverted to obtain the

experimental estimate N inv
s and N inv

t , along with the relative

uncertainties σ2(N inv
s ) and σ2(N inv

t ). These values can be

used in the expression for discord [24] to calculate its value

Dinv, and the uncertainty σ2(Dinv) by simple error propaga-

tion.

One can use the same data and refine the estimation by us-

ing a Bayesian analysis. As described above, each data sample

corresponds to Mq = 2 · 104 measurement of each of the four

quadratures. The total sample, thus correspond toMT = 4Mq

homodyne outcomes

X = {q(1)1 , .., q
(1)
Mq
, q

(2)
1 , .., q

(2)
Mq
, q

(3)
1 , .., q

(3)
Mq
, q

(4)
1 , .., q

(4)
Mq

}.

The overall sample probability can be evaluated as

p(X|Ns, Nt) =

4∏

k=1

Mq∏

j=1

pk(q
(k)
j |Ns, Nt) (4)

where the probability of obtaining the outcome q
(k)
j by mea-

suring the quadratureQ(k) is a Gaussian distribution

pk(q
(k)
j |Ns, Nt) =

1√
2πσ2

k

exp

(
−
(q

(k)
j )2

2σ2
k

)
. (5)

For squeezed quadratures (k = {1, 4}) we substitute σ2
k =

σ2(Qsq), while for anti-squeezed quadrature (k = {2, 3})

σ2
k = σ2(Qasq). By means of the Bayes theorem, we obtain

the a-posteriori probability

p(Ns, Nt|X ) =
1

N p(X|Ns, Nt)p0(Ns)p0(Nt), (6)

N =

∫
dNs dNt p(X|Ns, Nt)p0(Ns)p0(Nt). (7)

where the p0(Ns) and p0(Nt) are the so-called a-priori prob-

ability distributions for the two parameters. In our procedure,

we use the results of the inversion estimation to construct

these a-priori distributions. That is, we consider p0(Ns) and

p0(Nt) as Gaussian functions with respectively, mean values

equal to N inv
s and N inv

t , and variances equal to σ2(N inv
s ) and

σ2(N inv
t ). Then, we can use the a-posteriori probability dis-

tribution evaluated as in Eq. (6) to obtain an estimate of the

two parameters and of their variances. Mathematically,

Nbay
s =

∫
dNs dNt Ns p(Ns, Nt|X ) (8)

σ2(Nbay
s ) =

∫
dNs dNt (Ns −Nbay

s )2 p(Ns, Nt|X ) (9)

Nbay
t =

∫
dNs dNt Nt p(Ns, Nt|X ) (10)

σ2(Nbay
t ) =

∫
dNs dNt (Nt −Nbay

t )2 p(Ns, Nt|X ).

(11)

Again, by using the formula of the discord for two-mode STS

in [24] and by propagating the errors, we obtain an estimate

Dbay for the discord, alongs with its variance σ2(Dbay).
The value of discord depends on both the squeezing and

thermal photons. Consequently, its estimation is inherently a

multi-parameter problem, and we have to identify the relevant

physical parameters to evaluate the correct CRB. In the mul-

tiparameter scenario, the quantum Fisher information (QFI)

associated to a vector of parameters λ̄={λi}0≤i≤n is in the

form of a matrix H . This sets a lower bound on the covariance

σ2
ij=〈λiλj〉−〈λi〉〈λj〉 after M repetitions on the experiment:

σ2
ij ≥

1

M

(
H−1

)
ij

(12)

In the specific case of our experiment, we can bound the

uncertainty on the discord D of the states we prepare as:

σ2(D) ≥ 1
M (H−1)DD. While our measurement strategy has

the advantage of being simple, it is not expected to saturate the

quantum CRB. We therefore need to compare it to the clas-

sical CRB associated to our specific measurement, which is

analogously described by a classical Fisher information (FI)

matrix F .

In the evaluation of the correct bound, we need a suitable

parametrization of the state, so that in the expression (12) one

parameter only actually varies, while the others are kept fixed:

this can not be the case for the number of thermal and squeez-

ing photons, as both of them change with the pump power.
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Therefore, we need to reshape the QFI matrices for a differ-

ent pair of parameters, so to consider those which are more

directly connected to the experimental conditions. We start

by considering the first couple λ1 = {Ns, Nt}; by using the

formulas described in [24], we obtain

H(1) = diag

(
(1 + 2Nt)

2

Ns(1 +Ns)(1 + 2Nt + 2N2
t )
,

1

Nt(1 +Nt

)
.

(13)

As explained above, thermal photons appear because of im-

perfections in the operation of the OPA and because of loss.

We can then reparametrize our state by taking into consider-

ation the effective squeezing strength r, and a parasite am-

plification with strength γr [25, 26]. The overall homodyne

detection can be separately calibrated, obtaining η = 0.62.

Thus we can rewrite the matrix (13) in terms of the two

unknown physical parameters λ2 = {r, γ} via the expres-

sion H(2) = B12H
(1)BT

12, where B12 is the transfer ma-

trix for this change of variables [24]. Next, since the phys-

ical parameter that changes during our experiment, resulting

in the variation of the amount of discord, is the squeezing pa-

rameter r (while γ and η can be considered to remain con-

stant), we perform the last change of variable, by consider-

ing λ3 = {D, γ}. Again the QFI matrix can be obtained as

H(3) = B23H
(2)BT

23, and the bound on the variance for the

quantum discord can be easily evaluated as described in Eq.

(12).

We also want to derive the classical CRB for quantum dis-

cord, that we obtain if we consider as measurement homodyne

detection of squeezed and anti-squeezed quadratures of a two-

mode squeezed thermal state. Let us start by considering the

Fisher information matrix we obtain if we want to estimate

the two parameters λ1 = {Ns, Nt} by means of homodyne

detection on a certain quadratureQφ. Since the state is Gaus-

sian, the conditional probability distribution of measuring a

value x, is a Gaussian function, with zero mean, and variance

σ2(Qφ). By using the formulas in [24] and evaluating some

Gaussian integrals, one easily obtains the following formula

for the Fisher matrix elements

F µν =
1

2σ2(Qφ)

∂σ2(Qφ)

∂λµ

∂σ2(Qφ)

∂λν
(14)

where λµ = {Ns, Nt}. If one considers to measure the

squeezed or the anti-squeezed quadratures one obtains the fol-

lowing FI matrices:

F sq/asq =




1
2Ns+2N2

s

∓ 1√
Ns(1+Ns)(1+2Nt)

∓ 1√
Ns(1+Ns)(1+2Nt)

2
(1+2Nt)2




If we perform a fixed number of measurements, where half

of them are done on the squeezed quadratures, and the re-

maining ones on the anti-squeezed quadratures, the overall

FI matrix which will give the CRB for the two parameters

FIG. 2: Experimental values of Gaussian quantum discord from ho-

modyne data and Bayesian estimation. The points correspond to the

estimated experimental values, while the solid line is the theoretical

prediction for η=0.62 and γ=0.58 ( the value of γ has been extracted

from a best-fit of the points).

λ1 = {Ns, Nt} is obtained as

F (1) =
F sq + F asq

2
=

(
1

2Ns+2N2
s

0

0 2
(1+2Nt)2

)
. (15)

To obtain the CRB for the quantum discord, we can proceed

as we showed for the quantum CRB, simply replacing the QFI

matrices, with the FI ones. The values of the discord obtained

using our Bayesian estimation are shown in Fig. 2: the points

indicate the experimental data, while the solid line describes

the model (1), where the homodyne efficiency η and the rel-

ative parasite gain γ are kept to a constant value. Our model

is in excellent agreement with the data, so we can be confi-

dent of that the CRB calculated after the matrix (13) reliably

describes the ultimate limit for precision.

In the formulae of the Bayes rule (6), we need to multiply

several probabilities (5), which rapidly give a number hardly

manageable by reasonable computing power: this sets a limit

to the number of quadrature values one can effectively use to

about 800 points. In order to use larger samples, we have di-

vided our data in Nb = 102 blocks of 200 points for each of

the quadratures (2), calculated the Bayesian estimation of the

discord for each block, then considered the average weighted

on the associated uncertainties. We notice that the a priori

probabilities (5) are calculated from the whole set of data con-

taining MT values: as they intervene in the evaluation for

each block, the overall number of resources to be considered

is M = Nb ·MT .

The comparison between our experimental uncertainties

and both the Cramér-Rao limit for our detection (14) and the

quantum Cramér-Rao limit is shown in Fig.3, where we re-

port the quantity KM = Mσ2(D)/(F−1)DD(or the analo-

gous quantity involving the QFI) expressed in dB. KM is the

variance of the discord estimator from homodyne data multi-

plied by the number of resources and divided by the relevant

elements of the (quantum) inverse Fisher matrix. For KM
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FIG. 3: The noise ratio KM as a function of discord. Circles and

triangles correspond respectively to the quantum and the classical

CRB. Solid points refer to Bayesian estimation, while empty ones

correspond to estimation by inversion. Notice that the number of

resources for Bayesian estimation is M = Nb · MT , while for the

inversion method M = MT .

equal to unity we have optimal estimation. Solid points refer

to Bayesian estimation while empty ones correspond to esti-

mation by inversion. We notice that for low values of discord,

the Bayesian technique provides a nearly optimal estimator

for the chosen measurement strategy. Also, we notice that in

this region estimation by inversion is much noisier. For in-

creasing values, the observed variances depart from the opti-

mum by less than an order of magnitude: as Bayesian estima-

tion rapidly converges to optimal, we can attribute this trend

to actual variations of the value of the discord in the exper-

iment, becoming more important than statistical fluctuations

when the discord increases.

The measurement we have adopted has the considerable ad-

vantage of being the simplest experimental option; however,

simplicity always comes at a price, and we do not expect it

to deliver the best estimator for discord as established by the

quantum CRB. In the limit of low discord, we measure a ratio

of about 10 dB , which tells us that the price we have to pay is

quite reasonable. The departure from the quantum CRB then

slightly increases with discord.

In conclusion, we have presented the first experimental esti-

mation of Gaussian quantum discord for two-mode squeezed

state. Our scheme is based on homodyne detection assisted

by Bayesian analysis. Our results are in excellent agreement

with the theoretical model, and this allows us to perform a

reliable precision analysis. We found that homodyne estima-

tion shows about 10 dB of added noise compared to the ulti-

mate bound imposed by the quantum Fisher information, with

Bayesian analysis that improves performances for small val-

ues of discord. We have also compared our results with the

CRB for homodyne detection and found that the estimation

is nearly optimal for small values of discord, where Bayesian

estimation enhances precision significantly compared to sim-

ple data inversion. The usefulness of quantum discord as a

resource for quantum technology is a heavily debated topic,

and a definitive answer may only come from experiments in-

volving carefully prepared quantum states. Our results con-

tribute to the precise characterization of Gaussian discord and

illustrate how a suitable data processing can decrease signi-

ficatively the uncertainty when optimal detection schemes are

not available.
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SUPPLEMENTAL MATERIAL

Multiparametric quantum estimation

Here we present the case where the estimation of more than one parameter has to be performed. We define a family of quantum

states ̺λ which depends on a set ofN parameters λ = {λµ}, µ = 1, . . . , N . In this case the geometry of the estimation problem

is contained in the QFI matrix, whose elements are defined as

H(λ)µν = Tr

[
̺λ
LµLν + LνLµ

2

]
, (16)

and where we have introduce the Symmetric Logarithmic Derivatives (SLD) Lµ corresponding to the parameter λµ, as the

selfadjoint operator that satisfies the equation

Lµ̺λ + ̺λLµ

2
=
∂̺λ
∂λµ

. (17)

In terms of eigenvalues and eigenvectors of ̺λ, by denoting with ∂µ the partial derivative respect to λµ, we have

H(λ)µν =
∑

n

(∂µan)(∂νan)

an
+
∑

n6=m

(an − am)2

an + am
×

× (〈ψn|∂µψm〉〈∂νψm|ψn〉+ 〈ψn|∂νψm〉〈∂µψm|ψn〉). (18)

The QFI matrix here defined provides a lower bound (the quantum Cramér-Rao bound) on the covariance matrix γµν = 〈λµλν〉−
〈λµ〉〈λν 〉, i.e.,

γ ≥ 1

M
H(λ)−1. (19)

In the multiparametric case this bound is not in general achievable, on the other hand, the diagonal elements of the inverse Fisher

matrix provide achievable bounds for the variances of single parameter estimators, at fixed value of the others

Var(λµ) = γµµ ≥ 1

M
H(λ)−1

µµ . (20)

Let us now suppose that we are interested in the estimation of different set of parameters λ̃ = {λ̃ν = λ̃ν(λ)} which are functions

of the previous ones. We then need to reparametrize the family of quantum states in terms of λ̃. Since ∂̃ν =
∑

µBµν∂µ with

Bµν = ∂λµ/∂λ̃ν we have that

L̃ν =
∑

µ

BµνLµ (21)

and the new QFI matrix simply reads

H̃ = BHBT . (22)

We consider here the case where we perform a specific indirect measurement in order to infer the values of the parameters λ,

given some measurement outcomes X = {x1, x2, . . . }. The whole measurement process can be described by the conditional

probability p(x|λ) of obtaining the value x from the measurement when the parameters have the values λ. Given this object, we

can define the Fisher information (FI) matrix whose elements are obtained as

F µν =

∫
dx p(x|λ)∂ ln p(x|λ)

∂λµ

∂ ln p(x|λ)
∂λν

. (23)
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This matrix defines a bound on the covariance matrix γ for the specific measurement we performed. In particular we are

interested in the bound for the variance of a single-parameter, at fixed values of the others, which reads

Var(λµ) ≥
1

M
F (λ)−1

µµ ≥ 1

M
H(λ)−1

µµ (24)

and which in turn is always lower bounded by quantum CRB given in Eq. (20).

Notice that if we have to reparametrize our family of states in terms of different parameters λ̃, we can use the same formulas

shown above for the QFI matrix, obtaining the new FI matrix as F̃ = BFB.

Physical model and evaluation of quantum discord

Here we give explicit expressions of the formulas used in the main text. A two-mode squeezed thermal state (STS) is fully

characterized by the two parametersNs = sinh2 s andNt, representing, respectively, the effective amount of squeezing photons

and thermal photons. In our experimental model, these quantities can be obtained as a function of the physical parameters

{r, γ, η}, that is

Ns =
1

2


−1 +

A(r, γ, η)√
η2 cosh4 r cosh2(2rγ) +B(r, η)2 + 2η cosh2 r(−2η cosh4(rγ) sinh2 r + cosh(2rγ)B(r, η))




Nt =
1

2

(
−1 +

√
(A(r, γ, η) − η cosh2(rγ) sinh 2r)(A(r, γ, η) + η cosh2(rγ) sinh 2r)

)
(25)

where

A(r, γ, η) = 1− η + η cosh2 r cosh 2rγ + η sinh2 r (26)

B(r, η) = 1− η + η sinh2 r. (27)

Notice that by varying the pump power, we change the parameter r only, while the noise parameters γ and η stay constant to a

very good level of approximation (it should depend on the mode matching only). As a result, both the effective squeezing and

thermal photons Ns and Nt change accordingly.

The covariance matrix of a two-mode STS can be written as

Σsts =

(
a12 c σz
c σz a12 ) (28)

where

a = (1 + 2Nt)(1 + 2Ns) (29)

c = 2(1 + 2Nt)
√
Ns(Ns + 1), (30)

and 12 and σz are respectively the 2 × 2 identity matrix and the Pauli matrix for the z direction. Following [22], the quantum

discord can be thus evaluated, obtaining

D(Ns, Nt) = 2Nt log(Nt)− 2(Nt + 1) log(Nt + 1)− (Ns +Nt + 2NsNt) log(Ns +Nt + 2NsNt)+

− Nt(Nt + 1)

1 +Ns +Nt + 2NsNt
log

(
Nt(Nt + 1)

1 +Ns +Nt + 2NsNt

)
+ (1 +Ns +Nt + 2NsNt) log(1 +Ns +Nt + 2NsNt)

+
Ns + 2NsNt + (1 +Nt)

2

1 +Ns +Nt + 2NsNt
log

(
Ns + 2NsNt + (1 +Nt)

2

1 +Ns +Nt + 2NsNt

)
(31)

expressed as a function of the effective parameters Ns and Nt. By using Eqs. (25), one can easily obtain the discord as a

function of the physical parameters r, γ and η.


