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Abstract 
 
 We solve the problem of the transmission of time modulated signals in a two beam 
coupling photorefractive set-up using an absorbing material. We obtain an analytical 
expression that describes this phenomenon in absence of pump beam depletion due to beam 
coupling. We use this expression to analyse the influence of absorption on the photorefractive 
build-up. We also describe, using this model, the photorefractive beamsplitter response. It is 
also showed that the π/2 phase shift between illumination and index gratings is detrimental to 
a linear detection of the phase variation of the signal beam. 
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I. Introduction 
 
 
 Coherent detection is a fundamental technique for the detection of phase modulated 
signals in which the coherent combination of the signal beam with a local oscillator requires a 
perfect adequacy of the wavefronts of the two beams. This is easily performed with guided 
waves in fiber optic communications, but, when considering free space communications, the 
problem is much more complex. The required phase matching of the signal and the local 
oscillator leads to a reduction of the field of view of the system, according to the antenna 
theorem [1]. However the use of photorefractive two-beam coupling allows to develop 
coherent detection schemes with large fields of view [2-4]. In this scheme, two beams, a 
pump beam and a time modulated signal beam, interfere in a photorefractive crystal. They 
create an index grating that is π/2-shifted relative to the illumination grating. The beams then 
diffract on this grating, leading to an energy transfer from one beam to the other. Then, at the 
exit of the crystal, in the direction of the modulated signal beam, we have generation of a 
local oscillator which is the non modulated diffracted pump beam, having the same wavefront 
structure than the signal beam. This two beam coupling scheme is equivalent to the beam 
splitter in the classical homodyne detection scheme, but without the antenna theorem 
restriction as the signal and the local oscillator have the same phase structure whatever this 
structure. The photorefractive two beam coupling set-up then acts as a photorefractive beam 
splitter for homodyne detection [2, 3]. An additional property of this component is its 
adaptability as the photorefractive effect is a dynamic effect. If the phase structure of the 
signal beam is slowly varying, the device will automatically adapt to this variation creating a 
new index structure. So the photorefractive beam splitter adapts to slow variations of the 
signal whereas it remains totally transparent to the rapidly modulated information imprinted 
on it.  
 
 This photorefractive beam splitter and its properties have been widely studied and 
used in the literature. Theories of operation of this component have been developed 
previously [2, 5-8]. Some of these models have taken into account the depletion of the pump 
beam due to the photorefractive energy transfer induced by high photorefractive gains [7,9]. 
However most of these models have considered that the influence of the crystal absorption on 
the kinetics was negligible, which is a strong and generally wrong assumption. Applications 
of this component in an industrial environment will require two important characteristics to be 
satisfied. First it should operate in the eye-safe part of the spectra, as for example the 1.5µm 
wavelength. Second, thanks to its adaptive properties, the component should be insensitive to 
environmental perturbations and should present a high cut-off frequency. A photorefractive 
response time of the order of 10µs is a good estimation of the required temporal performances 
[10]. First and second constraints impose the use of highly sensitive photorefractive 
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semiconductors, like CdTe or GaAs [11, 12]. These materials have low value electrooptic 
coefficients, which leads to low values of the photorefractive gain. The gains in these crystals 
are often of the order of magnitude or lower than the absorption. From these considerations, it 
is therefore not reasonable to consider that absorption is negligible, and we can not apply 
existing models without taking a lot of care. We then must solve the photorefractive two 
beam coupling model with a time varying signal taking absorption into account. 
 
 
II. Situation of the problem 
 
 
 We send two plane waves on a photorefractive crystal, a strong unmodulated pump 
beam and a time varying signal beam (Fig.1). The signal can be either phase or amplitude 
modulated and has a much lower intensity than the pump beam. The aim of the study is to see 
how this modulation is transmitted through the crystal. 
 The photorefractive gain is supposed to be low, which means that the energy transfer 
is not high enough to induce depletion of the pump beam. We will be thus in the undepleted 
pump beam approximation. On the other hand, as we take into account absorption, the pump 
beam will be attenuated when traversing the crystal. Consequently the photorefractive time 
constant, that is determined by the pump beam intensity, will vary in the crystal thickness. 
 
 Pump beam and signal beam interfere in the crystal creating a spatially modulated 
space charge field. This space charge field induces, through the electrooptic effect, an index 
grating on which the beams diffract. This system is governed by three differential equations 
that link amplitude E1 of the space charge field, amplitude Ei of the pump beam and 
amplitude Ed of the probe beam [5]. 
 
 The first differential equation gives the kinetics of the space charge field [13] : 
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Equation (1) can be rewritten as : 
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with time constant τ of the space charge field (also labelled as photorefractive time constant) 
given by : 
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    (2b) 

with      m = 2 Ei
*Ed
I

  and  I = Ei
*Ei + Ed

*Ed  

m is the modulation of the interference pattern and I is the total illumination (as we set 
Ed<<Ei, we have I = Ei

*Ei). k is the grating number (k = 2!
"

 with Λ the grating spacing). In 

these expressions ε is the dielectric constant of the material, αn and αp are the parts of 
absorption that generate electrons and holes respectively, κn and κp are the inverse of the 
diffusion lengths of electrons and holes respectively, k0 is the inverse of the Debye screening 

length, An p( ) =
Sn p( )

I + ßn p( )

Sn p( )I
 with Sn p( )  the photoionisation cross-section of electrons (holes) 

and ßn p( )  the thermal emission coefficient of electrons (holes), V =
eE0
kBT

 with E0 the applied 

external electric field. 
 
 If we neglect the influence of An and Ap (i.e. photoconductivity much larger than dark 

conductivity) we have 1
!

 proportional to I and G
!

 proportional to I, which means that G is 

independent of I. In the general case, G and 1
!

 are complex. In the particular case of a 

photorefractive effect governed by the diffusion regime (E0 = 0), 1
!

 is real and G is purely 

imaginary. 
 
 The two other differential equations are the propagation equations for the pump and 
signal beams [14] : 
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reff is the effective electrooptic coefficient that depends on the orientation of the 
photorefractive crystal and on the directions of polarization of the beams; n0 is the linear 
index of refraction of the material, λ is the wavelength in the material, θ is the half-angle 
between the beams inside the material and the beams propagate along the x direction. 

We set E1 = mEsc  and !
G
=

" n0
3 reff

2i# cos$
 which gives ! =

" n0
3 reff

2i# cos$
G . Here we can note that in 

the diffusion regime (without any applied electric field) γ is purely real and equals ! = "
2

 

with Γ the two beam coupling photorefractive intensity gain (Γ in cm-1) [13, 14]. 
Taking into account all these notations and including the absorption (α absorption coefficient 
for intensity in cm-1) equations (3) become : 
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G
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2
Ei (4a)

!Ed
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E1  Ei #
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2
Ed (4b)
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(2) and (4) correspond to a system of three coupled differential equations. 
 In this problem we are interested in the transmission through the crystal of the time 
modulated signal beam Ed. We will rewrite these three equations in the form of one partial 
differential equation that governs the propagation of Ed through the crystal. For this resolution 
we will make some assumptions and approximations, we will now precise. 

1.- The pump beam is not time modulated (an eventual phase modulation present on the 
pump beam can be easily transferred on the signal beam as it is the phase difference 
between the two beams that is important). 
2.- We neglect the pump beam depletion due to the beam coupling, it corresponds to a 
regime of small photorefractive gain and high pump to probe beam ratio.  
3.- The pump beam attenuation due to the absorption is taken into account. 
4.- At time t=0 (before the probe beam is modulated) we are in a steady-state regime 
with a grating written in the crystal. It means that before t=0, the two beams are present 
in the crystal and have written a saturated index grating on which they now diffracts (if 
no grating is present before t=0, the system can be solved as well, as it will be seen 
later). 

Points 2 and 3 allow to simplify equation (4a) that becomes : 

!Ei
!x

= "
#
2
Ei        (5) 

It is solved immediately as :  Ei x( ) = Ei0 e
!
"
2
x
 independent of time. 

It finally gives the total illumination in the crystal : I x( )= Ei Ei
* + Ed Ed

* = Ei Ei
* = I0 e

!"x  with 
I0 = Ei 0

2  the pump beam intensity at the entrance of the crystal. 
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We see from this first equation that the illumination decreases during propagation through the 
crystal. Then the time constant τ increases during this same propagation (the photorefractive 

effect is slower at the exit of the crystal than at its entrance). As 1
!

 is proportional to I, we can 

write 
1
!
=
e"#x

!0
 with τ0 the photorefractive time constant at the entrance of the crystal (at 

x=0). 
 

Deriving equation (4b) relative to time t and replacing !E1
!t

 by its expression given by 

equation (2) we obtain : 

  ! 2Ed
! t!x

=
"
#
EiEi

*

I
Ed $

"
G#

E1Ei $
%
2
!Ed
!t

     (6) 

We then take E1 from equation (4b) which finally gives the partial derivative equation that 
governs Ed x,t( )  : 

 
! 2Ed
! t!x

=
Ed e

"#x

$0
% "

#
2

& 
' 

( 
) "

e"#x

$0

!Ed

!x
"
#
2
!Ed

!t
    (7) 

 
Point 4 gives us the initial condition of the problem. At t=0, a grating is written in the crystal 

and is in its stationary state, so we have : Ed x,0( ) = Ed0 e
!
"
2
x
e#x . At time t=0+, we put a 

known time modulation (in amplitude and/or in phase) on the signal beam Ed 0, t( )  at the 
entrance of the crystal and we are looking for the expression of Ed x,t( )  after propagation of a 
distance x inside the crystal.  
In order to simplify the equation we will change the function by setting 

Ed x,t( ) = F x,t( )e!x e
"
#x
2 . Equation (7) becomes :  

   
! 2F
! t!x

= "#
!F
!t

"
e"$x

%0

!F
!x

     (8) 

with the initial condition at t=0 : F x,0( ) = Ed 0,0( )  constant, which means that !F
!x

x,0( ) = 0 . 

The boundary condition F 0, t( ) = Ed 0, t( )  is already known. 
 
 
III Resolution of the transfer equation 
 
 
 We will solve equation (8) using the Laplace transform method. The Laplace 
transform method is prefered over the Fourier transform method [15, 16] as it deals more 
easily with the causal signals we have in our study. We call ˜ F x,s( )  the Laplace transform of 

F x,t( ) , with the initial conditions F x,0( ) = Ed 0,0( ) , !F
!x

x,0( ) = 0  and the boundary 
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condition that becomes ˜ F 0,s( )  (Laplace transform of F 0, t( )) known. We take the Laplace 
transform of equation (8) which gives (following functions with tilde are functions of s while 
functions without tilde are functions of t) : 

 s +
1

!0e
"x

# 

$ 
% & 

' 
( )

˜ F 
)x

= *+ s ˜ F + + Ed 0,0( )     (9) 

which is rewritten : 

 ! ˜ F 
!x

x,s( ) = "
# s$0e

%x

1+ s$0e
%x

˜ F x,s( ) +
# $0e

%x

1 + s$0e
%x Ed 0,0( )   (10) 

 
The solution of this differential equation (function of x) is : 

˜ F x,s( ) = C s( )
1+ s!0
1+ s!0e

"x

# 

$ 
% & 

' 
( 

)

"

+
Ed 0,0( )

s
    (11) 

The integration constant C(s) is given by the boundary condition : ˜ F 0,s( ) = C s( ) + Ed 0,0( )
s

. 

 
Going back to ˜ E d x,s( )  the Laplace transform of Ed x,t( ) , with ˜ F 0,s( ) = ˜ E d 0,s( ) , we obtain 
finally : 

˜ E d x,s( ) = ˜ E d 0,s( ) !
Ed 0, 0( )

s
" 
# $ 

% 
& ' 

e
!
(x
2 e)x

1 + s*0
1 + s*0e

(x

+ 

, 
- . 

/ 
0 

)

(

+
Ed 0,0( )

s
e
!
(x
2 e)x   (12) 

The solution Ed x,t( )  is given by the inverse Laplace transform of expression (12).  
 

In order to find Ed x,t( ) , we set ˜ H x,s( ) =
1

1 + s!0

" 

# 
$ % 

& 
' 1+ s !0
1+ s !0e

(x

" 

# 
$ % 

& 
' 

)

(

, which inverse Laplace 

transform is H x,t( ) . Equation (12) becomes : 
˜ E d x,s( ) = e

!
"x
2 e#x ˜ E d 0,s( ) !

Ed 0,0( )
s

$ 
% & 

' 
( ) 
1 + s *0( ) ˜ H x,s( ) +

Ed 0,0( )
s

$ 

% & 
' 

( ) 
  (13) 

which gives : 
˜ E d x,s( ) = e

!
"x
2 e#x ˜ E d 0,s( ) !

Ed 0,0( )
s

$ 
% & 

' 
( ) 

˜ H x,s( ) + *0 s ˜ E d 0, s( ) ! Ed 0,0( )[ ] ˜ H x,s( ) +
Ed 0,0( )

s
$ 

% & 
' 

( ) 
 (14) 

 
We then take the inverse Laplace transform of expression (14), using the convolution 
theorem, and we obtain the final expression for Ed x,t( )  : 

Ed x,t( ) = e
!
"x
2 e#x Ed 0,0( ) + $0

%Ed
% t

0,T( ) + Ed 0,T( ) ! Ed 0 ,0( )
& 
' 

( 
) 
H x,t ! T( )dT

0

t

*
+ 

, - 
. 

/ 0 
 (15) 

 
We thus have an analytical expression for the transmission of the modulated signal through a 
photorefractive crystal in a two beam coupling configuration. The problem is now to find the 
expression of H x,t( ) . 
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In a general way, we are looking for the inverse Laplace transform of function 
˜ H s( ) =

1+ as( )! "1

1+ b s( )!
. 

We rewrite this function as ˜ H s( ) =
a! "1

b!
˜ F s +

1
a

# 
$ 

% 
&  with ˜ F s( ) =

s! "1

s " b " a
ab

# 
$ 

% 
& 

!  function which 

inverse Laplace transform is known from tables [17]. This function is 1F1 ! ,1,
b " a
ab

# 
$ 

% 
& t

# 
$ 

% 
& 

 with 

the confluent hypergeometric function 1F1 a,b, z( )  [18]. We then deduce, knowing the 
properties of the Laplace transform, that the inverse Laplace transform of ˜ H s( )  is 

H t( ) =
a! "1

b!
e
"
t
a
1F1 ! ,1,

b " a
ab

# 
$ 

% 
& t

# 
$ 

% 
& 

. In our case of interest, i.e. a = !0 , b = !0e
"x  and ! =

"
#

, 

we finally obtain :  

H x,t( ) =
e!" x

#0
e
!
t
# 0

1F1
"
$
,1, e$x !1

e$x
% 

& 
' ( 

) 
t
#0

% 

& 
' ( 

) 
*      (16) 

So this value of function H x,t( )  completely determines the value of Ed x,t( )  given by relation 
(15). 
 
 We will now show that the expression we find, reduces, in the case of no absorption, 
to the expression previously derived in the literature [5]. 
 For negligible absorption α goes to 0, and then ! =

"
#

 goes to infinity. Setting 

z = !
e"x !1
e"x

# 

$ 
% & 

' 
!t(
")0

# 

$ 
% & 

' 
* 

"+ 0, + , , , !
( x t
)0

, we rewrite 1F1
!
"
,1, e"x #1

e"x
$ 

% 
& ' 

( 
t
)0

$ 

% 
& ' 

( 
* = 1F1

!
"
,1,# z "

!

$ 

% 
& ' 

( 
. 

As we know that lim
a! +"

1F1 a,1,# z
a

$ 
% 

& 
' = J0 2 z( )  [18], we finally deduce that 

lim
!"0 1

F1
#
!
,1, e

!x $1
e!x

% 

& 
' ( 

) 
t
*0

% 

& 
' ( 

) 
+ = J0 2 $

# x t
*0

% 

& 
' 

( 

) 
+  

and then :  

lim
!"0

H x,t( ) =
e# $x

%0
e
#
t
% 0 J0 2 #

$ x t
%0

& 

' 
( 

) 

* 
+      (17) 

 
To be exactly in the case established by Cronin-Golomb [5], the initial conditions have to be 
changed a little and we have to consider that no grating is present at time t=0. In that case we 

would have to slightly modify function F x,t( ) , defining it as Ed x,t( ) = F x,t( )e
!
"x
2  with the 

initial conditions F x,0( ) = Ed 0,0( )  and !F
!x

x,0( ) = 0 . The equation would become : 

   
! 2F
! t!x

= "
e#$x

%0
F #

e#$x

%0

!F
!x

     (18) 
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The same resolution as for the previous equations would then have given : 

Ed x, t( ) = e
!
"x
2 e#x $0Ed 0, 0( )H x, t( ) + $0

%Ed

% t
0,T( ) + Ed 0,T( )

& 
' 

( 
) 
H x,t ! T( )dT

0

t

*
+ 

, - 
. 

/ 0 
 (19) 

with the same function H(x,t). 
So when α goes to 0 considering expression (17), equation (19) reduces to : 

Ed x, t( ) = Ed 0, 0( )K t( ) +
!Ed
!t

0,T( ) +
Ed 0,T( )
"0

# 

$ 
% & 

' 
( K t ) T( )dT

0

t

*    (20) 

with K t( ) = e
!
t
"0 J0 2 !

# x t
"0

$ 

% 
& 

' 

( 
) . This expression is the one derived in Ref.[5] after correction 

of a typographical error [6]. 
 
So our model is a generalization of the model of Cronin-Golomb to the case where absorption 
is not negligible, which is the real case. 
 
 We have established an analytical expression (expressions (15) and (16)) of the 
transmission of a time varying signal through an absorbing photorefractive crystal in a two 
beam coupling scheme. The final expression has the same feature than in the case without 
absorption, the only difference being in the transfer function which is a less common function 
than the Bessel function found by Cronin-Golomb. We have transformed the problem from 
solving a system of coupled partial derivative equations to the one of solving an expression 
with still a convolution but with one variable t only. The expression is still complicated even 
if easy to solve numerically. In fact, in some special cases this expression can be simplified. 
We will now present two of these cases. 
 
 
IV Two-beam coupling build-up 
 
 
 An example of the use of the expression we have established, is for the determination 
of the build-up kinetics of the two beam coupling effect in presence of absorption. Absorption 
creates a continuum of time constants through out the crystal as the illumination decreases 
due to absorption. The question is then, what is the actual kinetics of energy transfer ?  
 To solve the problem we use expression (19) with a step function for the initial value : 
Ed 0, t( ) = 0  for t ! 0  and Ed 0, t( ) =1  for t > 0 . The derivative of this function is a Dirac 
function centered at 0. We have then : 

Ed x,t( ) = e
!
"x
2 e#x $0H x,t( ) + H x,t ! T( )dT

0

t

%
& 

' ( 
) 

* + 
= e

!
"x
2 e#x $0H x,t( ) + H x,T( )dT

0

t

%
& 

' ( 
) 

* + 
 (21) 
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 When absorption is negligible we replace H(x,t) by function K(t) and we obtain the 
expression derived in Ref.[19]. 
 From the analytical expression (21), we have numerically calculated the temporal 
dependency of the output intensity, for a crystal with an intensity gain of Γ=0.3cm-1, a 
thickness x=1cm and a time constant τ0=1s, for different values of absorption between 0 and 
1cm-1. Results are shown in Fig.2 where the different curves were normalized to their steady 

state value : S = Ed x,t( )

e
!
"x
2 e#x

2

. We see on these curves that the more absorbent the crystal, the 

slower the two beam coupling build-up. Moreover these kinetics curves are very close to 
exponential curves with two beam coupling build-up time constants that follows the law 

!TBC "( ) = e
" x
2 !TBC " = 0( )  which corresponds to a time constant value taken in the middle of 

the crystal. We here have to note that, in our simulations, we have neglected a contribution of 
the absorption on the photorefractive effect. Indeed space charge field time constant τ0 
depends directly on the absorption of the crystal (through parameters αn and αp in relation 
(2a)). In the calculations we only wanted to show the influence of absorption on two beam 
coupling, so we take the same value of time constant τ0 for all curves, despite the fact that, in 
real cases, changing absorption changes the response time of the space charge field build-up. 
 
We also note on the curve at α=0 that the exponential time constant is greater than τ0 as 
already noticed in Ref.[9]. This means that the build-up of the space charge field takes a 
longer time in presence of beam coupling than when beam coupling is absent (when for 
example reff=0). This slowing down of the kinetics with increasing beam coupling gain can be 
seen more clearly in Fig.3 where we have calculated the normalized transmitted probe beam 
intensity for different values of the photorefractive gain between 0 and 2cm-1. The grating 
build-up slowers as the photorefractive gain increases. 
 
 
V Detection of rapidly phase modulated signals : Photorefractive beamsplitter 
 
 
 One use of the photorefractive beamsplitter is the detection of rapidly phase 
modulated signals [4, 20]. We want to measured a signal Ed 0, t( )  which is phase modulated, 
on a time scale very short compared to the response time of the photorefractive effect τ0. We 
are then in experimental conditions where t<<τ0. As we have lim

z!0 1F1 a,b, z( ) =1 , equation (15) 

becomes : 

Ed x,t( ) = e
!
"x
2 e#x Ed 0,0( ) + $0

%Ed
% t

0,T( ) + Ed 0,T( ) ! Ed 0 ,0( )
& 
' 

( 
) 
e! #x

$0
e
!
t!T
$ 0 dT

0

t

*
+ 

, 
- 

. 

/ 
0  (22) 
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which is rewritten as : 

Ed x,t( ) = e
!
"x
2 Ed 0,0( )e#x + e

!
t
$ 0 %

%T
e
T
$ 0 Ed 0,T( ) ! Ed 0,0( )( )

& 

' 
( 

) 

* 
+ 

, 

- 
. 

/ 

0 
1 dT

0

t

2
& 

' 
( 

) 

* 
+    (23) 

We have finally : 

Ed x,t( ) = e
!
"x
2 Ed 0,0( )e#x + Ed 0 ,t( ) ! Ed 0,0( )( )[ ]       (24) 

Knowing that Ed x,0( ) = Ed 0,0( )e!x e
"
#x
2 , we obtain the simple expression that gives the 

transmission of the modulated signal through the crystal (when a stationary regime is reached) 
: 

Ed x,t( ) ! Ed x,0( )( ) = e
!
"x
2 Ed 0, t( ) ! Ed 0,0( )( )       (25) 

 
 The modulated input signal Ed 0, t( )  can be written as Ed 0, t( ) = Ed 0, 0( ) ! "Ed t( )  with 
!Ed 0( ) = 1 . It then gives for relation (24) : 

Ed x,t( ) = e
!
"x
2 Ed 0,0( ) e#x !1( ) + $Ed t( )[ ]       (26) 

 Experimentally, we are interested in the intensity of the signal beam at the output of 
the crystal. It is given by : 

  Id x,t( ) = e!"x Id 0,0( ) e#x !1
2
+ $Ed t( )

2
+ 2Re e#x !1( )*$Ed t( )( )[ ]    (27) 

 
The signal beam is now purely phase modulated, so we have !Ed t( ) = e

i" t( )  with ! 0( ) = 0 , 
what gives !Ed t( )

2
= 1. We write the photorefractive gain as ! = ! '+i!" . The gain is purely 

real, ! "= 0 , when the phase shift between index and illumination gratings is π/2 
(photorefractive effect in the diffusion regime) and is purely imaginary, ! ' = 0 , when the two 
gratings are in phase. According to these notations, the rapidly modulated part of the 
transmitted pump intensity !Id x,t( )  is due to the third term of expression (27) only and we 
finally have : 

!Id x,t( ) = 2 e"#x Id 0, 0( ) e$ ' xsin $ " x( )sin % t( )( ) + e$ ' xcos $ " x( ) "1( )cos % t( )( )[ ]   (28) 

 
In this expression, the most interesting term is the first term as it is, in the limit of a low 
amplitude of the phase modulation (! t( ) << " ), proportional to the phase shift ! t( ) . This 
term only exists if its coefficient is significant, i.e. if ! "" 0 . This means that in presence of a 
photorefractive grating in a pure diffusion regime, this term disappears and the only 
remaining term is the term in cos ! t( )( ) . In this case we have for the modulated part : 

!Id x,t( ) = e"#x Id 0,0( ) e$ ' x "1( )% 2 t( )      (29) 
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We thus see that the photorefractive coupling is not optimum for the photorefractive 
beamsplitter as it does not allow for the coupling in quadrature that is best suited for a linear 
phase detection. This is easy to understand as a zero phase shift between illumination and 
space charge field gratings corresponds to no energy transfer between the beams. A phase 
shift introduced on one beam shifts the illumination grating towards the space charge field 
grating giving possibility for energy transfer with an amplitude proportional to the phase shift. 
Nevertheless a quadrature detection is not always necessary as shown in ref [21] for the case 
of high amplitude binary phase shift modulation scheme used in coherent communication. 
 One way to remove this drawback is to use a polarization sensitive set-up in order to 
mix the components in quadrature as proposed in Ref.[4]. Another way is to introduce on the 
signal beam, during the time of the measurement that is supposed to be short, an additional 
π/2 phase shift (with for example an electrooptic modulator) that allows to mix the 
components in quadrature. We then have : 

!Id x,t( ) = 2 e"#x Id 0, 0( ) e$ ' x "1( )cos % t( ) +
&

2
' 
( 

) 
* 

+ 
, - 

. 
/ 0 

= 2e"#x Id 0,0( ) 1 " e$ ' x( )sin % t( )( )[ ]   (30) 

 
 Finally, a last possibility is to find a material for which the index grating is not π/2-
shifted with the illumination grating. This is for example the case for photorefractive 
semiconductors with an externally applied electric field. In this case, we have ! "" 0  and the 
modulated part of the signal is dominated by sin ! t( )( )  (as we suppose ! t( ) << "  we have 
cos ! t( )( ) " 1) and we have (from (27)): 

Id x,t( ) = e!"x Id 0, 0( ) e2# 'x + 2e# ' xsin # "x( )sin $ t( )( )[ ]     (31) 

 
An illustration is given in Fig.4 for the parameters of a CdTe:V sample [22]. With an applied 
electric field of 2kV.cm-1, a grating vector k = 1µm-1 and an illumination of 100mW.cm-2 
(material parameters are given in Ref.[22]). We calculate an amplitude photorefractive gain 
! = 0.11" 0.64i( )cm"1  and a complex time constant !0 = !r " i ! i  with !r = 0.33ms  and 
! i = 0.14ms . We introduce these parameters (with an absorption α = 1cm-1 and a crystal 
thickness of 1cm) in expressions (15) and (16), and we calculate the transmission of a phase 
modulated signal (with a sinusoidal phase modulation ! t( ) = 0.1 " sin 2#$ t( )  of frequency 
ν = 32MHz). We see, in Fig.4, that the fast phase modulation is perfectly transformed into an 
intensity modulation of the transmitted beam as predicted by (31) for the regime of 1/ν<<τ0. 
Coming back to the general case, we calculate the frequency response of the component for a 
sinusoidal phase shift ! t( ) = 0.1 " sin 2#$ t( )  of frequency ν. We see in Fig.5 the high band 
pass filtering properties of the photorefractive beamsplitter. The cut-off frequency is about 
150Hz (cut-off at 3dB). 
 
 
VI Conclusion 
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 We have established an analytical model for two beam coupling energy transfer in 
presence of modulated beams for a crystal presenting absorption. We solved the two beam 
coupling differential equation using the Laplace transform method. The found solution allows 
to calculate the kinetics of the photorefractive effect in presence of absorption. It shows that 
in the low gain and low absorption regime, the response of the photorefractive effect is 
exponential with a time constant which is the space charge field time constant taken in the 
middle of the crystal. With this model, we can simulate the photorefractive beam splitter in 
crystals with low gain and an absorption even greater than the photorefractive gain, a situation 
which is common in systems developed in the infrared region with semiconductors.  
 We show that, taking into account the absorption or not, the photorefractive effect is 
not the best adapted for a linear detection of phase modulated signals. The π/2 shift between 
illumination and index gratings has to be compensated, either by an external system, like 
adding an additional π/2 phase shift on one of the beams, or by applying an external electric 
field in order to have a photorefractive effect governed by the drift regime. 
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Figure Captions  
 
Figure 1 : Photorefractive two beam coupling set-up. A pump beam Ei and a time modulated 
signal beam Ed propagates along x direction and interacts through a two beam coupling 
scheme, thus modifying the transmission of the signal beam. 
 
Figure 2 : Photorefractive build-up in the diffusion regime for different value of absorption of 
the crystal between 0 and 1 cm-1 (see text for calculation parameters). The values of the 
intensity at the crystal output are normalized to their steady state value. The signal beam 
intensity at the entrance of the crystal is the same for all the curves. 
 
Figure 3 : Photorefractive build-up in the diffusion regime for different values of the 
photorefractive gain between 0 and 2 cm-1. The value of the intensity at the crystal output are 
normalized to their steady state value. The absorption is α = 1 cm-1 (other parameters are the 
same as in Fig.2). The probe intensity at the entrance of the crystal is the same for all the 
curves. 
 
 
Figure 4 : Transmitted signal (straight line) through a photorefractive beamsplitter, as a 
function of time. The input signal beam is sinusoidally phase modulated 
(! t( ) = 0.1 " sin 2#$ t( ) , dashed line) with an amplitude of 0.1rad and a frequency ν=32 MHz 
(see text for calculation parameters). The probe intensity at the entrance of the crystal is 
Id 0, 0( ) = 1 . 
 
Figure 5 : Frequency response of the photorefractive beamsplitter for a phase modulation 
! t( ) = 0.1 " sin 2#$ t( )  (same calculation parameters as for Fig.4). 
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