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Centre Scientifique d'Orsay, BP.147, 91403 Orsay Cedex. 
 

ABSTRACT 
 We present and characterize theoretically and experimentally a photorefractive velocimeter. This device, based on 
two wave mixing in a rapid photorefractive crystal, measures the instantaneous velocity of a vibrating target. It is 
particularly adapted to the measurement of high amplitude (as high as some mm) low frequency (until some kHz) 
vibrations. Instantaneous velocity as high as 25mm.s-1 are expected to be measured with common photorefractive 
semiconductors and CW lasers. 
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I. INTRODUCTION 
 Laser vibrometry is now widely spread in the field of non destructive testing, for the determination of the vibration 
spectra of objects, as well as for ultrasonic testing of mechanical parts [1]. Vibration sensors are commercially available. 
Most of these sensors are based on coherent detection schemes (homodyne or heterodyne detections). Although very 
sensitive, these sensors lose their efficiency when used with scattering surfaces. That often prevents the measurements, 
unless the object is first polished, what is most of the time not possible. We have recently studied and developed an 
ultrasonic sensor based on two wave mixing in a dynamic holographic media [2,3]. This sensor allows to make sensitive 
ultrasound vibration measurements on scattering objects. Nevertheless this device perfectly adapted to the measurement of 
the sub-nanometer ultrasonic vibrations, does not work anymore as soon as the vibration amplitude becomes greater than a 
fraction of the wavelength used, because of the erasing of the hologram.  

 In this paper we will describe a photorefractive interferometer derived from the photorefractive ultrasonic sensor, 
that keeps its main advantage, i.e. the possibility to work with speckled beams, and that extends its measurement ability to 
the high amplitude vibrations (micrometric vibrations). In this new working regime, the device measures the instantaneous 
velocity of the vibrations and thus works as a velocimeter. We will in a first part describe theoretically the operation of the 
photorefractive velocimeter, showing its performances. Then we will present its experimental implementation and first 
results that clearly demonstrate its differentiating behavior. The experimental results will also be compared to the theoretical 
predictions.  

II. THEORETICAL MODEL 
 In its principle, the device is based on a two wave mixing experiment in an holographic material. This set-up has 
already been used in a great number of experiments, to develop a photorefractive ultrasonic sensor [2, 3], a double exposure 
holographic camera [4], or for the characterization of materials [5]. The tested point on the object is illuminated by a laser 
source. The signal wave reflected and scattered by the object is sent on the dynamic holographic material together with a 
coherent pump beam. These beams write in the holographic material an hologram of the wavefront structure of the signal 
beam. This hologram is read by the pump beam what creates in the direction of the transmitted signal beam a local oscillator 
that has exactly the same wavefront structure than the signal beam, whatever this structure. These two beams will then 
interfere in a wide field of view homodyne detection scheme, what will transform the phase modulation imprinted on the 
signal beam (and caused by the vibration of the object) into an intensity modulation. The phase shift between the signal and 
the local oscillator can be chosen experimentally to be equal to π/2 (beams in quadrature) in order to optimize the operation 
of the sensor.  

 We here consider an object vibrating at low frequency compared to the cut-off frequency of the dynamic 
holographic material (i.e. the inverse of the response time of the material). In this regime, the hologram follows the 
vibrating interference pattern with, nevertheless, a delay. This means that the local oscillator will carry some information on 
the vibration, as it comes from the diffraction of a stationary beam on a mobile hologram. 



 From a general point of view, we will show that in this low frequency regime the two wave mixing set-up works as 
a velocimeter. If the phase modulation imprinted on the signal beam is given by a vibration of amplitude δ(t), we measure a 
signal proportional to the instantaneous velocity v(t) of the surface. We will also show that the saturation of the signal at 
high displacement, observed at high frequency and linked to the partial erasure of the hologram, still exists but is less 
stringent than for the photorefractive ultrasonic sensor. This saturation is linked to the response time of the dynamic 
holographic material, and at a fixed frequency it is all the more high than this response time is short. 

II.1. BEAM COUPLING IN THE ANISOTROPIC DIFFRACTION CONFIGURATION 

 For presenting the theoretical model, we will consider a photorefractive crystal used in the anisotropic diffraction 
configuration [3] (Fig.1). In this configuration, two s-polarized signal and pump beams, interfere to create the grating in a 
photorefractive crystal in the diffusion regime. The pump beam diffracts into a p-polarized local oscillator. Then the two 
beams (s-polarized signal and p-polarized local oscillator) are sent on a quarter wave plate with axes oriented along the 
polarization axes. This wave plate induces a π/2 phase shift between the two beams that are either in or out of phase 
(depending on the sign of the index grating) at the output of the crystal. The two cross polarized beams are then sent on a 
45° polarizing beamsplitter. The beams issued from the beamsplitter are sent on two detectors which signals are subtracted 
in a differential amplifier. We choose this configuration because it is easy to implement, and it does not require an external 
applied electric field. It is also differential what can be interesting to eliminate an eventual intensity noise of the laser.  

 
Figure 1 : Scheme of a photorefractive beam combiner based on the anisotropic diffraction configuration. PBS is a 

polarizing beam splitter, PC is the photorefractive crystal, λ/2 and λ/4 are half and quarter wave plates respectively. 

 For simplicity of the study, we neglect the absorption of the crystal. We also place ourselves in the undepleted 
pump approximation, which means that the pump beam amplitude stays constant in the thickness of the crystal (condition 
usually fulfilled when the pump beam intensity is much higher than the signal beam intensity). In such a case the equation 
that governs the diffraction of the pump beam Eps on the grating to form the p-polarized signal beam Esp, is :  
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where γ is the photorefractive gain in amplitude (real in the diffusion regime we consider), Δn(t) is the index grating 
variation, which temporal evolution is given by first order kinetics, with a real time constant τ, and a steady state that is 
proportional to the fringe modulation with a proportionality constant G : 
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The fringe modulation m, is given by the interference of the s-polarized components of the pump beam Eps and of the signal 
beam Ess (with the corresponding intensities Ips and Iss) : 

m t( ) =
2 Ess t( ) Eps

*

Iss t( ) + Ips

        (3) 

If the target vibrates, with an amplitude δ(t), it induces on the signal beam a phase modulation ! t( ) = 4"# t( ) $ , leading to 
an amplitude of the s-polarized component of the signal beam (constant on the whole crystal thickness as absorption is 
neglected) equals to Ess t( ) = Ess ei! t( ) . Thus the vibration generates a displacement of the fringe pattern according to a law : 

m t( ) = m0 e i! t( )          (4) 



Equation (1) is solved very easily for a crystal of thickness x, using the boundary condition Esp x = 0( ) = 0  : 
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To this equation we have to add the value of the other polarization component of the signal beam Ess(t).  

 After the crystal the signal beam passes a quarter wave plate, where the p-polarization component is π /2 phase 
shifted regarding to the s-polarization. Then both polarization components are sent on a 45° polarizing beamsplitter where 
they create two beams, having the amplitudes :  
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Both beams having intensities :  
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Both beams are sent on two detectors which signals are subtracted to give an elctrical signal S(t). The experiments are 
performed in the general condition of use of a two beam coupling set-up, i.e. the intensity of the pump beam is much larger 
than the one of the signal beam (Iss<<Ips). Using relations (3) and (4), the signal S(t) can thus be written as (γ is real): 

S t( ) = 2! x Iss Re SC t( )[ ]        (8) 

with : 
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 Using equation (2) together with relation (4), we easily show that Sc(t) is governed by the following differential 
equation :  
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whose solution is :  
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Constant C is given by the initial condition. At t=0 SC(t)=SC0, which gives C = !i " SC0 ei# 0( ) . In the case of a vibration 
measurement, we usually write the grating until steady-state is reached (i.e. !n 0( ) = !nst = G m0e

i" 0( )( ) 2 ) and at time t=0 
we apply the vibration with a phase origin ϕ(0). Thus according to relation (9) we have SC0 = i . 

 Making the variable change t’=t-u in the integral, we finally arrive at : 
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II.2. CASE OF A LOW FREQUENCY SIGNAL 

 Until now no supposition has been made concerning the phase modulation characteristics. The above expressions 
are thus valid whatever the exact nature of the phase modulation (high or low amplitude, or high or low frequency). We 
now place ourselves in the case we are interested in, i.e. we consider a modulation with a low frequency compared to the 
inverse of the response time of the dynamic holographic material. This means that the signal varies with a time period much 

greater than the response time of the material. We have thus t>>τ. As e
!

u
"  is non negligible for values of u close to τ only, 



that means that we can consider that u<<t and thus t-u≈t, in the integrals of relation (12). This allows to make a Taylor 
development of ϕ(t), that gives : 
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The two integrals of relation (12) can then be explicitly calculated : 
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As we consider that t>>τ, all the terms in e
!

t
"  in relations (12) and (14) can be neglected. The signal S(t) then becomes : 
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 This expression shows that the signal of the two wave mixing interferometer in the low frequency domain depends 
on the derivative of the phase modulation signal only. If now the amplitude of the phase modulation derivative is small 

enough, such that !2 "#
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<< 1 , the expression simplifies and becomes : 
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The signal is directly proportional to the instantaneous velocity of the target. The two wave mixing interferometer thus 
works as a velocimeter in the low frequency domain. 

II.3. LIMIT OF THE LINEAR REGIME 

 The above point was already established previously but only in the case of a low amplitude phase variation 
(ϕ(t)<<π/2) [2, 5]. We see that the previous results apply more largely to large amplitude modulation, as soon as 
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A good limit for such a condition is : 
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which gives : 
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 The performances of the velocimeter, i.e. the maximum velocity measurable in the linear regime, will be controlled 
by the response time of the crystal only. The shortest response time will be the best. Considering usual photorefractive 
crystals used with CW laser, response time of the order of a microsecond should be reachable with the more rapid crystals 
such as the semiconductors. For a wavelength of 1.06µm and a crystal having a response time of 1µs, the limit velocity is 
vlim = 28mm.s-1. 



 In the case of a sinusoidal displacement ! t( ) = ! 0 sin 2" f t( ), we have v t( ) = 2! f " 0 cos 2! f t( ), and condition (19) 
becomes : 
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 For the same experimental parameters (λ=1.06µm and τ=1µs) this leads to a maximum measurable displacement of 
4.5µm at the frequency of 1kHz, or 4.5mm at a 1Hz frequency. 

II.4. NUMERICAL SIMULATION 

 In order to have an idea of the characteristics of the photorefractive velocimeter, we calculate the response of the 
system to different incident signals. For this calculation we use expression (8) with SC(t) given by the solution of the 
differential equation (10) for a given displacement δ(t). The parameters of the crystal are a response time τ=1µs, a 
photorefractive gain in amplitude γ=0.3cm-1, a thickness of 1cm. The calculated values are normalized to the incident signal 
beam intensity. The first calculation allows to show the derivative behavior of the velocimeter. We see in Fig. 2, the 
response to a sinusoidal and a sawtooth periodic vibration. For the sinusoidal vibration, the response is phase shifted by a 
quarter of a period, i.e. the π /2 phase shift of a cosinusoidal response. Moreover, no deformation of the signal appears, 
despite the high amplitude of the displacement (1mm). For the sawtooth vibration the response is a square waveform, 
corresponding to the derivative too.  

 
Figure 2 : Numerical simulation of the velocimeter response, for a sinusoidal (plain lines) and a sawtooth displacement 

(dashed lines) of 1mm amplitude at 1Hz. Bold line represents the calculated signal and thin lines the initial displacement. 

 In Figure 3 we have plotted the response for a fixed amplitude (1mm) as a function of the frequency of the signal. 
As expected the signal amplitude increases with the frequency until a saturation of the signal, that begins to appear at a 
frequency of 10Hz, and that becomes clearer at higher frequencies, with a signal that is no more the derivative of the initial 
signal (curves at 100 and 1000Hz). Then we calculate the response as a function of the amplitude of the vibration at a fixed 
frequency of 1kHz (Fig.4). The possibility to linearly measure high amplitude vibrations is clearly seen (curves for a 
displacement amplitude up to 1µm). A saturation at amplitude between 1 and 10µm corresponding to the value given by 
relation (20) appears, with a deformation of the signal that increases with higher vibration amplitudes due to the apparition 
of higher harmonics.  



 
Figure 3 : Numerical simulation of the velocimeter 

response, for a sinusoidal displacement of 1mm 
amplitude at different frequencies (the abscissa are 
normalized to the frequency for comparison of the 

different curves).

Figure 4 : Numerical simulation of the velocimeter 
response, for a sinusoidal displacement at 1kHz. The 
curves at the lowest amplitudes (0.01µm to 1µm) are 

compensated for their amplitude. They superpose exactly 
showing the linearity of the response of the velocimeter. 

 We also calculate the RMS value of the signal observed for a sinusoidal vibration of increasing amplitude (from 
1nm to 10mm), as a function of the frequency (Fig. 5). At low amplitude of the vibration (below 100nm), the signal 
increases linearly as a function of the frequency, until a cut-off frequency of 105Hz (corresponding to the 1µs response 
time). Above this cut-off frequency the signal is constant as the amplitude of the vibration is not sufficient to erase the 
grating. This regime is the one that corresponds to the photorefractive ultrasonic sensor we previously studied [2,3]. With 
higher amplitude of vibrations (above 100nm), the signal increases linearly with the frequency (corresponding to a signal 
proportional to the velocity) until a maximum value. When the frequency continue to increase the RMS signal decreases as 
the displacement is sufficient to partially erase the grating (see Fig. 3) and the measured signal is no more sinusoidal. We 
can note that the maximum RMS signal is independent of the displacement amplitude (except at very low displacement 
amplitude), it is just the frequency at which this maximum occurs that depends on the displacement. 

 
Figure 5 : Frequency response of the photorefractive velocimeter, for different amplitude of the sinusoidal displacement 
between 1nm and 10mm. The presented signal is the RMS value of the calculated temporal response of the velocimeter. 

III. EXPERIMENTAL CHARACTERIZATION 
 We have experimentally implemented the photorefractive velocimeter, in order to perform a first characterization 
of its performances, mainly focused here to a verification of its temporal response and its ability to measure high amplitude 
vibrations.  



III.1. EXPERIMENTAL SET-UP 

 The set-up is shown in Fig.6. A CW Nd:YAG laser emitting at 1.06µm is split, to form a high power pump beam, 
and a signal beam that is sent to a piezomirror. The retroreflected beam is mixed with the pump beam into the 
photorefractive crystal. The photorefractive crystal is a semi-insulating undoped GaAs crystal, used in the anisotropic 
diffraction geometry, i.e. a grating vector along the (110) direction and the incident beams vertically polarized along (001) 
axis. The crystal is antireflection coated and has a thickness of 1cm. It is used with a grating spacing of the order of 2µm, 
the photorefractive gain is 0.13cm-1. After the crystal, the signal beam passes through a quarter wave plate with axes 
oriented along the direction of the transmitted beam polarization and of the cross polarized diffracted beam. The beam is 
then sent on a 45° polarizing beamsplitter. The two beams issued from the beamsplitter are sent on two detectors connected 
to a simple low frequency differential amplifier.  

 The piezomirror is calibrated and its displacement is measured by an internal sensor, what gives a reference signal. 
With this piezomirror, displacement amplitudes of 10µm are obtained until frequencies of about 60Hz. These performances 
are clearly insufficient to characterize the ability of the set-up to measure very high amplitude vibrations, and see its 
ultimate performances. Nevertheless, this piezomirror is sufficient to realize a first demonstration of the working principle 
of the photorefractive velocimeter. The characteristics of the crystal (especially a relatively long response time) are chosen 
in order to see the different operating regimes of the velocimeter (linear regime and saturation regime), with this 
piezomirror.  

III.2. EXPERIMENTAL RESULTS 

 The first experiment (Fig. 7) allows to illustrate the derivative behavior of the photorefractive velocimeter. As 
expected, the sawtooth signal is transformed into to a square shape periodic signal, whereas the sinusoidal signal is π/2 
phase shifted compared to the initial displacement. We also see that there is no deformation of the sinusoidal response 
despite the high amplitude of the displacement (2µm), showing the ability for the velocimeter to measure high amplitude 
signals without the wrapping that is seen in an homodyne detection. For the frequency response of the velocimeter, we see 
(Fig. 8) that the signal increases with the frequency and saturates for high frequencies (6Hz curve), before being distorted 
(62Hz curve). The theoretical curves calculated with relations (8) and (10), correspond to the experimental ones when the 
response time of the crystal (i.e. the only adjustable parameter) that governs the shape of the curves is about 200µs. This 
gives an idea of the response time of the crystal in this specific experimental arrangement. The saturation begins to occur 
around 0.6Hz for the 11.4µm displacement amplitude used. This corresponds to what can be found using equation (20).  

  
Figure 6 : Photo of the experimental set-up used in 

the study, with the beams indicated. PBS : polarizing 
beam splitter, PM piezomirror, λ/4 : quarter wave 

plate, λ/2 : half wave plate, Det : differential detector. 
 

Figure 7 : Experimental response of the photorefractive 
velocimeter to a sinusoidal (black curves) and a sawtooth 
(grey curves) phase modulation of 0.6Hz frequency. The 

dashed lines represent the displacement of the 
piezomirror that creates the phase modulation. 



 
Figure 8 : Experimental response (A) of the photorefractive velocimeter to a sinusoidal phase modulation of fixed 

amplitude (11.4µm, except for the 62Hz signal corresponding to a 9.9µm displacement amplitude) having an increasing 
frequency. In (B) are shown the calculated responses of the photorefractive velocimeter.

 For the response as a function of the amplitude, there is also a good accordance between calculated and 
experimental curves (Fig. 9). For the fixed frequency of 62Hz used, the saturation occurs around 144nm which still 
corresponds to what is given by relation (20). Here again the signal is distorted at higher displacement.  

 

Figure 9 : Experimental response (A) of the photorefractive velocimeter to a sinusoidal phase modulation of fixed frequency 
(60Hz) and of increasing amplitude. In (B) are shown the calculated responses of the photorefractive velocimeter. 

 Finally we perform a comparison of the vibration signal obtained with plane waves with the signal obtained with 
the speckled waves reflected by a rough surface (Fig. 10). The surface is imaged in the photorefractive crystals and imaged 
again on the detectors. No difference in the signal is observed when changing the structure of the wavefront, proving that 
our system works with rough surfaces. On the curves we also see that when the response time of the photorefractive crystal 
varies (by changing the pump beam illumination), we change the form of the response signal, going from a linear regime 
(for τ=15µs) to highly non linear regime (for τ>200µs). Compared to the curves of Fig. 9, we see that for a similar 
frequency the saturation occurs at an amplitude one order of magnitude higher, corresponding to a response time reduced by 
one order of magnitude.  



   
Figure 10 : Experimental responses of the photorefractive velocimeter to a sinusoidal phase modulation of fixed frequency 
(50Hz) and fixed amplitude (4.5µm) for different response time of the photorefractive crystal. In (A) the object is a mirror 
that reflects a plane wave, in (B) the target is a rough surface that reflects a speckled wave. The different amplitude of the 
signals is due to the different reflected power. Both curves are in good accordance with theoretical curves not presented 

here. 

IV. CONCLUSION 
 We present a first characterization of a new holographic vibration sensor, the photorefractive velocimeter. This 
sensor measures linearly the instantaneous velocity of high amplitude (several µm), low frequency (0 - 1kHz) vibrations on 
scattering surfaces. We develop a simple theoretical model that perfectly explains the behavior of the velocimeter. The 
performances of this velocimeter are controlled by the response time of the photorefractive crystal. Using rapid 
photorefractive crystals like GaAs or CdTe will allow to measure vibration velocities as high as 25mm.s-1. The proof of 
principle of this photorefractive velocimeter is successfully demonstrated. We will now optimize its performances, to be 
able to measure such high vibration velocities, with a compact and low cost system.   

V. REFERENCES 
[1] J.P. Monchalin, IEEE transactions on ultrasonics, ferroelectrics and frequency control, UFFC-33, 485 (1986). 
[2] Ph. Delaye, L.A. de Montmorillon, G. Roosen. Opt. Commun. 118, 1549 (1995). 
[3] Ph. Delaye, A. Blouin, D. Drolet, L.A. de Montmorillon, G. Roosen, J.P. Monchalin. J. Opt. Soc. Am. B 14, 1723 

(1997). 
[4] L. Labrunie, G. Pauliat, J.C. Launay, S. Leidenbach, G. Roosen. Opt. Commun. 140, 119 (1997). 
[5]  B. Sugg, K.V. Shcherbin, J. Frejlich. Appl. Phys. Lett. 66, 3257 (1995). 
 

 




