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Abstract : 
 We present an interferometric set-up for the measurement of low amplitude sinusoidal phase 

shifts that releases most of the constraints of usual architectures. It allows measurement without any 

stabilization of the set-up and can tolerate low quality fringe pattern. Due to its ease of use and its 

good sensitivity, this set-up can be used to measure low amplitude electro-optic coefficients with 

low applied voltage (less than 1V). Test measurements on LiNbO3 and LiTaO3 samples show good 

accordance between measured and theoretical Pockels phase shifts. 

 

 

PACS : 42.65.Hz, 42.62.Eh, 77.84.Dy, 78.20.Jq 

 

 

 

 

 The measurement of the electro-optic coefficients of materials is an important problem of 

optoelectronic, especially when low Pockels coefficients or low thickness samples are measured. 

Several techniques are used, they are presented and discussed in Ref. [1-11]. Among them, 

interferometric techniques are very powerful as they can reach independently several coefficients in 

usual crystals. One problem with these techniques is that they require to put the interferometer to a 

peculiar fringe position (usually at the maximal slope of the fringes), and to stabilize it at this 
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position. The experiment will thus be particularly sensitive to vibrations of the set-up and to thermal 

fluctuations of the studied crystal. In this letter we propose a new solution to this problem that 

works without the need of a stabilized interferometer and that even takes benefit of its drift and 

fluctuations for the measurement. This set-up thus enables to measure the very small phase shifts 

induced in Pockels crystals (such as LiNbO3 or LiTaO3) by AC voltage as low as some tens of mV.  

 

 In the interferometric set-up, a laser beam is separated in two arms by a beam splitter and 

recombined on a detector (using the same or another beam splitter). In one of the arms (the signal 

beam), we place the sample to be measured, whereas in the second arm a piezo-mirror allows to 

slowly vary the phase shift between the beams of the interferometer. When the interferometer is 

aligned (i.e. fringes are observed), the intensity received by the detector equals:  

! 

I = IS + IR + 2r ISIR cos" t( ) (1) 

where IS is the intensity of the signal beam, in which is placed the Pockels crystal to be 

characterized and IR is the intensity of the reference beam. In this expression, r is a coefficient that 

renders the quality of the fringes observed on the detector. For perfectly aligned plane waves, we 

have r = 1 meaning that the phase shift between the beams does not vary on the surface of the 

detector. In the worst case of a large number of fringes on the surface of the detectors, meaning that 

the wavefronts are distorted or misaligned, we have r ≈ 0, and no modulation signal is delivered by 

the detector. In the general case, we have a value of r that varies between these two extrema, with a 

value of r that will have to be the closest as possible to 1 as the detected modulated signal is 

proportional to this value. Nevertheless, as we will see in the following, the technique we developed 

works whatever the quality of the fringes, and thus whatever the value of r (remembering that the 

measurement will be all the more easy and accurate than r will be close to 1, as the measured signal 

will be high). Finally, 

! 

" t( ) is the phase shift between the two interfering beams. It can be separated 

in two terms 

! 

"(t) = # t( ) + $# t( ) , with 

! 

"# t( ) = 2"#RMSsin 2$ft( )  the sinusoidal Pockels phase shift 

that we want to measure and 

! 

"(t)  the mean phase shift between the beams that varies much slowly 

than the Pockels phase shift. The intensity measured by the detector can then be rewritten as (taking 

into account that for the measured phase shift we have 

! 

"# t( ) << $ 2): 

  

! 

 I = IS + IR + 2r ISIR cos" t( )
Imean

1 2 4 4 4 4 3 4 4 4 4 
#2r ISIR $" t( )sin" t( )

$I t( )
1 2 4 4 4 3 4 4 4 

 (2) 
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 In an usual interferometric set-up (homodyne detection) [1], the mean phase shift 

! 

"(t)  is 

stabilized to a constant value equal to ±π/2 (half fringe level), where the detected signal 

! 

"I(t)  is 

maximal. This requires the knowledge of the fringes contrast (to determine the half level). This 

value is obtained through a measurement of the maximum of the mean intensity 

! 

IMean reaching the 

detector (corresponding to 

! 

"(t)  = 0), and the minimum mean intensity (corresponding to 

! 

"(t)  = π). 

This stabilization at half fringe level is the main problem of usual homodyne detection schemes. In 

fact, the problem is not necessarily the stabilization by itself, but to find the right level of 

stabilization that will vary slowly if IR, IS or above all r vary. This is generally obtained by a 

stabilization (against thermal change, vibrations, air fluctuations, …) of the whole set-up during the 

measurement.  

In our case, we use the same optical set-up and the same signal but we change the data 

processing. Our method does not require the stabilization of the interferometer to a given level, it 

will even use the naturally or artificially produced fluctuations of 

! 

"(t) , without the necessity to 

know the exact value of this phase shift. This method can be seen as a low frequency analogous to 

the heterodyne detection where the ratio of height of the sideband to the carrier frequency amplitude 

give directly the phase modulation amplitude. 

Considering the intensity received by the detector given by equation (2), it can be split into 

two terms that evolve on very different time scales : a signal 

! 

"I(t)  modulated at the excitation 

frequency of the Pockels material and a mean intensity 

! 

IMean that varies slowly in time but is 

constant at the evolution time scale of 

! 

"I(t) . The detector sees a quasi-uniform tint of an 

interference pattern, and the mean intensity 

! 

IMean is directly linked to the interference state of the 

fringe seen by the detector. The phase shift due to the drift of the set-up induces a displacement of 

the fringe pattern in front of the detector that corresponds to a change of the mean intensity 

! 

IMean and 

a slow variation of the amplitude of the modulated signal 

! 

"I(t) . The important point is here that the 

temporal variations of the mean intensity 

! 

IMean and of the amplitude of the modulated signal 

! 

"I(t)  

are not independent and are correlated.  

 We will now show that if we measure simultaneously the RMS (Root Mean Square) value of 

the modulated signal 

! 

"IRMS (supposed in all this study to be sinusoidal) and the mean value of the 

intensity, we can deduce the RMS value of the Pockels phase shift we want to determine. From 

equation (2), we deduce: 

! 

"IRMS = #2r ISIR sin$ t( ) "$RMS (3) 

and 
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! 

IMean = IS + IR + 2r ISIR cos"(t)  (4) 

In these relation, we immediately recognize the parametric equation of an ellipse (

! 

"(t)  being 

the parameter), centered in the point (0, 

! 

IS + IR) with a small axis of length 

! 

4 r ISIR "#RMS and a 

great axis of length 

! 

4 r ISIR . The ratio of the length of the two axes of this ellipse gives the 

information we want, i.e. 

! 

"#RMS. Nevertheless, the determination of the phase shift 

! 

"#RMS through 

the ratio of the axes of the ellipse, only use a small part of the measured data (points around the 

extrema of the ellipse). The same parameter should be obtained with a better accuracy using an 

adjustment of the whole ellipse. As the adjustment with the ellipse equation in not really easy and 

common, we have choosen another treatment, that will give more easily the same result, i.e. the 

determination of 

! 

"#RMS using all the measured data. 

 Eliminating the slow phase shift 

! 

"(t)  from equations (3) and (4) (calculating 

! 

cos2"(t)  and 

! 

sin2" t( ) ), we arrive to the relation:  

  

! 

"IRMS
2 = #"$RMS

2

a1
1 2 3 

IMean
2 + 2"$RMS

2 IS + IR( )
a2

1 2 4 4 3 4 4 
IMean + "$RMS

2 4 r2ISIR # IS + IR( )2( )
a3

1 2 4 4 4 4 3 4 4 4 4 
 (5) 

 We easily see that the graphical representation of this expression 

! 

"IRMS
2 = f IMean( ) is a 

parabola, which a1 parameter directly gives the RMS value 

! 

"#RMS of the phase shift 

! 

"# t( ) due to 

the voltage applied to the Pockels crystal. This measure is completely independent of the intensity 

of the different beams (IS and IR), but also of the quality of the fringes (characterized by parameter 

r). Moreover the exact nature of the slow phase shift 

! 

"(t)  is not important. It does not need to vary 

according to a peculiar law (it can even be due to the natural drift of the interferometer) as soon as at 

least one fringe is scrolled (

! 

"(t) > #), and the whole parabola is described by the signal with 

typically some cycles (two or three are usually sufficient). 

 

 Experimentally, the interferometer is of the Mach-Zehnder type, using a collimated and 

vertically polarized He-Ne laser emitting at 633nm (Figure 1). The Pockels crystal is placed in the 

signal arm. A half wave plate allows to choose the desired eigen-polarization of the crystal, a second 

half wave plate gives back a vertical polarization, selected by a second polarizer. At the output of 

the interferometer a lens makes the image of the crystal on the detector plane. The slow phase shift 

is created by a piezo-mirror inserted in the reference beam. The typical modulation frequency of the 

piezo-mirror is 20mHz with a displacement amplitude around 1µm. The detected signal is sent 

simultaneously on one input of an oscilloscope (with an internal low pass filter) to measure the 
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mean intensity and on the input of a lock-in amplifier to measure the RMS value of the detected 

signal at the excitation frequency (the results of the measurement being sent on the other input of the 

oscilloscope). The Lock-In amplifier is also used to deliver the voltage applied to the Pockels 

crystal. Its RMS amplitude varies typically between 10mV and 2V, with a frequency varying 

between 1kHz and 100kHz (high frequency limitation of the Lock-In amplifier).  

 Typical signals are shown in Figure 2a. We see the mean signal that varies as the fringe is 

scrolled in front of the detector. In the same time the RMS value of the signal varies (visually in 

quadrature) with a maximum value at half fringe height and zero signal for absolute maximum and 

minimum of the mean intensity as expected. We see that tracing 

! 

"IRMS = f IMean( ), we obtain an 

ellipse as expected (Fig. 2b). After the treatment (tracing 

! 

"IRMS
2 = f IMean( )) we obtain the expected 

parabola (Fig. 3), which fit allows to measure a Pockels phase shift of 

! 

"#RMS =13.047mrad, with an 

accuracy given by a standard deviation of 3µrad (in the following the standard deviation will be 

used as a measure of the accuracy). 

 

 We used this set-up to characterize two reference Pockels crystals of LiNbO3 and LiTaO3. 

These crystals are of the same class of symmetry (the 3m class). All their coefficients (electro-optic, 

elasto-optic, piezo-electric) are perfectly known and will be used to calculate the expected phase 

shift that will be compared to the experimental data given by the set-up. The crystals are cut along 

the crystallographic axes and are used in a transverse configuration with an electric field applied 

along the c-axis. The propagation is along the a-axis and the beam is either ordinary (i.e. vertically 

polarized along the b-axis) or extraordinary polarized (i.e. along the c-axis). The phase shift (

! 

"#o 

and 

! 

"#e  for ordinary and extraordinary polarization respectively) acquired by the beam is then [12, 

13]: 

! 

"#o =
$
%
V L
d
& 

' 
( 

) 

* 
+ 2 no ,1( )d31+ no

3r13
T[ ] (6) 

! 

"#e =
$
%
V L
d
& 

' 
( 

) 

* 
+ 2 ne ,1( )d31+ ne

3r33
T[ ]  (7) 

where V is the applied voltage, L the thickness of the crystal along the beam propagation direction, 

d is the inter-electrode distance, and λ the used wavelength in vacuum. In these expressions the first 

term is due to the change of the dimension of the crystal because of the piezo-electric effect (with 

the piezo-electric coefficient d31). The second term is due to the Pockels effect (with the unclamped 

electro-optic coefficient 

! 

rij
T). In both cases, no is the ordinary refractive index and ne is the 
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extraordinary refractive index. These expressions suppose that the crystal is free, i.e. that the 

frequency used is low compared to the piezo-electric resonance. The values of these parameters in 

the crystals we used, are summarized in Table 1. 

 

 The first measurement is performed on a LiNbO3 crystal at a fixed frequency as a function of 

the applied electric field, for both polarizations (Figure 4). We observed a linear dependence of the 

measured phase shift with a slope equal to 

! 

"#o V=(2.186±0.003) mrad.V-1 and 

! 

"#e V=(6.305±0.003) mrad.V-1. These experimental values are in good accordance with the 

theoretical ones given in Table 1. In the insert of Figure 4, the variation of the phase shift with the 

applied voltage is showed in a log-log scale. This presentation shows that the linearity of the 

variation extends on the whole measurement range (more than two decades), until applied voltage as 

low as 10mV, corresponding to measured phase shifts as low as some tens of µrad. We also measure 

the response as a function of the frequency of the applied sinusoidal voltage (Figure 5). The 

sensitivity (i.e. the measured RMS phase shift normalized to the RMS applied voltage) is constant 

on the whole frequency range with a small increase that appears above 30kHz. In this range (i.e. 

below 30kHz), the mean value of the sensitivity is 6.31±0.06 mrad.V-1, corresponding to a 

measurement accuracy of 1%. The increase corresponds to the beginning of a piezoelectric 

resonance situated at higher frequency (theoretically around 600kHz according to the dimensions 

and the orientation of the crystal). This behaviour confirms that the crystal is free in the condition of 

the measurement what justifies the expressions (equations (6) and (7)) used for the phase shift.  

 

 Similar measurements were performed in three LiTaO3 crystals, with identical cut and 

dimensions. The obtained curves were similar to the one observed in LiNbO3, with nevertheless a 

slight dispersion of the sensitivity of the different crystals (Table 2) for the measurement at 25.7 

kHz. Despite this dispersion the obtained values are in accordance with the theoretical value (Table 

1). This dispersion was attributed to some problem in the application of the electric field, but 

considered independent of the measurement set-up. Indeed, a similar dispersion exists for both 

extraordinary and ordinary polarization. In all the crystals the ratio of the extraordinary phase shift 

to the ordinary one, is the same at a value of 3.66±0.05 that corresponds to the theoretical ratio. This 

point is confirmed by the fact that a measurement at lower frequency (183Hz) shows a lower 

dispersion in the measured values with ordinary polarization (Table 2). For some samples and 

polarisations, measurement had been performed several times on different days, each time putting 

on and removing the sample from the set-up, with a new alignment and optimization for each 

measurement. For example for the sample LTO1 with ordinary polarization at the frequency of 
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51.2kHz, 5 independent measurements were made giving sensitivities of 1.003, 0.998, 1.008, 1.010 

and 1.013mrad.V-1, what corresponds to a mean value of 1.006±0.006 mrad.V-1, i.e. a relative 

accuracy of 0.6% typical of the measurement performed. 

 

 The presented Pockels material characterization set-up has several advantages compared to 

conventional set-ups. It is simple to use and does not require any stabilisation of the set-up. It is not 

sensitive to external perturbations such as vibrations or thermal effects in the measured sample. It is 

an interferometric geometry, so contrarily to the other simple and stabilisation independent set-up, 

the Sénarmont set-up, it can by proper cut of the crystal allow the measurement of diverse electro-

optic coefficients independently. The sensitivity of the measurement (some tens of µrad without any 

peculiar precautions) allows to measure low amplitude electro-optic coefficients (such as 

! 

r13
T  in 

LiNbO3 or 

! 

r41
T  in InP) without the need to apply high voltage (some volts are sufficient). The 

measurement does not require very high fringe quality, even if a higher contrast will lead to higher 

signal and easier and more accurate measurement (see Appendix). The ultimate performances of the 

presented set-up should be the same than the one obtained with a classical stabilized interferometric 

set-up perfectly optimized and aligned. Nevertheless these performances are accessible more easily 

with the proposed set-up, without the need of a servo-controlled stabilization, a vibration isolated 

breadboard, an air flow protection or a thermal control. It can be a rather cheap and good solution 

for people having occasionnal needs for moderately accurate phase modulation measurements 

(caracterization of a phase modulator, determination of electro-optic or piezo-electric coefficients of 

a crystal, … ), just using classical optical elements that are usually found in an optic laboratory.  

 

 

Appendix : Accuracy of the measurement technique 

 

 The accuracy of the measurement technique can be theoretically estimated, using the fact 

that the phase shift is given by the ratio of the length of the axes to the ellipse when we trace 

! 

"IRMS = f IMean( ). The axes are given by 

! 

a = 4 r ISIR "#RMS and 

! 

b = 4 r ISIR . These parameters can 

be rewritten as a function of some other practical parameters of the fringe pattern, i.e. the maximum 

! 

IMean
Max  or the minimum 

! 

IMean
Min  intensity value, or the contrast C of the fringe pattern. For example, we 

have 

! 

b = IMean
Max " IMean

Min = 2CIMean
Max 1+ C( ). 

 The relative accuracy on the measured phase shift is given by  
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! 

" "#RMS( )
"#RMS

=
"a
a

+
"b
b

 (A-1) 

 

We will now estimate these different terms. We have first :  

! 

"b
b

=
"IMean

Max + "IMean
Min

IMean
Max # IMean

Min =
"IMean 1+ C( )
IMean
Max C

 (A-2) 

where we have considered that 

! 

"IMean
Min # "IMean

Max = "IMean , is the standard deviation of the noise on the 

mean intensity. The relative error on b is independent of the measured phase shift, as b does not 

depend on it, but depends on the intensity and on the contrast of the fringes. The lower the intensity 

! 

IMean
Max , the lower the signal and the worse the relative accuracy, where as for a low contrast the 

fringes disappear, the mean intensity variation becomes smaller and is determined with a less good 

accuracy. 

 Then, we have 

! 

a = 2"IRMS
Max , with

! 

"IRMS
Max = 2 IMean

Max # IMean
Min( )"$RMS = 4CIMean

Max "$RMS 1+ C( ), from 

which we deduce : 

! 

"a
a

=
" "IRMS

Max( )
"IRMS

Max =
1+ C( )" "IRMS

Max( )
4CIMean

Max "#RMS
 (A-3) 

where 

! 

" "IRMS
Max( )  is the noise on the output of the Lock-In amplifier giving the RMS value of the 

modulated signal. The relative error on "a" depends on the contrast of the fringes as a lower contrast 

means a smaller signal. It is the same for the maximum intensity of the fringe pattern that governs 

the measured modulated signal. The relative error also depends on the phase modulation amplitude 

as smaller phase modulation means smaller signal.  

 

At small value of the measured phase modulation, the preponderant term for the relative 

accuracy is 

! 

"a a , that decreases when phase modulation increases until saturation towards a value 

governed by the term 

! 

"b b  at high values of the phase modulation. 

 In our experiment, typical values we measure, are 

! 

IMean
Max =100mV  and a contrast of the 

fringes easily better than 0.5. The performances of the detection is mainly governed by the 

electronic noise with typical values of 

! 

"IMean #10µV  and 

! 

" "IRMS
Max( ) #1µV . The accuracy at large 

value of the phase modulation would reach 

! 

" "#RMS( ) "#RMS = "b b = 0.03%, what correspond to 

the order of magnitude experimentally measured in our set-up (Fig. 3). 
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At low amplitude of the phase modulation we can determine the smallest measurable phase 

shift with our set-up, i.e. the phase modulation RMS value that would lead to a relative accuracy 

! 

" "#RMS( ) "#RMS = "a a =1, equal to : 

! 

"#RMS =
1+ C( )" "IRMS

Max( )
4CIMean

Max  (A-4) 

giving a numerical value of 7.5µrad, for our set-up. The order of magnitude of this value 

corresponds to the smallest value we were able to measure experimentally (i.e. 22µrad in Fig. 4). 
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 LiNbO3 LiTaO3 

Thickness L (mm) 20 12 

Inter-electrode distance d (mm) 5 5 

no 2.286 [14] 2.177 [15] 

ne 2.203 [14] 2.181 [15] 

d31 (pm.V-1) -1 [16] -2 [16] 

! 

r13
T  (pm.V-1) 9.6 [17] 8.9 [18] 

! 

r33
T  (pm.V-1) 30.8 [17] 32.1 [18] 

! 

"#o V  (mrad.V-1) 2.22 1.04 

! 

"#e V  (mrad.V-1) 6.49 3.91 

 

 

 

Table 1 : Parameters of the crystals used in the study 
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 LTO1 LTO2 LTO3 

Sensitivity (mrad.V-1), 

ordinary polarisation at 

183Hz 

1.0095±0.0015 0.9362±0.0016 1.0486±0.0014 

Sensitivity (mrad.V-1), 

ordinary polarisation at 

25.7kHz 

1.03814±0.00027 0.99336±0.00021 0.85363±0.00022 

Sensitivity (mrad.V-1), 

extraordinary polarisation 

at 25.7kHz 

3.7958±0.0011 3.5999±0.0009 3.17205±0.0010 

Ratio of sensitivities  3.656 3.624 3.716 

 

 

 

Table 2 : Measurement sensitivity of LiTaO3 crystals 
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Figure captions 

 

 

 

Figure 1 :  Experimental set-up for phase shift measurement. Pol : Polarizer, λ/2 : half wave 

plate, PM : Piezo-mirror, Det : Detector, S : sample. The laser beam is expanded and an image of 

the output face of the sample is made on the detector. 

 

Figure 2 :  (a) : Temporal evolution of the mean signal 

! 

IMean and of the RMS value 

! 

"IRMS of the 

sinusoidal signal. The piezo mirror is sinusoidally excited and the secondary maximum and 

minimum peaks of 

! 

IMean (around 10s and 35s) corresponds to the return points of the displacement 

of the piezomirror. (b) : Parametric plot of the curve 

! 

"IRMS = f IMean( ) 

 

Figure 3 :  Evolution of the square of the RMS value of the sinusoidal signal as a function of the 

mean signal. The line in black is the fit with a parabola (the data are the ones of Figure 2). 

 

Figure 4 :  Experimental evolution of the phase shift as a function of the applied voltage, with its 

linear fit, for ordinary polarization (square and dotted line) and extraordinary polarization (circles 

and full line). In the insert, the data for ordinary polarization are shown in log-log scale. The 

frequency of the sinusoidal applied voltage is 12.67kHz. 

 

Figure 5 :  Evolution of the sensitivity of the Pockels LiNbO3 crystal as a function of the 

frequency of the applied voltage. 
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