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We report GW blue laser operation at 469.2, 471, and 473 nm by efficient intracavity second-harmonic generation
and sum-frequency generation of the Ry—Z; (938.5 nm) and R;—Z; (946 nm) *F5, — *Iy,, intermultiplet transi-
tions in Nd:YAG with an LiB3O5 nonlinear crystal. Single-wavelength laser operation at 469.2 nm and multi-
wavelength operation at 469.2, 471, and 473 nm are obtained with maximum output powers of 1.4 and
0.15 W, respectively, by using a glass etalon as frequency selector. The 469 nm blue laser is an efficient pumping
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source of Pr’*-doped materials. © 2012 Optical Society of America

OCIS codes:  140.3580, 140.3530, 140.3515.

1. INTRODUCTION

Quasi-three-level laser emissions around 940 nm in neody-
mium-doped mixed garnets like YGG/YAG/GGG and YSAG/
YSGG/GSAG/GSGG have received a great deal of attention
in the past decades for different applications [1-4] such as la-
ser remote sensing (differential absorption LIDAR) of atmo-
spheric water vapor (Hy,O). Moreover, along with other Nd-
doped crystals such as vanadates, and by using intracavity
frequency doubling [5-7], they also allow for very efficient la-
ser emissions of blue light around 470 nm, with interesting ap-
plications in the fields of high-density optical data storage,
color display, submarine communication, and biology.

On the other hand, with the increasing interest for Pr3*-
doped materials as laser media for RGB video-projectors, blue
lasers with specific wavelengths at around 445, 469, or 479 nm
are required to pump these Pr3+-doped laser hosts [8-13]. Gal-
lium nitride (GaN) diode lasers operating around 445 nm offer
the most compact and simple pump source for the develop-
ment of such lasers but are still limited to about 1 W (without
any significant improvement over the last three years), and the
beam quality of such laser diodes is considerably degraded for
powers higher than 500 mW [10,13]. Frequency-doubled opti-
cally pumped semiconductor lasers offer the possibility of
higher pump powers with a better beam quality, but they
remain on demand, noncommercially available thus rather ex-
pensive laser devices.

For these reasons, we show here the details of an alterna-
tive solution, which is a simple, efficient, and potentially
powerful solid-state laser based on a diode-pumped and intra-
cavity frequency-doubled three-level Nd:YAG laser emitting at
469.2 nm, thus right at the wavelength corresponding to an
absorption band of Prit+ [14]. For that purpose the laser
has to work on the 938.5 nm transition line of Nd:YAG, which
has been far less studied than the 946 nm one. In fact,
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such laser emission was first reported by Koch et al. [15],
and second-harmonic generation (SHG) at 469.2 nm was first
demonstrated by Bjurshagen et al. [16], but only with a max-
imum output power of 200 mW by using a periodically poled
potassium titanyl phosphate frequency doubler and a Z-type
laser resonator. In the present communication, we report
on a substantial improvement in the laser output power at this
blue laser wavelength by using a compact V-type cavity. We
also report, for the first time to our knowledge, 946 and
938.5 nm dual IR laser emission, 471 nm blue laser emission
resulting from frequency summing, and simultaneous blue la-
ser emission at about 469, 471, and 473 nm by using an intra-
cavity glass etalon as frequency selector.

2. EXPERIMENTAL CONDITIONS

The experimental setup is shown schematically in Fig. 1. The
laser crystal is a 3 mm x 3 mm x 3 mm, 0.5% Nd-doped YAG.
No particular effort has been made to optimize the Nd*>+ dop-
ing concentration and crystal length. However, we have
considered that a relatively low concentration should be ad-
vantageous for alleviating thermal loading [6,17] compared to
more commonly used ~1% Nd-doped crystals. The crystal was
wrapped into an indium foil and mounted on a copper heat
sink. The temperature of the laser crystal cooled by flowing
water was maintained at 8 °C with an accuracy of £0.2°C. A
30 W fiber-coupled laser diode emitting around 808 nm was
used as the pump source. The end of the fiber has a 200 ym
core diameter and an N.A. of 0.22. To optimize the absorption
in the crystal, the temperature of the diode was adjusted to
29.7 °C (£0.2°C). So, at the maximum output power, the
pump wavelength was 807.8 nm, with a spectral width
(FWHM) of around 2.2 nm. Under these conditions, the crystal
absorbed around 37% of the pump radiation. With a collimat-
ing doublet of 35 mm focal length and a focusing doublet of
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Fig. 1.
transmission; M1, mirror 1; M2, mirror 2.

60 mm focal length, the end face of the fiber was imaged into
the laser crystal with a spot radius of 170 ym. The left-hand
side of the laser crystal acted as the input resonator mirror
thanks to a high reflection coating at 938-946 nm and a high
transmission coating at 1064 nm. The right-hand side was anti-
reflection coated at 900-1100 nm. A 15 mm long LiB;05 (LBO)
crystal cut for type I critical phase-matching condition
@ =90° ¢ =19.9° at 303 K for 469 nm) and mounted in a
water-cooled copper holder was used for frequency doubling.
A pinhole was also inserted before the LBO crystal to avoid
the thermal heating of the copper holder arising from the re-
sidual pump radiation. This V-shaped cavity was designed to
be stable by using the standard ABCD matrix method. After a
slight readjustment of the designed arm lengths upon laser
operation, the cavity arm lengths L1 and L2 were found to
be optimal at 68 and 35 mm, respectively.

As the 938.5 nm laser line has a stimulated emission cross
section about 10% weaker than the 946 nm one [18], an appro-
priate selective element, namely a simple glass plate serving
as etalon, was inserted inside the laser cavity to enforce laser
operation on one line or the other or both. The glass etalon
had a thickness d = 0.15 mm and a refractive index n = 1.45

3. LBO PHASE MATCHING

For low conversion efficiencies, the second harmonic versus
the fundamental wave optical power can be approximated by
the expression [19]

1 O 1 L 1 L 1 n 1 " 1 3 1
—s— AT=30.8°C or A¢=-0.6"

1—— An=A¢=0

0.8 —— SFGat47inm

0.6

0.4

0.2 1

Normalized frequency conversion efficiencies

0.0 . P

T T M
0.464 0466 O. 468 0.470
Wavelength (nm)

0.472  0.474

Fig. 2. (Color online) Simulations of normalized frequency conver-
sion efficiencies at 469, 471, and 473 nm for the LBO crystal used in
the experiments.
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(Color online) Laser experimental setup. LD, laser diode; f1, focal lengths; S1, coating on the YAG surface; HR, high reflection; HT, high
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where [ is the length of nonlinear crystal, n the plane-wave
impedance, d.; the effective nonlinear coefficient, and o
and A the angular frequency and the area of the fundamental
beam, respectively. From Eq. (1), one can see that, for a cer-
tain nonlinear crystal, the power of the second-harmonic
wave mainly depends on the intracavity fundamental power
P, and the phase mismatch Ak. The sin ¢® term in Eq. @D
is also called normalized SHG conversion efficiency. The
phase mismatch Ak can be also expanded in a Taylor series
as

Ak = Ak(Ag, AL, AT)
A(AK)

A(Ak)
| AT+

0P

A(AKk)

~ AK(0) + o

Ap +

pm

A2,

pm
@)

where Ak(0) =0 corresponds to perfect phase matching,
which means that A¢p = A1 = AT = 0 and that the maximum
output power should be achieved at the operating wavelength.
From Eq. (2), the phase mismatch due to one parameter, e.g.,
AJ, can be compensated by enforcing phase mismatch onto
other parameters, e.g., A¢ or AT or both. Figure 2 shows
the normalized SHG conversion efficiency of LBO, which
was designed for a 938.5 nm fundamental wave. When angular
and temperature phase matching are satisfied, i.e., AT =
A¢ = 0, the FWHM of the sinc function is about 0.58 nm in the
blue region (1.16 nm for the fundamental wave). It is apparent
that, when keeping constant the angle and temperature of the
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Fig. 3. (Color online) Nd:YAG luminescence spectrum versus
calculated etalon transmission with a tilted angle of ~8.8°.
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Fig. 4. (Color online) Output power curves for single-wavelength
and multiwavelength laser operation versus incident pump power.

LBO crystal, one cannot obtain frequency doubling at 946 nm.
However, by setting the LBO at an angle of A¢ = -0.6°, an
effective frequency doubling at 946 nm can still be achieved.

To confirm the theoretical conclusions, we first achieved
laser operation at 946 nm without glass etalon inside the V-
shaped cavity. A maximum output power of up to 1.1 W at
473 nm was obtained by inserting and tilting the LBO. Com-
pared with results of frequency doubling of 938.5 nm (as given
in Section 4), the output power obtained by frequency dou-
bling of 946 nm through the misadjustment of the LBO crystal
is limited by extra reflection and extra walk-off losses.
According to our calculations (see Fig. 2), this compensation
can be also carried out by temperature tuning of the LBO
crystal [20].
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As SHG is a special situation of sum-frequency generation
(SFG) where the interactive wavelengths are equal, we also
simulated the SFG within the LBO crystal with two wave-
lengths (938.5 and 946 nm) oscillating simultaneously in the
cavity. In fact, thanks to the spectral proximity of the two
wavelengths, the operating conditions of LBO for SFG of
938.5 and 946 nm [0 = 90° and ¢ = 19.6° at 30 °C with type
I (ordinary-ordinary-extraorinary) phase matching] are very
close to the SHG conditions at 938.5 nm. As shown in Fig. 2,
the 471 nm radiation, which is the SFG of 938.5 and 946 nm,
has only little coincidence with the SHG at 469.2 and 473 nm in
the side lobes, which implies the possibility of a single 471 nm
generation.

4. EXPERIMENTAL RESULTS AND
ANALYSIS

Figure 3 gives the calculated transmission of the glass etalon
at different wavelengths when a tilt angle of 8.8° was applied,
which corresponds to a maximum transmission (100%) at
938.5 nm and sufficient extra losses to suppress the 946 nm
laser emission. The tilt angle was adjusted by detecting the
reflected rays out of the cavity, and it was found in good agree-
ment with the calculated value. By setting the etalon to an an-
gle of 8.8° and inserting the LBO crystal, the corresponding
SHG at 469.2 nm was successfully generated, and the CW out-
put power reached 1.4 W as recorded in Fig. 4. In the output
direction, the IR and blue laser beams were measured to have
a linear polarization of 11:1 and 25: 1, respectively. It has to
be noticed that, before inserting the LBO, the polarization
ratio of the 938.56 nm wave was measured to be 2.1:1 Since
YAG is an isotropic material and should emit unpolarized
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Fig. 5.

(Color online) (a) 938.5 nm laser line selected with the glass etalon, (b) second-harmonic line generated at 469.2 nm, (c) simultaneous

dual-wavelength lasing at 938.5 and 946 nm, and (d) simultaneous operation at 469, 471, and 473 nm.
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Fig. 6. 471.16 nm emission resulting from SFG of 946 and 938.5 nm,
obtained by tilting the glass etalon.

radiation, the polarization of the 938.5 nm wave probably
comes from the V-type asymmetric cavity. In fact, we did
not observe any polarized output of the IR beam when using
a linear (symmetric) cavity. However, it should be certainly
interesting to scale the SHG output power with our LBO (type
I) doubling crystal by inserting a Brewster plate and a quarter-
wave plate between the input mirror and laser crystal, as re-
ported in [5], which is not possible here because of the cavity
compactness but will be our next investigation by using a
longer Z-shaped cavity.

By tilting the glass etalon to an angle of around 8.0° and a
synchronous angle tuning of the LBO crystal, we also
achieved simultaneous triple-wavelength operation at ~469,
~471, and ~473 nm (see Fig. 5 for the registered spectra),
as simulated above, where the simultaneous dual-wavelength
lasing at 938.5 and 946 nm was first observed as a precondi-
tion for the simultaneous laser operation of the three blue la-
ser wavelengths. The total maximum output power of three
blue lasers can be modified by slightly tilting the glass etalon
thus changing the different ratios of intracavity powers at 946
and 938.5 nm. We recorded a maximum output power of
150 mW with comparable intensities for each wavelength.
Furthermore, by tilting the glass etalon and adjusting the
LBO, the 469 and 473 nm laser actions could be nearly com-
pletely suppressed. The recorded spectrum of the 471.16 nm
laser line is shown in Fig. 6. No output power curve at this
wavelength has been recorded because laser operation was
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Fig. 7. (Color online) X and Y diameters of the output laser beam at
469.2 nm as a function of their Z-axis location.
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only stable at specific pump power values. That is to say,
the other two blue laser lines at 469 and 473 nm emerged when
changing the pump power. We also found that, at different
pump levels lower than around 16 W, the nearly single
471 nm laser operation could always be obtained by carefully
adjusting the glass etalon and the LBO tilt angles.

A key factor that affects the stability of the blue output
power is the temperature of the LBO crystal. Since the re-
duced size of the laser cavity hardly allowed the use of an
oven to regulate the nonlinear crystal temperature, a Peltier
cooler was thus used to control the temperature of the LBO.
A stable blue output power was obtained by setting the tem-
perature of the LBO crystal at 29.9 °C (40.1 °C). Since the the-
oretical temperature bandwidth of LBO is 6.7K - cm, the 0.1 °C
temperature fluctuation led to a good maximum output power
stability of about 3.8% over half an hour for the 1.4 W blue
laser at 469.2 nm.

The insertion losses L due to the glass etalon can be
estimated by using the expression used in [21], ie,
L = 20Rd/nw,,, where 6 is the incident angle, R is the etalon
reflectivity for the angle 6, d the thickness, n the refractive
index, and w, the beam-waist radius onto the etalon. There-
fore, in order to reduce the insertion losses as much as pos-
sible, a large laser beam waist onto the glass etalon is
desirable. The glass etalon was inserted at a location where
a mode radius of ~150 ym was found by ABCD calculations.
This resulted in intracavity losses introduced by the glass
etalon of the order of 0.71%.

We also noticed that, thanks to the etalon, the laser lines
were substantially narrowed. The FWHM of the blue line at
469.2 nm was found to be smaller than 0.059 nm [Fig. 5(b)],
which corresponds to the resolution limit of our optical spec-
trum analyzer (0.05 nm). Finally, the transverse spatial profile
of the laser beam at 469.2 nm was measured with a Beam-
scope-P7. The beam propagation factors M? were found to
be better than 1.3 and 2.0 in the X and Y directions, respec-
tively (see Fig. 7).

5. CONCLUSION

In conclusion, we have demonstrated SHG and SFG in a diode-
pumped V-type Nd:YAG-LBO laser cavity giving rise to 469.2,
471, and 473 nm laser emissions. A recorded output power of
1.4 W was obtained at 469.2 nm from the single-line operation
of 938.5 nm. For the first time to the best of our knowledge, by
allowing the two IR wavelengths at ~938.5 and ~946 nm to
lase simultaneously, SFG and SHG were observed resulting
in simultaneous multiwavelength operation at ~469, ~471,
and ~473 nm. Power scaling at these blue wavelengths, espe-
cially at 938 nm, in order to pump Pr-doped materials could be
obtained by inserting a polarization-selective element inside
the cavity, and by better management of the thermal effects
within the gain media, both ideas are still currently being
investigated.
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