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We present a modeling of a degenerate four-wave-mixing nonlinear process in one-dimensional photonic crys-
tals. The model is based on the nonlinear extension of the transfer-matrix description of propagation in the
structure. The influence of light localization, near the band edge of the structure, on the enhancement of the
phase-conjugate reflectivity is studied. The phase-conjugate reflectivity is shown to increase as the eighth
power of the number of layers with an additional large dependence on the index contrast of the structure. In
both cases the enhancement is accompanied by a strong reduction of the resonance width, which may lead to
some limitation of the enhancement when ultrashort pulses are used. A strong influence of the losses on the
nonlinear efficiency of the structure is also predicted with a great importance of scattering losses at the mul-
tiple interfaces of the structure. © 2005 Optical Society of America

OCIS codes: 190.4380, 230.3990.
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. INTRODUCTION
everal functions have been successfully inserted in pho-
onic crystals, making such devices potentially interest-
ng for optical microcircuits,1,2 provided nonlinear func-
ions can also be implemented on the same device. This
vidently requires the existence of very efficient third-
rder optical nonlinearities on very short interaction
engths operating at low optical power. One way to obtain
hose efficient functions is to use the light localization
roperties of photonic crystals linked to the group-velocity
eduction near a band extremum. This enables a large in-
rease of light intensity inside the structure, which is par-
icularly interesting for nonlinear effects.3–8 Future devel-
pment of these nonlinear functions will require the
nderstanding of the interactions between the nonlinear-

ty and the structure of the material, for the optimization
f the photonic-crystal parameters. The development of
nalytical models such as the one presented here will en-
ble this comprehension and optimization.
The context of our work is the study of the influence of

he material structuring on the efficiency of the third-
rder nonlinearities. We focus on the third-order nonlin-
arities for their ability to realize functions for all-optical
rocessing through bistability phenomenon, Kerr-phase
hange, or four-wave-mixing phase conjugation and para-
etric conversion.9,10 The influence of material structur-

ng on the third-order nonlinearities is very important.
he latter depends on the fourth power of the local inten-
ity in the material, which will lead to a large exaltation
f the nonlinearity of the structures, even with relatively
ow localization of light.11

Among the different nonlinear interactions, we choose
o consider degenerate four-wave mixing, which is of par-
icular interest, as it presents the advantage of being sen-
itive to the decrease of the group velocity or the enhance-
0740-3224/05/112494-11/$15.00 © 2
ent of light localization only, without any phase-
atching problem, which is present, for example, in

econd-harmonic-generation experiments.4,12,13 In the
our-wave-mixing process a phase-conjugate beam is
reated14 that is counterpropagating to the signal beam.
he value of the phase-conjugate reflectivity, defined as

he ratio of the output conjugate and input signal inten-
ities, gives a direct evaluation of the nonlinear efficiency
f the structure. For the sake of simplicity, the four-wave-
ixing phenomenon is the only nonlinear phenomenon

onsidered in our study. Influence of other nonlinear ef-
ects, such as bistability due to Kerr effect, which may oc-
ur at high intensities, is then neglected. This low-
ntensity condition can be easily applied experimentally
nd theoretically, leading to a simplification of the model-
ng and an easier interpretation of the numerical calcula-
ion while keeping the main features of the four-wave-
ixing process unaltered. This low-intensity regime

onsidered in our analysis has another consequence re-
arding the approximations made for modeling, especially
he slowly varying envelope approximation (SVEA),14

hich will be fulfilled contrarily to other nonlinear phe-
omenon such as bistability, for which validity is not nec-
ssarily gained in photonic crystals.15

Section 1 presents the theoretical modeling of four-
ave mixing in a 1D photonic crystal, using the transfer-
atrix modeling that is extended to include the nonlinear

our-wave-mixing interaction between the beams. Linear
nd nonlinear matrices are calculated in each layer of the
tructure, a simple product of these matrix giving both
he linear and phase-conjugate reflectivity of the struc-
ure. In Section 2, these matrices are also used to calcu-
ate the influence of the parameters of the structure
number of layers, index contrast,…) and of the experi-
ent (signal beam incidence angle, wavelength,…) on the
005 Optical Society of America
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ocalization of light and the amplitude of the phase-
onjugate reflectivity, with this study giving hints for the
ptimization of the structure. Finally, Section 3 shows the
nfluence of losses (both scattering at the interface and

aterial absorption in the layers) on the phase-conjugate
eflectivity, showing the detrimental effect of light local-
zation that exacerbates those losses and giving some val-
es of the maximum acceptable losses the photonic crys-
al could have.

. THEORY OF FOUR-WAVE MIXING IN A
D PHOTONIC CRYSTAL
our-wave mixing is a very useful nonlinear process used

or the characterization of third-order nonlinear
aterials.14 In this phenomenon (Fig. 1) two counter-

ropagating pump beams interact in the nonlinear mate-
ial with a signal beam to create a so-called phase-
onjugate-reflected beam that propagates
ontradirectionally to the signal beam. If all the beams
ave the same wavelength, we are in a degenerate con-
guration and the phase-matching condition is automati-
ally fulfilled, whatever the wavelength of the beams is.
s a consequence, the measurement of all the beam inten-
ities allows a direct and easy determination of the third-
rder nonlinear susceptibility. Hereafter, we show that
ight localization can greatly enhance the optical nonlin-
arities and quantitatively express the intensities of the
utput signal and conjugate intensities in the parametric
or low-pump-depletion) approximation in 1D photonic
rystals.

. Light Localization and Effective
onlinear Susceptibilities

n any nonlinear process, the amplitudes of the fields in-
eracting in the nonlinear medium are those actually ex-
sting inside the material. On the other hand, the effi-
iency of the nonlinear process is calculated using the
ntensities of the different waves outside the medium
Fig. 1). As a consequence, for the third-order nonlinear
rocesses considered here, the nonlinear polarization is
xpressed as 14

PNL
�3� ��4� = �eff

�3�Eext
�1� ��1�Eext

�2� ��2�Eext
�3� ��3�, �1�

sing the outside field amplitude E�j� �� � �j=1,3� and the

Fig. 1. Schematic principle of four-wave-mixing process.
ext j
ffective nonlinearity �eff
�3� of the effective medium, consid-

red as homogenous even if it is structured, or as

PNL
�3� ��4� = �loc

�3�Eloc
�1���1�Eloc

�2���2�Eloc
�3���3�, �2�

hen the local field amplitude Eloc
�j� ��j� �j=1,3� and the lo-

al intrinsic third-order nonlinear susceptibility tensor

loc
�3� are used.

This imposes to relate the internal (or local) fields re-
lly present in the material and creating the effect, to the
xternal fields really measured, using the relation

Eloc
�j� �r,�j� = fj�r,�j�Eext

�j� �r,�j�, �3�

here fj�r ,�j� is the local field factor of the field j at the
osition r for frequency �j.

16

The expressions giving the linear �eff
�1��r ,�4� and third-

rder nonlinear �eff
�3��r ,�1 ,�2 ,�3� effective susceptibility

ensors are then related to the corresponding local sus-
eptibility tensors �loc

�1��r ,�4� and �loc
�3��r ,�1 ,�2 ,�3�

y11,16,17:

�eff
�1��r,�4� = f4�r,�4��loc

�1��r,�4�, �4a�

�eff
�3��r,�1,�2,�3� = f4�r,�4�f1�r,�1�f2�r,�2�f3�r,�3�

��loc
�3��r,�1,�2,�3�. �4b�

Equation (4a) shows that a wave of frequency �j and
olarization êj propagating in a material where localiza-
ion occurs [i.e. where fj�r ,�j� is greater than 1] sees a
reater effective refractive index neff�r ,�j�= �1+4��êj ·�eff

�1�

r ,�j�êj��1/2 than a medium without localization having an
dentical local refractive index. Thus the light localization
s directly related to the slowing down of the light wave
ropagating in the medium.18

ig. 2. Structure of the 1D photonic crystal for four-wave-
ixing calculations. The multilayer structure is surrounded by

ir of index n0=1 at the entrance and by the substrate of index
at the output.
S
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Moreover, as shown by Eq. (4b), the localization of light
s essential for the efficiency of third-order nonlinear pro-
esses, as the effective nonlinear susceptibility increases
s the fourth power of the local field factor (supposing
ere an identical factor for all the waves). In fact, more
enerally, the nth-order effective nonlinear susceptibility
aries as the �n+1�th power of the local field factor.11,16 A
ocalization factor as low as fj�r ,�j�=3.3 induces an effec-
ive nonlinearity a hundred times greater than in the
ame material without light localization. The gain in ef-
ective nonlinear susceptibility is even a thousand times
or a localization factor of only 5.6. This light localization
ight have a different origin, either of microscopic origin

inked to the atoms of the nonlinear media or macroscopic
rigin owing to the structuring of the material at the scale
f the wavelength. In bulk material, the local field effect
s due only to the localization of electrons near the
ucleus [the local field factor fj�r ,�j� is thus maximal for

onic compounds and equal to 1 for metals].16 In subsec-
ion 2.B, we will suppose that this effect is already incor-
orated in the value of the local linear and nonlinear sus-
eptibilities of the “bulk” material used in the structures
nd will consider only the effect of the localization of light
ue to the structuring of the nonlinear material.

. Degenerate Four-Wave Mixing in Structured Materials
n this section the phenomenon of degenerate four-wave
ixing14,17 is modeled in a structured material. This ma-

erial is a 1D photonic crystal, i.e., a stack of N bilayers
ade of two different nonlinear materials of different re-

ractive indices and thicknesses (Fig. 2). Basically, the
ayers have quarter-wavelength thicknesses, but this is
ot a constraint in the modeling and those thicknesses
an be varied without any problem throughout the struc-
ure (with the consequence that the loss of periodicity pre-
ents us from finding a general analytical expression for
he transmission matrix as in previous models18).

Concerning the geometry of the beams of the four-
ave-mixing process in our device, only two beams (for-
ard pump and signal beams) are incident on the struc-

ure. The forward-pump beam is sent on the photonic
rystal with normal incidence, and the backward-pump
eam is created by its reflection on the structure (and, in
ain cases, on a mirror placed on the back side of the

hotonic crystal). The signal beam, possibly incident at a
ifferent angle, interacts with the pump beams to create
he conjugate beam. It is also reflected on the structure,
s is the reflected signal beam, which also interacts with
he pump beams to create a conjugate beam that is iden-
ical to the other one after it reflects on the structure.
his means that in fact six waves interact in the photonic
rystal through two four-wave-mixing processes: the for-
ard �EPf� and backward �EPb� pump waves, the forward

ESf� and backward �ESb� signal waves, and the forward
ECf� and backward �ECb� conjugate waves (Fig. 2).

The basis of the modeling is a transfer-matrix calcula-
ion well known to model the linear transmission and re-
ectivity of such structures.18–20 This model is general-

zed here to the case of the nonlinear propagation of the
ignal and conjugate beams using the pump local-field
actor also derived from the calculation of the linear
ropagation of the pump beams in the structure.

. Linear Propagation of the Pump Beam
or the sake of simplicity the parametric regime is as-
umed for the four-wave-mixing process, i.e., no change of
ump-beam intensities occurs owing to energy transfer
rom the pump beams toward the signal and conjugate
eams. In the same manner pump changes induced by
onlinear effects (an optical Kerr effect or two-photon ab-
orption) are neglected as well. This approximation corre-
ponds to a regime of sufficiently low intensity and small
onlinear effects; although the four-wave-mixing process
t high power is actually strongly influenced by these
ffects8, these approximations do not hamper the validity
f the results presented hereafter, since our study is de-
oted mainly to delineating the influence of the structur-
ng of the material on the effective third nonlinearity.

The transfer-matrix model19,20 allows us to calculate
he pump-beam intensities (forward and backward) at the
ntrance of each layer i.e., at position rni

�j�=0, (at the en-
rance of the jth media of index ni) taken after the inter-
ace by backward propagation of matrix produces from
he output

EPin�rni

�j� = 0,�� =�EPf�rni

�j� = 0,��

EPb�rni

�j� = 0,���
= Mni

�j�EPout =�Mni 11

�j� Mni 12

�j�

Mni 21

�j� Mni 22

�j� �	ET

0

 , �5�

ith

Mn1

�j� = 	�
k=j

N

Pn1

�k�SLR12Pn2

�k�SLR21
R21
−1R2S, �6a�

Mn2

�j� = Pn2

�j�SLR21� �
k=j+1

N

Pn1

�k�SLR12Pn2

�k�SLR21�R21
−1R2S

�for j � N�, �6b�

Mn2

�N� = Pn2

�N�SLR2S

ith the matrice for the whole structure given by

M = R01��
j=1

N

Pn1

�j�SLR12Pn2

�j�SLR21�R21
−1R2S. �7�

n all these relations Rij is the interface transfer matrix
etween two media of indices ni and nj

19,20 (index 0 refers
o incident media and index S to the substrate media),
nd Pni

�j� is the propagation matrix in the media of index

i, and thickness ei
�j�=�PC/ �4ni� for quarter-wave layers

with �PC the central wavelength of the photonic band
ap).19,20 We have extended this matrix to the case of ab-
orbing media with intensity absorption �I, which gives



l
t
t
d
t
m

w
(

a
E
t
i
t
w

T
p
t
f
c
t

U
s
t
e
e
c
o

2
a
A
l
u

Delaye et al. Vol. 22, No. 11 /November 2005 /J. Opt. Soc. Am. B 2497
Pni

�j� = 	exp�− i��2�ni�/��ei
�j��exp���iei

�j��/2� 0

0 exp�i��2�ni�/��ei
�j��exp − ���iei

�j��/2�
 . �8�
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The modeling also takes into account the scattering
osses of the structure introduced through the matrix SL
hat models the influence of the quality and roughness of
he interfaces. The scattering loss due to this roughness
espite being small can have a strong influence owing to
he large number of interfaces and light localization. This
atrix is expressed as

SL = ��1 − a�−1 0

0 1 − a� , �9�

here a is the scattering-loss coefficient of each interface
supposed here to be the same for all the interfaces).

The M matrix allows us to calculate the transmitted ET
nd reflected ER amplitudes for a given incident intensity
I (no signal is injected on the substrate side), whereas

he Mni

�j� gives the pump-beam amplitudes (used hereafter
n the calculation of the nonlinear properties of the struc-
ure) and the localization factors in each layer for the for-
ard and backward waves:

fLf�ni,j� =
EPf�rni

�j� = 0,��

EI
=

Mni11
�j�

M11
,

�10�

fLb�ni,j� =
EPb�rni

�j� = 0,��

EI
=

Mni21
�j�

M11
.

he measure of the light localization capability of the
hotonic crystal is defined by the average localization fac-
or fM, which gives the local-field enhancement of the
orward-pump beam (with similar expressions for other
onsidered beams) averaged on the whole structure, and
hat is expressed as:

fM =
1

2N�
j=1

N

�fLf�n1,j�
n1 + fLf�n2,j�
n2�. �11�

sed with a bulk media (of index n1 or n2), this expres-
ion gives a reference value of 1 for fM. As shown hereaf-
er this localization factor is larger than unity at the band
dge of photonic crystals and thus allows for considerable
nhancement of the efficiency of nonlinear optical pro-
esses, such as the four-wave-mixing process studied in
ur analysis.

. Nonlinear Propagation Matrix of Signal
nd Conjugate Beams
s in the linear case the left signal-field vector ESin is re-

ated to the right vector ESout through a matricial relation
sing the nonlinear transmission matrix M :
NL
ESin =�
ESi

ESr

ECi
*

ECr
*
� = MNLESout =�

M11
NL M12

NL M13
NL M14

NL

M21
NL M22

NL M23
NL M24

NL

M31
NL M32

NL M33
NL M34

NL

M41
NL M42

NL M43
NL M44

NL
�

��
ESt

0

ECt
*

0
� �12�

hat provides for a given input signal amplitude ESi, the
eflected signal amplitude ESr, the transmitted signal am-
litude ESt, the reflected conjugated amplitude ECr

* , and
he transmitted conjugated amplitude ECt

* , supposing that
o field is injected in the back side of the sample (Fig. 2)
s well as in the conjugated field direction (meaning ECi

*

0). Using this matrix, the amplitude transmittivity TS
nd reflectivity RS of the signal beam, as well as the am-
litude transmittivity TC

* and reflectivity RC
* of the conju-

ate beam, is expressed as

TS =
ESt

ESi
=

M33
NL

M11
NLM33

NL − M13
NLM31

NL ,

RS =
ESr

ESi
= TS�M21

NLM33
NL − M23

NLM31
NL

M33
NL � , �13�

TC
* =

ECt
*

ESi
= − TS

M31
NL

M33
NL ,

RC
* =

ECr
*

ESi
= TS�M41

NLM33
NL − M43

NLM31
NL

M33
NL � . �14�

As previously for the pump beam, the nonlinear trans-
ission matrix MNL for the 1D photonic crystal is ex-

ressed as

MNL = R01
S ��

j=1

N

Pn1

NL�j�SNLR12
S Pn2

NL�j�SNLR21
S �R21

S−1
R2S

S ,

�15�

ith the nonlinear propagation matrices Pni

NL�j�, the re-
ection matrices Rij

S, and the scattering loss matrix SNL
iven in Appendix A.

Using a process similar to the one used for the pump-
eam propagation, we are also able to easily extract from
he matricial model the amplitude of the signal and con-
ugate beam in each layer and see their repartition
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hroughout the photonic crystal, which is very important
or verifying the validity of the SVEA approximation
ade in our analysis.

. FOUR-WAVE MIXING IN A PERFECT 1D
HOTONIC CRYSTAL
sing the model described in Subsection 2.B we can simu-

ate the characteristics of degenerate four-wave mixing in
1D photonic crystal. As a basis of calculation we take a

tack made of two � /4 optically thick materials of index
1=3 and n2=2.5, corresponding approximately to the in-
ex contrast of III–V or II–VI semiconductor structures.
or the sake of simplicity, the refractive index (and non-

inear susceptibility) dispersion is neglected here. Indeed,
ts inclusion, possible within the model, would not drasti-
ally change the main conclusions that we can deduce
rom the simulations. As an example, the wavelength
ange of operation of the device considered in our analysis
s in the 700–900 nm, with a bandgap center wavelength
ocated at �PC=800 nm. To simplify the analysis and get
esults that are easily interpreted, in this first step we
onsider a perfect photonic crystal without any losses, i.e.,
eglecting scattering losses at the interface �a=0� and ab-
orption losses in the layers ��1=�2=0�.

. Light Localization in a 1D Photonic Crystal
e first consider a simple 1D photonic crystal and calcu-

ate with the model the repartition of the optical field in-

ig. 3. (a) Reflectivity and average localization factor (thick
urve) of a 1D photonic crystal of 30 pairs of layers. (b) Reparti-
ion of light intensity normalized to incident intensity inside the
tructure at different positions in the spectra; in the center of the
and gap (thick curve), at the first minima of the band edge (thin
urve) and at the second minima of the band edge (gray curve); in
ddition, the index structure is presented.
ide the structure. The structure is composed of 30 pairs
f layers. The reflectivity of such a structure shows a typi-
al forbidden bandgap in which reflectivity reaches 1, and
scillations of the reflectivity18,20 on the edge of the band-
ap due to the finite size of the structure [Fig. 3(a)]. At the
enter of the bandgap ��=800 nm�, the light penetrates
nly the first layers of the structure [see thick curve in
ig. 3(b)], and intensity decreases very rapidly inside the
hotonic crystal. At the band edge, the structure again be-
omes transparent with a low reflectivity, which would be
ero for left and right surrounding media made of the
ame materials as the structure. This high transmission
f the structure (at �=856.4 nm) coincides with a peak
alue of the average localization factor fM [see the thick
urve line in Fig. 3(a)] as the transmitted light goes out of
he structure only after having stayed a long time owing
o multiple reflections on the layer interfaces. The inten-
ity repartition shown in the thin curve of Fig. 3(b) dem-
nstrates that locally the intensity in the structure (nor-
alized to the input intensity) can be much higher than

hat injected by a factor that can reach 5. This light local-
zation also exists on the short-wavelength edge of the
andgap, but there the maxima of the stationary wave ex-
sting in the structure would be localized in the low-index
egion instead of the high-index region.1 Light localiza-
ion exists also at other minima of the reflectivity [see
ray curve in Fig. 3(b)] but then with lower localization
nd with multipeak repartition (as can be seen for the
econd minima at �=874.4 nm).

. Phase-Conjugate Reflectivity of a 1D Photonic Crystal
s shown in Subsection 2.A, the phenomenon of light lo-
alization is very favorable to the nonlinear efficiency of
he structure. However, using a simple photonic crystal,
ocalization occurs when the photonic crystal becomes
ransparent, which means that the forward-pump beam
f four-wave mixing is not generated efficiently (even if it
et exists in each layer, owing to multiple reflections). It
s thus very favorable to have a mirror at the exit of the
hotonic crystal that reflects the transmitted beam to ef-

ig. 4. Phase-conjugate reflectivity (thin curve) and average lo-
alization factor (thick curve) of a 1D photonic crystal of 30 pairs
f layers centered at �PC beyond a 20 pair Bragg mirror centered
t �B. The pump intensity in these calculations is set to
0 MW cm−2.
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ciently generate the backward-pump beam. This mirror
s also necessary to generate the backward-pump beam in
he calculation for the bulk structure, which allows a
uantitative measurement of the nonlinearity enhance-
ent brought by the structuring of the material. The easi-

st way to implement this mirror, both for simulation and
abrication of the structure, is to place at the exit of the
hotonic-crystal structure a Bragg mirror with its center
avelength positioned at the band-edge wavelength of

he photonic crystal (this is simply done by changing
lightly the thickness of the layers). In the present struc-
ure the Bragg mirror is then centered at �B=856.4 nm
increasing the thicknesses of the layers by a ratio
B /�PC), and has 20 pairs of layers, composed of the same
aterials as the studied photonic crystal.
For the calculation, the two media of the photonic crys-

al have identical nonlinear coefficients that are equal to
�0i

�3�=−1.7�10−11esu (which corresponds to the order of
agnitude of the value encountered in II–VI and III–V

emiconductor compounds16).
Spectra of Fig. 4 clearly demonstrate that the peak of

he localization factor positioned at the edge of the band-
ap (thick curve) corresponds to a peak of the phase-
onjugate reflectivity, with the secondary peaks already
bserved for all the rebounds of the band-edge reflectivity
Fig. 3(a)]. Light localization is increased compared with
he situation in the absence of the Bragg mirror, as light
ransmitted by the photonic crystal is reflected almost
ompletely by the second Bragg mirror and participates
ith the four-wave-mixing mechanism. For this calcula-

ion fM given by Eq. (11) is calculated only in the photonic
rystal, without taking into account the Bragg mirror in
hich light does not penetrate in the considered wave-

ength range. The gain in phase-conjugate reflectivity
rought by the structuring reaches almost 4 orders of
agnitude compared with the equivalent thickness of

ulk media, which immediately shows the interest of the
tructuring of the material, for nonlinear functions.

. Validity of the SVEA
ll the calculations presented here were made with a
odel using nonlinear propagation equations established

ig. 5. Evolution of the variation of the amplitude of the
orward-phase conjugate wave in the low index layers of the pho-
onic crystal for the phase-conjugate-reflectivity peak wave-
ength. The pump intensity in these calculations is set to
0 MW cm−2.
nder the SVEA, which stipulates low relative modifica-
ions of the field amplitudes for a propagation length of �.
his problem is therefore of importance for photonic crys-

als having modulation periods smaller than �. In fact, it
as already been shown that this approximation could be

nvalid in the special case of the Kerr effect in 1D photo-
ic crystals,15 at a high pump power when bistability phe-
omenon is predicted. To verify that the approximation is
alid in our device modeled well below the bistability
hreshold, the phase-conjugate amplitudes are calculated
t the input and the output of each nonlinear layer of the
tructure. Figure 5 shows the evolution of the relative
ariation of the conjugate amplitude in each layer (in fact,
he difference of these amplitudes normalized to their
um) inside the structure. The case of the forward phase-
onjugate wave in the low-index media is shown in Fig. 5,
s it gives the highest variation (the low-index media is
hicker, in the � /4 structure), and because all the other
urves have the same shape. The spatial repartition
hown in Fig. 5 shows that the maximum variation is
maller than 0.1% on a thickness of � /4, which means
hat the SVEA is actually verified for the four-wave-
ixing phenomena in a 1D photonic crystal in the regime
here bistability phenomena can be neglected.

. Influence of Structure Parameters
n this section the evolution of the phase-conjugate reflec-
ivity of the device is considered as a function of structure
arameters (number of layers and index contrast) or ex-
erimental conditions (incidence angle of the signal
eam). The influence of the number of layers of the pho-
onic crystal (for the same number of layers of the back
ragg mirror, i.e., 20 pairs of layers) is shown in Fig. 6
howing the peak phase-conjugate reflectivity as a func-

ig. 6. Phase-conjugate reflectivity of the photonic crystal (filled
ircles) and of an equivalent-thickness bulk crystal (crosses) as a
unction of the number of pairs of layers N (or the thickness of
he structure). Curves represent the theoretical variation with
he number of pairs of layers. The insets show the phase-
onjugate-reflectivity spectra of the photonic crystal for some pe-
uliar points. The pump intensity in these calculations is set to
.1 MW cm−2.
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ion of the number of layer pairs. A very strong increase of
he phase-conjugate reflectivity with the eighth power of
he number of layers pairs is shown in Fig. 6. For the bulk
edia (deposited on the same Bragg mirror to generate

he forward-pump beam), in the same condition, the
rowth is only to the second power of the crystal
hickness.14,17 The small departure to the eighth-power
ariation at small thickness (or low number of pairs of
ayers), is due to the influence of the Bragg mirror that is
lso made of nonlinear materials. Light just penetrates
he first layers of this Bragg mirror, and the relative con-
ribution of these layers to phase-conjugate reflectivity is
ignificant for small numbers of bilayers but decreases
apidly as the number of layers of the photonic crystal in-
reases.

This variation with the eighth power of N layer pairs
an be easily understood, reminding us that the effective
onlinear coefficient varies as the fourth power of the lo-
alization factor [as shown by Eq. (4b) for identical
eams], which gives the eighth power for the phase-
onjugate reflectivity. This localization factor is propor-
ional to the number of layer pairs that can be calculated
nalytically from the group-velocity expression in a pho-
onic crystal around the band edge18:

fM = �1 − T12 cos2��/2N�

T12 sin2��/2N� �1/2

→
N→+�

2

�
	1 − T12

T12

1/2

N

=
�n


n1n2

N

�
, �16�

here T12=4n1n2 / �n1+n2�2 is the intensity-transmission
actor between the media of index n1 and n2 and �n=n1
n2 is the index contrast.
It must be also underlined that the large increase in

he optical nonlinearity is accompanied by a narrowing of
he phase-conjugate reflectivity spectrum, as shown in
he insets of Fig. 6 with a reduction of the phase-
onjugate reflectivity linewidth by a factor of 1700. This
esult is in accordance with the general concept of reso-
ances, as in the case of Fabry–Perot cavities.

ig. 7. Phase-conjugate reflectivity of the photonic crystal (filled
ircles) as a function of the index contrast (with n1=3). The curve
epresents the theoretical variation with the index contrast given
y Eq. (16). The insets show the phase-conjugate-reflectivity
pectra for some peculiar points. The pump intensity in these cal-
ulations is set to 0.1 MW cm−2.
Since the localization factor also is dependant on the
ndex contrast between the two layers [see Eq.(16)], so is
he phase-conjugate reflectivity. This variation is shown
n Fig. 7 for the previous structure (with a 30 layer-pairs
hotonic crystal, and a 20 layer-pairs Bragg mirror),
here the low-index value is varied down to 1 (and the
igh index keeps its value n1=3). For each value of the

ndex contrast, the position of the Bragg mirror is ad-
usted to compensate for the variation of the position of
he band edge, with the index contrast. The phase-
onjugate reflectivity (solid circles) increases with the in-
ex contrast by several orders of magnitude. This varia-
ion is compared with the theoretical expression of the
ocalization factor given by Eq. (16), by tracing the evolu-
ion of the eighth power of this parameter, which shows a
ood accordance between the calculations. We can note
ere that, as in the case of the variation with the number
f layers, this increase is accompanied by a drastic reduc-
ion of the width of the peaks (see insets in Fig. 7) that
ay become smaller than the pulse spectrum if short-

uration pulses are used, giving some limits in the experi-
ental use of such an effect with too-short-duration

ulses.
All the results presented here suppose that all the

eams were incident normally to the structure. Experi-
entally, the necessity to extract the phase-conjugate

eam may impose an angle between the signal and pump
eams. The calculation predicts the tolerance on this
mall angle. Figure 8 shows the variation of the phase-
onjugate reflectivity as a function of the incidence angle
of the signal beam. A strong decrease by nearly four or-
ers of magnitude is demonstrated when 	 increases to
0°, followed by a second peak located at 32° with a drop
n efficiency by only 1 order of magnitude. Indeed, when
he incidence angle of the signal beam increases, an in-
rease of the optical thickness of the material arises, giv-
ng a blueshift of the reflectivity curve of the signal beam
ompared with that of the pump beam. The band edge for
he signal beam is then shifted toward a smaller wave-
ength and is no longer superimposed with that of the

ig. 8. Phase-conjugate reflectivity of the photonic crystal as a
unction of the incident angle of the signal beam. The insets show
he local field factor spectra of the pump beam (dashed curve)
nd the signal beam (solid curve) for some peculiar angles. The
ump intensity in these calculations is set to 10 MW cm−2.
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ump beam. The phase-conjugate efficiency decreases
apidly to a very small value, as light localized for the
ump beam at a used wavelength is localized for a differ-
nt wavelength for the signal beam (see insets in Fig. 8),
eading to different values of fi for the different beams in
q. (4b). Nevertheless, the phase-conjugate signal reap-
ears at large angles when the second band-edge peak of
he signal beam coincides with the first peak of the pump
eam, but as light localization is less efficient for this sec-
nd peak [see Fig. 3(b)], this second phase-conjugate re-
ectivity peak is �1 order of magnitude smaller than the
eak obtained at a small angle.
We also deduce from this curve that at a low angle the

hase-conjugate reflectivity varies rather smoothly, as it
ecreases only by a factor of two for an angle of 4.5°, and
o significant decrease of the signal is seen for an incident
ngle of the signal beam of 2°, which is important from an
xperimental point of view, since a small angle between
he beams can be tolerated, allowing an easy extraction of
he phase-conjugate beam.21

. INFLUENCE OF LOSSES ON THE
HASE-CONJUGATE REFLECTIVITY
F A 1D PHOTONIC CRYSTAL
ll the curves until now have been calculated supposing

hat the structures were perfect, i.e., lossless. The pres-
nce of losses may modify the obtained results, as light lo-
alization also corresponds to an increase of the influence
f the losses due to the multiple reflexions on each inter-
al interface of the structure. As the photons trapped in
he structure travel a long time inside it, they see several
imes the losses before leaving it, exacerbating their in-
uence.
In the evaluated photonic crystals, losses may have two

rigins: scattering at the interface between two different

ig. 9. Influence of losses on the phase-conjugate reflectivity of
he photonic crystal as a function of the number of pairs of layers

for scattering losses (filled squares) of 0.07% per interface and
or absorption losses (empty circles) of 10 cm−1 for each media of
he structure, with the reference curve without losses (filled
ircles). For both curves with losses, the dotted curves are guide-
ines for the eyes. The pump intensity in these calculations is set
o 0.1 MW cm−2.
ayers and absorption losses inside the layers themselves.
or the calculation, we separate both cases as they differ

n their influence on the phase-conjugate reflectivity. The
rst cause for losses is the absorption of the media that
ompose the photonic crystal. We take for the calculation

constant absorption of 10 cm−1 for both media. This
alue is rather large and would correspond to a bulk me-
ia operated rather close to its electronic bandgap or to a
aterial with a two-photon absorption coefficient of

0 cm GW−1 operated with an intensity 250 MW cm−2

corresponding, for example, to pulses of high fluence of
.5 mJ cm−2 with a 10 ps duration). The second cause of
osses is linked to the quality of the interfaces (especially
heir roughness) existing in the 1D photonic-crystal struc-
ures. This roughness causes very low scattering of light,
ut has a strong influence owing to the large number of
nterfaces and to light localization. Regarding the high-
uality state-of-the-art structures based on II–VI materi-
ls such as CdMnTe–CdMgTe microcavities, residual rug-
edness induces a loss of the order of 0.07% per
nterface.22

Figure 9 compares the phase-conjugate reflectivities
lotted as a function of the number of layer pair for no
osses (solid circles), absorption losses (open circles) and
cattering losses (square). In the case of absorption losses,
he reflectivity continues to increase for large number of
ayers, with a saturation that begins to appear around
00 pairs of layers. This means that the phase-conjugate
eflectivity is rather tolerant to the presence of absorption
n the media. On the other hand, the influence of scatter-
ng losses is very strong, since the phase-conjugate reflec-
ivity increases until about N=30 pairs of layers then de-
reases, until it is smaller than the reflectivity of a bulk
aterial of the same thickness for N
70. This means

hat for such a level of scattering losses the best compro-
ise is around 30 pairs of layers, with a phase-conjugate

eflectivity that will be increased by 2 orders of magni-
ude compared with bulk media (instead of 4 orders of
agnitude for a perfect structure).
We also calculated the influence of scattering losses on

he angular variation (see Fig. 10). As expected from Fig.

ig. 10. Phase-conjugate reflectivity of the photonic crystal
solid curve) as a function of the incident angle of the signal
eam. The dashed curve represents the same calculation taking
nto account scattering losses (0.07% per interface). The pump in-
ensity in these calculations is set to 10 MW cm−2.
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a strong decrease of 2 orders of magnitude appears for
he zero-angle peak, but a smaller decrease (around 1 or-
er of magnitude) is observed for the large-angle peak.
his observation is easily explained, as for this peak the
ignal-beam localization is less efficient and thus less sen-
itive to losses, giving a smaller reduction of the phase-
onjugate reflectivity.

In any case the results presented in this section defi-
itely prove that losses are main determinants of the ef-
ciency of nonlinear processes in photonic crystals. The
ase of scattering losses is particularly important, demon-
trating the need of very good interfaces between layers
aving the maximum possible index contrast.

. CONCLUSION
e have presented in this paper a model for the descrip-

ion of degenerate four-wave-mixing phenomena in a 1D
hotonic crystal. This model is based on a nonlinear ex-
ension of the transfer-matrix description of beam propa-
ation in the structure. It has been used to model the in-
uence of light localization on the enhancement of the
hase-conjugate reflectivity near the band edge of the
tructure. An increase of reflectivity varying as the eighth
ower of the number of layers is expected, as well as a
arge dependence on the index contrast of the structure.
oth of those phenomenon are accompanied by a strong
eduction of the resonance width, which may lead to some
imitation of the enhancement when ultrashort-duration
ulses are used. The model also shows a strong influence
f the losses on the nonlinear efficiency of the structure,
n influence that is shown to be greater for scattering
osses than for absorption losses for usual structures. The
ransfer-matrix description is also shown to be compatible
ith the SVEA, despite the small dimension of the struc-

ures constituting the photonic crystal. Those results, de-
pite being obtained for a 1D photonic crystal, give hints
f the optimization of more-complex structures like two-
imensional photonic crystals, for which modeling of non-
inear phenomena is still missing.

The developed model is also very versatile and can be
pplied very easily to complex structures as each layer is
efined by its own parameters (thickness, index, and non-
inear coefficient). The model then allows us to insert de-
ects in the structure, form microcavities or coupled mi-
rocavities, or model stacks of photonic crystals with
ifferent parameters or even model in extreme cases non-
eriodic structures with media having various refractive
ndices and thicknesses.

Further improvement of the model will go in the direc-
ion of the inclusion of other nonlinear effects, such as
err nonlinearity or two-photon absorption, in order to go
eyond the low-efficiency regime modeled here. Another
irection is the modeling of nondegenerate four-wave mix-
ng and its application for wavelength conversion, as well
s the extension of the transfer-matrix modeling towards
he description of two-dimensional photonic-crystal struc-
ures.

PPENDIX A
n each layer of the structure a four-wave-mixing phe-
omenon occurs that couples the forward signal beam to
he backward conjugate beam (propagating with an angle
	) and the backward signal beam to the forward conju-
ate beam (propagating with an angle −	), through inter-
ction with the forward and backward pump beams (see
ig. 2). For the modeling we define the complex amplitude
f the fields as EIj�r ,��= êIjAIj�r ,��exp ikIjr with êIj as the
olarization vector of the wave Ij (I=P, S and C, for the

pump, the signal and the conjugate beams, and j= f and b
for the forward and backward propagating waves);
AIj�r ,�� as its amplitude; and kIj as its wave vector of di-
ection k̂Ij. In the SVEA,14,17 we obtain two systems of
oupled equations (in cgs units):

k̂Sf . �ASf�r,�� = i
4�2

n�
D�êC . ��3���,�,− ��êFêBêS�APf�r,��

�APb�r,��ACb
* �r,�� −

�

2
ASf�r,��,

k̂Cb . �ACb�r,�� = i
4�2

n�
D�êC . ��3���,�,− ��êFêBêS�

�APf�r,��APb�r,��ASf
* �r,�� −

�

2
ACb�r,��,

�A1�

or the forward-signal and backward-conjugate waves,
nd an identical system of equations for the backward-
ignal and forward-conjugate wave, simply changing ASf

n ASb (and k̂Sf in k̂Sb) and ACb in ACf (and k̂Cb in k̂Cf).
In these equations, k̂Cb=−k̂Sf= �−sin 	 ,0 ,−cos 	�,

hereas k̂Cf=−k̂Sb= �−sin 	 ,0 ,cos 	�, according to the dif-
erent orientation of the beams in the problem, and � is
he intensity absorption coefficient of the media. Solving
q. (A1) for plane waves propagating in an infinite me-
ium in the direction perpendicular to the propation
irection,17 one can relate the field vector at the entrance
f each nonlinear medium (of index ni) to the field vector
t the output through the nonlinear propagation matrix

ni

NL�j� defined by

�
ESf�rni

�j� = 0,��

ESb�rni

�j� = 0,��

ECf
* �rni

�j� = 0,��

ECb
* �rni

�j� = 0,��
� = �

NLni 11

�j� 0 0 NLni 14

�j�

0 NLni 22

�j� NLni 23

�j� 0

0 NLni 32

�j� NLni 33

�j� 0

NLni 41

�j� 0 0 NLni 44

�j�
�

��
ESf�rni

�j� = L,��

ESb�rni

�j� = L,��

ECf
* �rni

�j� = L,��

ECb
* �rni

�j� = L,��
� , �A2�

ith:
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NLni 11

�j� = NLni 33

�j�*
=�cos��ni

��j�ei
�j�� +

�iei
�j�

2

sin��ni
��j�ei

�j��

�ni
��j�ei

�j� �
�exp�− i

2�ni

�
ei

�j� cos 	i� , �A3a�

NLni 44

�j� = NLni 22

�j�*
=�cos��ni

��j�ei
�j�� −

�iei
�j�

2

sin��ni
��j�ei

�j��

�ni
��j�ei

�j� �
�exp�− i

2�ni

�
ei

�j� cos 	i� , �A3b�

NLni 14

�j� = NLni 32

�j�*
= − i��ni

��j�ei
�j��exp�i�ni

�j��� sin��ni
��j�ei

�j��

�ni
��j�ei

�j� �
�exp�− i

2�ni

�
ei

�j� cos 	i� , �A3c�

NLni 41

�j� = NLni 23

�j�*
= − i��ni

��j�ei
�j��exp�− i�ni

�j��� sin��ni
��j�ei

�j��

�ni
��j�ei

�j� �
�exp�− i

2�ni

�
ei

�j� cos 	i� , �A3d�

here �ni
��j�, �ni

��j� and �ni

�j� are defined in each layer of index

i and bilayer position �j� by relations

�ni
��j�2

= �ni
��j�2

− 	�i

2

2

, �A4a�

�ni
��j� =

4�2

ni� cos 	
D��0i

�3���EPf�rni

�j� = 0,����EPb�rni

�j� = 0,���,

�A4b�

exp�i�ni

�j�� =
�0i

�3�EPf�rni

�j� = 0,��EPb�rni

�j� = 0,��

��0i

�3���EPf�rni

�j� = 0,����EPb�rni

�j� = 0,���
,

�A4c�

sing the pump beam amplitudes at the entrance of the
ayer calculated previously through Eqs. (10).

The signal beam reflection matrices Rij
S is defined as

Rij
S =

1

tninj�
1 rninj 0 0

rninj 1 0 0

0 0 1 rninj

0 0 rninj 1
� , �A5�

here
rninj
=

ni cos 	i − nj cos 	j

ni cos 	i + nj cos 	j
, tninj

=
2ni cos 	i

ni cos 	i + nj cos 	j

�A6�

or the TE-polarized beams considered in our analysis,
ropagating with angle 	i and 	j in the media of index ni
nd nj, respectively. These angles are related by the re-
raction relation ni sin 	i=nj sin 	j=sin 	 to the incident
ignal beam angle 	.

The scattering loss matrix SNL is expressed, similarly
o SL, as

SNL =�
�1 − a�−1 0 0 0

0 1 − a 0 0

0 0 �1 − a�−1 0

0 0 0 1 − a
� . �A7�
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