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We present a modeling of a degenerate four-wave-mixing nonlinear process in one-dimensional photonic crys-
tals. The model is based on the nonlinear extension of the transfer-matrix description of propagation in the
structure. The influence of light localization, near the band edge of the structure, on the enhancement of the
phase-conjugate reflectivity is studied. The phase-conjugate reflectivity is shown to increase as the eighth
power of the number of layers with an additional large dependence on the index contrast of the structure. In
both cases the enhancement is accompanied by a strong reduction of the resonance width, which may lead to
some limitation of the enhancement when ultrashort pulses are used. A strong influence of the losses on the
nonlinear efficiency of the structure is also predicted with a great importance of scattering losses at the mul-
tiple interfaces of the structure. © 2005 Optical Society of America

OCIS codes: 190.4380, 230.3990.

1. INTRODUCTION

Several functions have been successfully inserted in pho-
tonic crystals, making such devices potentially interest-
ing for optical microcircuits,”? provided nonlinear func-
tions can also be implemented on the same device. This
evidently requires the existence of very efficient third-
order optical nonlinearities on very short interaction
lengths operating at low optical power. One way to obtain
those efficient functions is to use the light localization
properties of photonic crystals linked to the group-velocity
reduction near a band extremum. This enables a large in-
crease of light intensity inside the structure, which is par-
ticularly interesting for nonlinear effects.>® Future devel-
opment of these nonlinear functions will require the
understanding of the interactions between the nonlinear-
ity and the structure of the material, for the optimization
of the photonic-crystal parameters. The development of
analytical models such as the one presented here will en-
able this comprehension and optimization.

The context of our work is the study of the influence of
the material structuring on the efficiency of the third-
order nonlinearities. We focus on the third-order nonlin-
earities for their ability to realize functions for all-optical
processing through bistability phenomenon, Kerr-phase
change, or four-wave-mixing phase conjugation and para-
metric conversion.”!® The influence of material structur-
ing on the third-order nonlinearities is very important.
The latter depends on the fourth power of the local inten-
sity in the material, which will lead to a large exaltation
of the nonlinearity of the structures, even with relatively
low localization of light.!!

Among the different nonlinear interactions, we choose
to consider degenerate four-wave mixing, which is of par-
ticular interest, as it presents the advantage of being sen-
sitive to the decrease of the group velocity or the enhance-
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ment of light localization only, without any phase-
matching problem, which is present, for example, in
second-harmonic-generation experiments.*'>!® In the
four-wave-mixing process a phase-conjugate beam is
created!* that is counterpropagating to the signal beam.
The value of the phase-conjugate reflectivity, defined as
the ratio of the output conjugate and input signal inten-
sities, gives a direct evaluation of the nonlinear efficiency
of the structure. For the sake of simplicity, the four-wave-
mixing phenomenon is the only nonlinear phenomenon
considered in our study. Influence of other nonlinear ef-
fects, such as bistability due to Kerr effect, which may oc-
cur at high intensities, is then neglected. This low-
intensity condition can be easily applied experimentally
and theoretically, leading to a simplification of the model-
ing and an easier interpretation of the numerical calcula-
tion while keeping the main features of the four-wave-
mixing process unaltered. This low-intensity regime
considered in our analysis has another consequence re-
garding the approximations made for modeling, especially
the slowly varying envelope approximation (SVEA),14
which will be fulfilled contrarily to other nonlinear phe-
nomenon such as bistability, for which validity is not nec-
essarily gained in photonic crystals.15

Section 1 presents the theoretical modeling of four-
wave mixing in a 1D photonic crystal, using the transfer-
matrix modeling that is extended to include the nonlinear
four-wave-mixing interaction between the beams. Linear
and nonlinear matrices are calculated in each layer of the
structure, a simple product of these matrix giving both
the linear and phase-conjugate reflectivity of the struc-
ture. In Section 2, these matrices are also used to calcu-
late the influence of the parameters of the structure
(number of layers, index contrast,...) and of the experi-
ment (signal beam incidence angle, wavelength,...) on the

© 2005 Optical Society of America
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localization of light and the amplitude of the phase-
conjugate reflectivity, with this study giving hints for the
optimization of the structure. Finally, Section 3 shows the
influence of losses (both scattering at the interface and
material absorption in the layers) on the phase-conjugate
reflectivity, showing the detrimental effect of light local-
ization that exacerbates those losses and giving some val-
ues of the maximum acceptable losses the photonic crys-
tal could have.

2. THEORY OF FOUR-WAVE MIXING IN A
1D PHOTONIC CRYSTAL

Four-wave mixing is a very useful nonlinear process used
for the characterization of third-order nonlinear
materials.’* In this phenomenon (Fig. 1) two counter-
propagating pump beams interact in the nonlinear mate-
rial with a signal beam to create a so-called phase-
conjugate-reflected beam that propagates
contradirectionally to the signal beam. If all the beams
have the same wavelength, we are in a degenerate con-
figuration and the phase-matching condition is automati-
cally fulfilled, whatever the wavelength of the beams is.
As a consequence, the measurement of all the beam inten-
sities allows a direct and easy determination of the third-
order nonlinear susceptibility. Hereafter, we show that
light localization can greatly enhance the optical nonlin-
earities and quantitatively express the intensities of the
output signal and conjugate intensities in the parametric
(or low-pump-depletion) approximation in 1D photonic
crystals.

A. Light Localization and Effective

Nonlinear Susceptibilities

In any nonlinear process, the amplitudes of the fields in-
teracting in the nonlinear medium are those actually ex-
isting inside the material. On the other hand, the effi-
ciency of the nonlinear process is calculated using the
intensities of the different waves outside the medium
(Fig. 1). As a consequence, for the third-order nonlinear
processes considered here, the nonlinear polarization is
expressed as 14

P (w;) = XHED

ext

(@DEGH(0)EG(w3), (1)

ext ext

using the outside field amplitude E(J)t( ) (j=1,3) and the
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effective nonlinearity X ) of the effective medium, consid-

ered as homogenous even if it is structured, or as

PRl () = XiaEla (@) Efl(w0p) B (ws), 2)

when the local field amplitude Eloc( ;) (j=1,3) and the lo-

cal intrinsic third-order nonlinear susceptlblhty tensor

X{oi are used.

" This imposes to relate the internal (or local) fields re-
ally present in the material and creating the effect, to the
external fields really measured, using the relation
Ef(r,0) =fi(r,0)EQ(r, o), 3)
where f(r, ;) is the local field factor of the field j at the
position r for frequency w;. 16
The expressions giving the linear Xeff(r wy) and third-
order nonlinear Xeff(r,a)l,wz,w3) effective susceptibility

tensors are then related to the corresponding local sus-
ceptibility tensors XIOZ(r wy) and X{S‘c)(r,wl,w%wy

by11’16’17:

X, @4) = 47, 0) Xl @4), (4a)

X, w1, 09, 03) = F4(r, 0 )f1(r, 01)fo(r, 0o)f3(r, w3)

XX{gg(’"’%,wz,ws)- (4b)

Equation (4a) shows that a wave of frequency w; and
polarization &; propagating in a material where localiza-
tion occurs [i.e. where fj(r,)) is greater than 1] sees a

greater effective refractive index neu(r, w;)) ={1+4n[é; ng;

(r,»;))é;]}'"? than a medium without localization having an
identical local refractive index. Thus the light localization
is directly related to the slowing down of the light wave
propagating in the medium.'®
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Fig. 2. Structure of the 1D photonic crystal for four-wave-
mixing calculations. The multilayer structure is surrounded by
air of index ny=1 at the entrance and by the substrate of index
ng at the output.
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Moreover, as shown by Eq. (4b), the localization of light
is essential for the efficiency of third-order nonlinear pro-
cesses, as the effective nonlinear susceptibility increases
as the fourth power of the local field factor (supposing
here an identical factor for all the waves). In fact, more
generally, the nth-order effective nonlinear susceptibility
varies as the (n+1)th power of the local field factor.!b16 A
localization factor as low as fj(r, w;)=3.3 induces an effec-
tive nonlinearity a hundred times greater than in the
same material without light localization. The gain in ef-
fective nonlinear susceptibility is even a thousand times
for a localization factor of only 5.6. This light localization
might have a different origin, either of microscopic origin
linked to the atoms of the nonlinear media or macroscopic
origin owing to the structuring of the material at the scale
of the wavelength. In bulk material, the local field effect
is due only to the localization of electrons near the
nucleus [the local field factor f;(r, ;) is thus max1mal for
ionic compounds and equal to 1 for metals].’® In subsec-
tion 2.B, we will suppose that this effect is already incor-
porated in the value of the local linear and nonlinear sus-
ceptibilities of the “bulk” material used in the structures
and will consider only the effect of the localization of light
due to the structuring of the nonlinear material.

B. Degenerate Four-Wave Mixing in Structured Materials
In this section the phenomenon of degenerate four-wave
mixing'*!” is modeled in a structured material. This ma-
terial is a 1D photonic crystal, i.e., a stack of N bilayers
made of two different nonlinear materials of different re-
fractive indices and thicknesses (Fig. 2). Basically, the
layers have quarter-wavelength thicknesses, but this is
not a constraint in the modeling and those thicknesses
can be varied without any problem throughout the struc-
ture (with the consequence that the loss of periodicity pre-
vents us from finding a general analytical expression for
the transmission matrix as in previous models®®).

Concerning the geometry of the beams of the four-
wave-mixing process in our device, only two beams (for-
ward pump and signal beams) are incident on the struc-
ture. The forward-pump beam is sent on the photonic
crystal with normal incidence, and the backward-pump
beam is created by its reflection on the structure (and, in
main cases, on a mirror placed on the back side of the
photonic crystal). The signal beam, possibly incident at a
different angle, interacts with the pump beams to create
the conjugate beam. It is also reflected on the structure,
as is the reflected signal beam, which also interacts with
the pump beams to create a conjugate beam that is iden-
tical to the other one after it reflects on the structure.
This means that in fact six waves interact in the photonic
crystal through two four-wave-mixing processes: the for-
ward (Epp and backward (Ep,) pump waves, the forward
(Egr) and backward (Eg,) signal waves, and the forward
(Ecp and backward (Ey,) conjugate waves (Fig. 2).

The basis of the modeling is a transfer-matrix calcula-
tion well known to model the linear transmission and re-
flectivity of such structures.'®2° This model is general-
ized here to the case of the nonlinear propagation of the
signal and conjugate beams using the pump local-field
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factor also derived from the calculation of the linear
propagation of the pump beams in the structure.

1. Linear Propagation of the Pump Beam
For the sake of simplicity the parametric regime is as-
sumed for the four-wave-mixing process, i.e., no change of
pump-beam intensities occurs owing to energy transfer
from the pump beams toward the signal and conjugate
beams. In the same manner pump changes induced by
nonlinear effects (an optical Kerr effect or two-photon ab-
sorption) are neglected as well. This approximation corre-
sponds to a regime of sufficiently low intensity and small
nonlinear effects; although the four-wave-mixing process
at high power is actually strongly influenced by these
effects®, these approximations do not hamper the validity
of the results presented hereafter, since our study is de-
voted mainly to delineating the influence of the structur-
ing of the material on the effective third nonlinearity.
The transfer-matrix model’®?° allows us to calculate
the pump-beam intensities (forward and backward) at the
entrance of each layer i.e., at position r =0, (at the en-
trance of the jth media of 1ndex n;) taken after the inter-
face by backward propagation of matrix produces from
the output

Ep(r=0,0)

E in 9= 0: = i
Beun(rs; @) Epy(r (r{L) =0,0)

G) )
—MU)E _ Mni 11 M"i 12 E_T
- n; Pout — Mg) MEL]) 0 ) (5)
121 122
with
N
(Hp(k)SLRmP k)SLRm)Rz Ry, (6a)
=
N
ME{; =Pg;SLR21 IT Pizkl)SLRIZPisz)SLR21 R31Rs
k=j+1
(for j # N), (6b)

M(N) P(N) S1Ros

with the matrice for the whole structure given by

N
M=R01|:HPr({iSLR12Pr({;SLR21:|R5%R2S~ (7)

j=1

In all these relations R;; is the interface transfer matrix
between two media of 1ndlces n; and nj19 20 (index 0 refers
to incident media and index S to the substrate media),
and P(’) is the propagation matrix in the media of index

n;, and thickness EU)_)\Pc/ (4n;) for quarter-wave layers
(Wlth Apc the central wavelength of the photonic band
gap).19’20 We have extended this matrix to the case of ab-
sorbing media with intensity absorption «;, which gives



Delaye et al.

i

The modeling also takes into account the scattering
losses of the structure introduced through the matrix Sy,
that models the influence of the quality and roughness of
the interfaces. The scattering loss due to this roughness
despite being small can have a strong influence owing to
the large number of interfaces and light localization. This
matrix is expressed as

- 1l-a)' o0 o
L— O 1—(1 ) ()

where a is the scattering-loss coefficient of each interface
(supposed here to be the same for all the interfaces).

The M matrix allows us to calculate the transmitted E
and reflected Er amplitudes for a given incident intensity
E; (no signal is injected on the substrate side), whereas
the M} V) " gives the pump-beam amplitudes (used hereafter
in the calculatlon of the nonlinear properties of the struc-
ture) and the localization factors in each layer for the for-
ward and backward waves:

Epf(rO =0,) Mg’jn

fo(nl,x]) = ’
EI Mll

‘ (10)
Ep(r])=0,0) My
fp(mig) ==

E, T My

The measure of the light localization capability of the
photonic crystal is defined by the average localization fac-
tor f37, which gives the local-field enhancement of the
forward-pump beam (with similar expressions for other
considered beams) averaged on the whole structure, and
that is expressed as:

M

ZNE [fisnif)\ny + fidnag)ns). (11)

Used with a bulk media (of index n; or ny), this expres-
sion gives a reference value of 1 for f3;. As shown hereaf-
ter this localization factor is larger than unity at the band
edge of photonic crystals and thus allows for considerable
enhancement of the efficiency of nonlinear optical pro-
cesses, such as the four-wave-mixing process studied in
our analysis.

2. Nonlinear Propagation Matrix of Signal

and Conjugate Beams

As in the linear case the left signal-field vector Eg;, is re-
lated to the right vector Eg,,; through a matricial relation
using the nonlinear transmission matrix My

PO (exp{—i[(2Wni)/)\]ey)}exp{[aiel(")]/Z}
m = 0
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0
exp{i[(zwn»/x]e?)}exp—{[al-e?]/z})' ®
[
Es M MYy MY MY
Es: My My My My
Bon=| mgy | =¥ Esen ™ ot e aay aa)
E, MYy My My My
Eg
0
X E*Ct (12)
0

that provides for a given input signal amplitude Eg;, the
reflected signal amplitude Eg,, the transmitted 51gnal am-
plitude Eg;, the reflected conjugated amphtude Ecr, and
the transmitted conjugated amplitude ECt’ supposing that
no field is injected in the back side of the sample (Fig. 2)
as well as in the conjugated field direction (meaning E;
=0). Using this matrix, the amplitude transmittivity 7'y
and reflectivity Rg of the signal beam, as well as the am-
plitude transmittivity Tz and reflectivity RZ of the conju-
gate beam, is expressed as

Eg MY
ESI MYEMEE - MM

Eg, MYEMY: - MY M
Rg= =Ty , (13)

TS=

_ Eg ML
Te=—7=-Ts—1>
Eg MAE

. B lM LMY - MM ]
= ZTS . (14)
Esi My

As previously for the pump beam, the nonlinear trans-
mission matrix Myy, for the 1D photonic crystal is ex-
pressed as

N
My = RS, {HPNLWS LREPYOS RS ]RiﬁRﬁs,

(15)

with the nonlinear propagation matrices PSL(]’), the re-
flection matrices Ru’ and the scattering loss matrix SNL
given in Appendix A.

Using a process similar to the one used for the pump-
beam propagation, we are also able to easily extract from
the matricial model the amplitude of the signal and con-
jugate beam in each layer and see their repartition
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throughout the photonic crystal, which is very important
for verifying the validity of the SVEA approximation
made in our analysis.

3. FOUR-WAVE MIXING IN A PERFECT 1D
PHOTONIC CRYSTAL

Using the model described in Subsection 2.B we can simu-
late the characteristics of degenerate four-wave mixing in
a 1D photonic crystal. As a basis of calculation we take a
stack made of two N\/4 optically thick materials of index
n1=3 and ny=2.5, corresponding approximately to the in-
dex contrast of III-V or II-VI semiconductor structures.
For the sake of simplicity, the refractive index (and non-
linear susceptibility) dispersion is neglected here. Indeed,
its inclusion, possible within the model, would not drasti-
cally change the main conclusions that we can deduce
from the simulations. As an example, the wavelength
range of operation of the device considered in our analysis
is in the 700-900 nm, with a bandgap center wavelength
located at A\pc=800 nm. To simplify the analysis and get
results that are easily interpreted, in this first step we
consider a perfect photonic crystal without any losses, i.e.,
neglecting scattering losses at the interface (¢ =0) and ab-
sorption losses in the layers (a;=ay=0).

A. Light Localization in a 1D Photonic Crystal
We first consider a simple 1D photonic crystal and calcu-
late with the model the repartition of the optical field in-
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Fig. 3. (a) Reflectivity and average localization factor (thick
curve) of a 1D photonic crystal of 30 pairs of layers. (b) Reparti-
tion of light intensity normalized to incident intensity inside the
structure at different positions in the spectra; in the center of the
band gap (thick curve), at the first minima of the band edge (thin
curve) and at the second minima of the band edge (gray curve); in
addition, the index structure is presented.
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Fig. 4. Phase-conjugate reflectivity (thin curve) and average lo-
calization factor (thick curve) of a 1D photonic crystal of 30 pairs
of layers centered at Apc beyond a 20 pair Bragg mirror centered

at Ag. The pump intensity in these calculations is set to
10 MW cm~2.

side the structure. The structure is composed of 30 pairs
of layers. The reflectivity of such a structure shows a typi-
cal forbidden bandgap in which reflectivity reaches 1, and
oscillations of the reﬂectivityl&zo on the edge of the band-
gap due to the finite size of the structure [Fig. 3(a)]. At the
center of the bandgap (A=800 nm), the light penetrates
only the first layers of the structure [see thick curve in
Fig. 3(b)]l, and intensity decreases very rapidly inside the
photonic crystal. At the band edge, the structure again be-
comes transparent with a low reflectivity, which would be
zero for left and right surrounding media made of the
same materials as the structure. This high transmission
of the structure (at A=856.4 nm) coincides with a peak
value of the average localization factor f3; [see the thick
curve line in Fig. 3(a)] as the transmitted light goes out of
the structure only after having stayed a long time owing
to multiple reflections on the layer interfaces. The inten-
sity repartition shown in the thin curve of Fig. 3(b) dem-
onstrates that locally the intensity in the structure (nor-
malized to the input intensity) can be much higher than
that injected by a factor that can reach 5. This light local-
ization also exists on the short-wavelength edge of the
bandgap, but there the maxima of the stationary wave ex-
isting in the structure would be localized in the low-index
region instead of the high-index reg’ion.1 Light localiza-
tion exists also at other minima of the reflectivity [see
gray curve in Fig. 3(b)] but then with lower localization
and with multipeak repartition (as can be seen for the
second minima at A=874.4 nm).

B. Phase-Conjugate Reflectivity of a 1D Photonic Crystal
As shown in Subsection 2.A, the phenomenon of light lo-
calization is very favorable to the nonlinear efficiency of
the structure. However, using a simple photonic crystal,
localization occurs when the photonic crystal becomes
transparent, which means that the forward-pump beam
of four-wave mixing is not generated efficiently (even if it
yet exists in each layer, owing to multiple reflections). It
is thus very favorable to have a mirror at the exit of the
photonic crystal that reflects the transmitted beam to ef-
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ficiently generate the backward-pump beam. This mirror
is also necessary to generate the backward-pump beam in
the calculation for the bulk structure, which allows a
quantitative measurement of the nonlinearity enhance-
ment brought by the structuring of the material. The easi-
est way to implement this mirror, both for simulation and
fabrication of the structure, is to place at the exit of the
photonic-crystal structure a Bragg mirror with its center
wavelength positioned at the band-edge wavelength of
the photonic crystal (this is simply done by changing
slightly the thickness of the layers). In the present struc-
ture the Bragg mirror is then centered at A\z=856.4 nm
(increasing the thicknesses of the layers by a ratio
Ag/\pc), and has 20 pairs of layers, composed of the same
materials as the studied photonic crystal.

For the calculation, the two media of the photonic crys-
tal have identical nonlinear coefficients that are equal to
D XE)?)=_1'7 X 10-Hesu (which corresponds to the order of
magl‘nitude of the value encountered in II-VI and III-V
semiconductor compoundslG).

Spectra of Fig. 4 clearly demonstrate that the peak of
the localization factor positioned at the edge of the band-
gap (thick curve) corresponds to a peak of the phase-
conjugate reflectivity, with the secondary peaks already
observed for all the rebounds of the band-edge reflectivity
[Fig. 3(a)l. Light localization is increased compared with
the situation in the absence of the Bragg mirror, as light
transmitted by the photonic crystal is reflected almost
completely by the second Bragg mirror and participates
with the four-wave-mixing mechanism. For this calcula-
tion fj; given by Eq. (11) is calculated only in the photonic
crystal, without taking into account the Bragg mirror in
which light does not penetrate in the considered wave-
length range. The gain in phase-conjugate reflectivity
brought by the structuring reaches almost 4 orders of
magnitude compared with the equivalent thickness of
bulk media, which immediately shows the interest of the
structuring of the material, for nonlinear functions.

C. Validity of the SVEA
All the calculations presented here were made with a
model using nonlinear propagation equations established
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under the SVEA, which stipulates low relative modifica-
tions of the field amplitudes for a propagation length of \.
This problem is therefore of importance for photonic crys-
tals having modulation periods smaller than \. In fact, it
has already been shown that this approximation could be
invalid in the special case of the Kerr effect in 1D photo-
nic crystals,15 at a high pump power when bistability phe-
nomenon is predicted. To verify that the approximation is
valid in our device modeled well below the bistability
threshold, the phase-conjugate amplitudes are calculated
at the input and the output of each nonlinear layer of the
structure. Figure 5 shows the evolution of the relative
variation of the conjugate amplitude in each layer (in fact,
the difference of these amplitudes normalized to their
sum) inside the structure. The case of the forward phase-
conjugate wave in the low-index media is shown in Fig. 5,
as it gives the highest variation (the low-index media is
thicker, in the \/4 structure), and because all the other
curves have the same shape. The spatial repartition
shown in Fig. 5 shows that the maximum variation is
smaller than 0.1% on a thickness of \/4, which means
that the SVEA is actually verified for the four-wave-
mixing phenomena in a 1D photonic crystal in the regime
where bistability phenomena can be neglected.

D. Influence of Structure Parameters

In this section the evolution of the phase-conjugate reflec-
tivity of the device is considered as a function of structure
parameters (number of layers and index contrast) or ex-
perimental conditions (incidence angle of the signal
beam). The influence of the number of layers of the pho-
tonic crystal (for the same number of layers of the back
Bragg mirror, i.e., 20 pairs of layers) is shown in Fig. 6
showing the peak phase-conjugate reflectivity as a func-
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Fig. 6. Phase-conjugate reflectivity of the photonic crystal (filled
circles) and of an equivalent-thickness bulk crystal (crosses) as a
function of the number of pairs of layers N (or the thickness of
the structure). Curves represent the theoretical variation with
the number of pairs of layers. The insets show the phase-
conjugate-reflectivity spectra of the photonic crystal for some pe-
culiar points. The pump intensity in these calculations is set to
0.1 MW em~2.
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represents the theoretical variation with the index contrast given
by Eq. (16). The insets show the phase-conjugate-reflectivity
spectra for some peculiar points. The pump intensity in these cal-
culations is set to 0.1 MW cm™2.

tion of the number of layer pairs. A very strong increase of
the phase-conjugate reflectivity with the eighth power of
the number of layers pairs is shown in Fig. 6. For the bulk
media (deposited on the same Bragg mirror to generate
the forward-pump beam), in the same condition, the
growth is only to the second power of the crystal
thickness.'*” The small departure to the eighth-power
variation at small thickness (or low number of pairs of
layers), is due to the influence of the Bragg mirror that is
also made of nonlinear materials. Light just penetrates
the first layers of this Bragg mirror, and the relative con-
tribution of these layers to phase-conjugate reflectivity is
significant for small numbers of bilayers but decreases
rapidly as the number of layers of the photonic crystal in-
creases.

This variation with the eighth power of N layer pairs
can be easily understood, reminding us that the effective
nonlinear coefficient varies as the fourth power of the lo-
calization factor [as shown by Eq. (4b) for identical
beams], which gives the eighth power for the phase-
conjugate reflectivity. This localization factor is propor-
tional to the number of layer pairs that can be calculated
analytically from the group-velocity expression in a pho-
tonic crystal around the band edgelg:

1 - Ty, cos®(w/2N) |2 2(1-Tp\"?
fM= -9 - N
le s (7T/2N) T12
An N

=7, (16)
g T

—
N+ T

where Ti9=4n1ns/(nq1+ny)? is the intensity-transmission
factor between the media of index n; and ny and An=n,
—ngy is the index contrast.

It must be also underlined that the large increase in
the optical nonlinearity is accompanied by a narrowing of
the phase-conjugate reflectivity spectrum, as shown in
the insets of Fig. 6 with a reduction of the phase-
conjugate reflectivity linewidth by a factor of 1700. This
result is in accordance with the general concept of reso-
nances, as in the case of Fabry—Perot cavities.
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Since the localization factor also is dependant on the
index contrast between the two layers [see Eq.(16)], so is
the phase-conjugate reflectivity. This variation is shown
in Fig. 7 for the previous structure (with a 30 layer-pairs
photonic crystal, and a 20 layer-pairs Bragg mirror),
where the low-index value is varied down to 1 (and the
high index keeps its value n;=3). For each value of the
index contrast, the position of the Bragg mirror is ad-
justed to compensate for the variation of the position of
the band edge, with the index contrast. The phase-
conjugate reflectivity (solid circles) increases with the in-
dex contrast by several orders of magnitude. This varia-
tion is compared with the theoretical expression of the
localization factor given by Eq. (16), by tracing the evolu-
tion of the eighth power of this parameter, which shows a
good accordance between the calculations. We can note
here that, as in the case of the variation with the number
of layers, this increase is accompanied by a drastic reduc-
tion of the width of the peaks (see insets in Fig. 7) that
may become smaller than the pulse spectrum if short-
duration pulses are used, giving some limits in the experi-
mental use of such an effect with too-short-duration
pulses.

All the results presented here suppose that all the
beams were incident normally to the structure. Experi-
mentally, the necessity to extract the phase-conjugate
beam may impose an angle between the signal and pump
beams. The calculation predicts the tolerance on this
small angle. Figure 8 shows the variation of the phase-
conjugate reflectivity as a function of the incidence angle
0 of the signal beam. A strong decrease by nearly four or-
ders of magnitude is demonstrated when 6 increases to
20°, followed by a second peak located at 32° with a drop
in efficiency by only 1 order of magnitude. Indeed, when
the incidence angle of the signal beam increases, an in-
crease of the optical thickness of the material arises, giv-
ing a blueshift of the reflectivity curve of the signal beam
compared with that of the pump beam. The band edge for
the signal beam is then shifted toward a smaller wave-
length and is no longer superimposed with that of the
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Fig. 8. Phase-conjugate reflectivity of the photonic crystal as a
function of the incident angle of the signal beam. The insets show
the local field factor spectra of the pump beam (dashed curve)
and the signal beam (solid curve) for some peculiar angles. The
pump intensity in these calculations is set to 10 MW cm™2.
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pump beam. The phase-conjugate efficiency decreases
rapidly to a very small value, as light localized for the
pump beam at a used wavelength is localized for a differ-
ent wavelength for the signal beam (see insets in Fig. 8),
leading to different values of f; for the different beams in
Eq. (4b). Nevertheless, the phase-conjugate signal reap-
pears at large angles when the second band-edge peak of
the signal beam coincides with the first peak of the pump
beam, but as light localization is less efficient for this sec-
ond peak [see Fig. 3(b)], this second phase-conjugate re-
flectivity peak is ~1 order of magnitude smaller than the
peak obtained at a small angle.

We also deduce from this curve that at a low angle the
phase-conjugate reflectivity varies rather smoothly, as it
decreases only by a factor of two for an angle of 4.5°, and
no significant decrease of the signal is seen for an incident
angle of the signal beam of 2°, which is important from an
experimental point of view, since a small angle between
the beams can be tolerated, allowing an easy extraction of
the phase-conjugate beam.?!

4. INFLUENCE OF LOSSES ON THE
PHASE-CONJUGATE REFLECTIVITY
OF A 1D PHOTONIC CRYSTAL

All the curves until now have been calculated supposing
that the structures were perfect, i.e., lossless. The pres-
ence of losses may modify the obtained results, as light lo-
calization also corresponds to an increase of the influence
of the losses due to the multiple reflexions on each inter-
nal interface of the structure. As the photons trapped in
the structure travel a long time inside it, they see several
times the losses before leaving it, exacerbating their in-
fluence.

In the evaluated photonic crystals, losses may have two
origins: scattering at the interface between two different
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layers and absorption losses inside the layers themselves.
For the calculation, we separate both cases as they differ
in their influence on the phase-conjugate reflectivity. The
first cause for losses is the absorption of the media that
compose the photonic crystal. We take for the calculation
a constant absorption of 10 em™! for both media. This
value is rather large and would correspond to a bulk me-
dia operated rather close to its electronic bandgap or to a
material with a two-photon absorption coefficient of
40 cm GW-! operated with an intensity 250 MW cm2
(corresponding, for example, to pulses of high fluence of
2.5 mJ ecm~2 with a 10 ps duration). The second cause of
losses is linked to the quality of the interfaces (especially
their roughness) existing in the 1D photonic-crystal struc-
tures. This roughness causes very low scattering of light,
but has a strong influence owing to the large number of
interfaces and to light localization. Regarding the high-
quality state-of-the-art structures based on II-VI materi-
als such as CdMnTe-CdMgTe microcavities, residual rug-
gedness induces a loss of the order of 0.07% per
interface.?

Figure 9 compares the phase-conjugate reflectivities
plotted as a function of the number of layer pair for no
losses (solid circles), absorption losses (open circles) and
scattering losses (square). In the case of absorption losses,
the reflectivity continues to increase for large number of
layers, with a saturation that begins to appear around
100 pairs of layers. This means that the phase-conjugate
reflectivity is rather tolerant to the presence of absorption
in the media. On the other hand, the influence of scatter-
ing losses is very strong, since the phase-conjugate reflec-
tivity increases until about N=30 pairs of layers then de-
creases, until it is smaller than the reflectivity of a bulk
material of the same thickness for N>70. This means
that for such a level of scattering losses the best compro-
mise is around 30 pairs of layers, with a phase-conjugate
reflectivity that will be increased by 2 orders of magni-
tude compared with bulk media (instead of 4 orders of
magnitude for a perfect structure).

We also calculated the influence of scattering losses on
the angular variation (see Fig. 10). As expected from Fig.
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Fig. 10. Phase-conjugate reflectivity of the photonic crystal
(solid curve) as a function of the incident angle of the signal
beam. The dashed curve represents the same calculation taking
into account scattering losses (0.07% per interface). The pump in-
tensity in these calculations is set to 10 MW cm™2.
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9 a strong decrease of 2 orders of magnitude appears for
the zero-angle peak, but a smaller decrease (around 1 or-
der of magnitude) is observed for the large-angle peak.
This observation is easily explained, as for this peak the
signal-beam localization is less efficient and thus less sen-
sitive to losses, giving a smaller reduction of the phase-
conjugate reflectivity.

In any case the results presented in this section defi-
nitely prove that losses are main determinants of the ef-
ficiency of nonlinear processes in photonic crystals. The
case of scattering losses is particularly important, demon-
strating the need of very good interfaces between layers
having the maximum possible index contrast.

5. CONCLUSION

We have presented in this paper a model for the descrip-
tion of degenerate four-wave-mixing phenomena in a 1D
photonic crystal. This model is based on a nonlinear ex-
tension of the transfer-matrix description of beam propa-
gation in the structure. It has been used to model the in-
fluence of light localization on the enhancement of the
phase-conjugate reflectivity near the band edge of the
structure. An increase of reflectivity varying as the eighth
power of the number of layers is expected, as well as a
large dependence on the index contrast of the structure.
Both of those phenomenon are accompanied by a strong
reduction of the resonance width, which may lead to some
limitation of the enhancement when ultrashort-duration
pulses are used. The model also shows a strong influence
of the losses on the nonlinear efficiency of the structure,
an influence that is shown to be greater for scattering
losses than for absorption losses for usual structures. The
transfer-matrix description is also shown to be compatible
with the SVEA, despite the small dimension of the struc-
tures constituting the photonic crystal. Those results, de-
spite being obtained for a 1D photonic crystal, give hints
of the optimization of more-complex structures like two-
dimensional photonic crystals, for which modeling of non-
linear phenomena is still missing.

The developed model is also very versatile and can be
applied very easily to complex structures as each layer is
defined by its own parameters (thickness, index, and non-
linear coefficient). The model then allows us to insert de-
fects in the structure, form microcavities or coupled mi-
crocavities, or model stacks of photonic crystals with
different parameters or even model in extreme cases non-
periodic structures with media having various refractive
indices and thicknesses.

Further improvement of the model will go in the direc-
tion of the inclusion of other nonlinear effects, such as
Kerr nonlinearity or two-photon absorption, in order to go
beyond the low-efficiency regime modeled here. Another
direction is the modeling of nondegenerate four-wave mix-
ing and its application for wavelength conversion, as well
as the extension of the transfer-matrix modeling towards
the description of two-dimensional photonic-crystal struc-
tures.

APPENDIX A

In each layer of the structure a four-wave-mixing phe-
nomenon occurs that couples the forward signal beam to
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the backward conjugate beam (propagating with an angle
+6) and the backward signal beam to the forward conju-
gate beam (propagating with an angle —6), through inter-
action with the forward and backward pump beams (see
Fig. 2). For the modeling we define the complex amplitude
of the fields as E[j(f‘, w)=éIJAIJ-(r, w)exp ik[jr with éIJ as the
polarization vector of the wave Ij I=P, S and C, for the
pump, the signal and the conjugate beams, and j=f and &
for the forward and backward propagating waves);
Ayi(r,») as its amplitude; and kj; as its wave vector of di-
rection IQIJ-. In the SVEA,"!" we obtain two systems of
coupled equations (in cgs units):

. 4
kgr. VAgr, 0) = i_)\D[éc X0, 0,- 0)érépéslApdr, )
= n

« o
XAPb(r’ w)ACb(r’ (l)) - EASf(r’w)’

. 4
kep - VAgp(r, 0) = i_)\D[éc X0, 0,- 0)épépés]
= n

4« (64
XApr, w)Apy(r, w)Agdr, w) - EACb(r , ),
(A1)

for the forward-signal and backward-conjugate waves,
and an identical system of equations for the backward-
signal and forward-conjugate wave, simply changing Agr
in ASb (and iésf in };Sb) and ACb in ACf (and I;Cb in };Cf)'

In these ECbz—Esz (-sin 6,0, —cos ),
whereas ];Cf= —l%sz(—sin 0,0,cos 0), according to the dif-
ferent orientation of the beams in the problem, and « is
the intensity absorption coefficient of the media. Solving
Eq. (A1) for plane waves propagating in an infinite me-
dium in the direction perpendicular to the propation
direction,17 one can relate the field vector at the entrance
of each nonlinear medium (of index n;) to the field vector
at the output through the nonlinear propagation matrix
PSL_L(’) defined by

equations,

Egfr=0,0] NLY 0 o NLY
Balr=0.01( | o NLJ, NLO, o
ErG) = 0) ()
Eif{rni =0,0] 0 NL”i 32 NL"i 33 0
Balr=00l| [NLI, 0 o ML,

Egr) =L, 0]

Eglr) =L, 0]

X\ . (A2)

Eo{r)=L,o] |’
Ey[rY =L, o]

with:
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ae? sin[aﬁ&”e@]

M N7 — 1) 5 i) T
NL"i 1n- NL”i 33 cos[ani el']+ 92 o'Vl
ni 12

271'ni

Xexp|:—i elg) cos 0i:| s (A3a)

e sin[aVe!]

NLY = Nng = cos[aﬁg’)eg’)] -

N 44 a;:(_j)el(j)
2‘7Tni .
Xexp| —1 N el(»’) cos 6; |, (A3Db)
. o | sinfa;Ve]
NLgi) 1w NLSL]; 2 i[a/,'LE’)el(’)]eXp[i ¢£{3 ] o't
nL 1
2’7Tni .
Xexp| —i eE’) cos 6; |, (A3c)
. sin[a/Ye!]
(1) I (1) ] A () ()] 0] !
NLn'i a1 NL"i 23 l[a"i e/ Jexp[~ l¢”i:| o'V
nl 12
27mi .
Xexp| -1 N el(-’) cos 6; |, (A3d)
where a;;(_j), a,;(_i) and ¢g) are defined in each layer of index

n; and biiayerlposition l(j) by relations

G _ 2 [ ’
al =al =) (Ada)

. 472 . )
a)) = ———DIx||Epdr? = 0,0][| Ep[r? = 0,0]],
i n;\ cos 6 L —

(A4b)

X6 Epdrl) = 0,0)Epy(rl) = 0,0)

F ()7 —
expli¢,)]= - . ,
P B = 0,0 [Enr =0,0)

(A4c)
using the pump beam amplitudes at the entrance of the

layer calculated previously through Eqgs. (10).
The signal beam reflection matrices R;j» is defined as

o 1t 10 0
Bozolo o 1 om | (49
nin; nn;
0 0 rup 1

where
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n; cos 6; —n;cos 6; 2n; cos 6,

.

n.= ) nn; =
"/ n;cos 6;+n;cos b "V n;cos 6;+n;cos b

(A6)

for the TE-polarized beams considered in our analysis,
propagating with angle ¢; and 6¢; in the media of index n;
and nj, respectively. These angles are related by the re-
fraction relation n,; sin §;=n; sin f;=sin 6 to the incident
signal beam angle 6.

The scattering loss matrix Sy, is expressed, similarly
to Sy, as

1-a)' 0 0 0
0 1-a 0
Sn1.= 0 0 (1-a)!' o0 (A7)
0 0 0 1-a

P. Delaye is the corresponding author and can be
reached by telephone at 33 1 69 35 87 50, by fax at 33 1 69
35 87 00, or by email at philippe.delaye@iota.u-psud.fr.

REFERENCES

1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic
Crystals (Princeton U. Press, 1995).

2. T.F. Krauss and R. M. De La Rue, “Photonic crystals in the
optical regime—past, present and future,” Prog. Quantum
Electron. 23, 51-96 (1999).

3. W. Chen and D. L. Mills, “Optical response of nonlinear
multilayer structures: bilayers and superlattices,” Phys.
Rev. B 36, 6269-6278 (1987).

4. Y. Dumeige, I. Sagnes, P. Monnier, P. Vidakovic, C.
Meriadec, and A. Levenson,”’y? semiconductor photonic
crystals,” J. Opt. Soc. Am. B 19, 2094-2101 (2002).

5. A.V. Andreev, A. V. Balakin, A. B. Kozlov, I. A. Ozheredov,
I. R. Prudnikov, A. P. Shkurinov, P. Masselin, and G.
Mouret, “Four-wave mixing in one-dimensional photonic
crystals: inhomogeneous-wave excitation,” J. Opt. Soc. Am.
B 19, 1865-1872 (2002).

6. G. J. Schneider and G. H. Watson, “Nonlinear optical
spectroscopy in one-dimensional photonic crystals,” Appl.
Phys. Lett. 83, 5350-5352 (2003).

7. A. D. Bristow, J.-P. R. Wells, W. H. Fan, A. M. Fox, M. S.
Skolnick, D. M. Whittaker, A. Tahraoui, T. F. Krauss, and
J. S. Roberts, “Ultrafast nonlinear response of AlGaAs
two-dimensional photonic crystal waveguides,” Appl. Phys.
Lett. 83, 851-853 (2003).

8. P. Xie and Z. Q. Zhang, “Optical phase conjugation in
third-order nonlinear photonic crystals,” Phys. Rev. A 69,
053806-5 (2004).

9. M. Scalora, J. P. Dowling, C. M. Bowden, and M. J.
Bloemer, “Optical limiting and switching of ultrashort
pulses in nonlinear photonic band gap materials,” Phys.
Rev. Lett. 78, 1368-1371 (1994).

10. S. John and T. Quang, “Optical bistability and phase
transitions in a doped photonic band-gap material,” Phys.
Rev. A 54, 4479-4488 (1996).

11. R. Frey, P. Delaye, and G. Roosen. “Nonlinéarités optiques
du troisieme ordre dans les cristaux photoniques,” in La
Nanophotonique, C. Delalande, A. Levenson, and H.
Rigneault, eds. (Hermes-Lavoisier, to be published).

12. V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett.
81, 4136-4139 (1998).

13. M. Centini, G. D’Aguanno, L. Sciscione, C. Sibilia, M.
Bertolotti, M. Scalora, and M. J. Bloemer, “Non-phase-
matched enhancement of second-harmonic generation in



2504

14.

15.

16.

17.
18.

J. Opt. Soc. Am. B/Vol. 22, No. 11/November 2005

multilayer nonlinear structures with internal reflections,”
Opt. Lett. 29, 1924-1926 (2004).

Y. R. Shen, The Principles of Nonlinear Optics (Wiley,
1984).

dJ. Danckaert, K. Fobelets, I. Veretennicoff, G. Vitrant, and
R. Reinisch “Dispersive optical bistability in stratified
structures,” Phys. Rev. B 44, 8214-8225 (1991).

C. Flytzanis, “Theory of nonlinear optical susceptibilities,”
in Quantum Electronics, C. L. Tang, ed. (Academic, 1975),
Vol. I, part A.

A R. W. Boyd, Nonlinear Optics (Academic, 1992).

J. M. Bendickson, J. P. Dowling, and M. Scalora, “Analytic
expressions for the electromagnetic mode density in finite,

19.

20.
21.

22.

Delaye et al.

one-dimensional, photonic band-gap structures,” Phys. Rev.
E 53, 4107-4121 (1996).

F.  Abeles, “Sur la propagation des ondes
électromagnétiques dans les milieux stratifiés,” Ann. Phys.
(Paris) 3, 505 (1948).

P. Yeh, Optical Waves in Layered Media (Wiley, 1988).

L. Razzari, D. Trager, M. Astic, P. Delaye, R. Frey, G.
Roosen, and R. André. “Kerr and four-wave mixing
spectroscopy at the band edge of one-dimensional photonic
crystals,” Appl. Phys. Lett. 86, 231106(2005).

R. André, Laboratoire de Spectrométrie Physique, B. P. 87,
38402 Saint Martin d’Heres Cedex, France (private
communication, 2003).



