Stable doped hybrid sol-gel materials for solid-state dye laser

Tran Hong Nhung, Michael Canva, Truong Thi Anh Dao, Frederic Chaput, Alain Brun, Nguyen Dai Hung, Jean-Pierre Boilot

To cite this version:

Tran Hong Nhung, Michael Canva, Truong Thi Anh Dao, Frederic Chaput, Alain Brun, et al.. Stable doped hybrid sol-gel materials for solid-state dye laser. Applied optics, 2003, 42 (12), pp.2213-2218. hal-00664956

HAL Id: hal-00664956
https://hal-iogs.archives-ouvertes.fr/hal-00664956
Submitted on 31 Jan 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Stable doped hybrid sol-gel materials for solid-state dye laser

Tran H. Nhung, Michael Canva, Truong T. A. Dao, Frédéric Chaput, Alain Brun, Nguyen D. Hung, and Jean-Pierre Boilot

Laser effects have been obtained with dye-doped hybrid xerogel samples prepared several years ago and stored in different “classical” conditions. Firstly, using the same configuration of the laser cavity as was used 4–5 years ago, we have obtained almost identical laser performances, and slope conversion efficiencies were measured up to 80% and operational lifetimes, with 1-mJ initial output energy and 10-Hz repetition rate of several hundred thousand pulses obtained. Secondly, we have introduced the new pyrromethene 605 dye into a hybrid xerogel matrix and obtained good laser performances similar to the rest of the pyrromethene family. © 2003 Optical Society of America

OCIS codes: 160.6060, 160.4890, 140.2050, 140.3600, 160.3380, 140.3580.

1. Introduction

Much research has already been devoted to solid-state dye lasers, because of their high laser efficiency and their technical and economical advantages.1–8 Many different materials have been used as a solid host for organic dyes, such as methylmethacrylate based polymers,2,9–14 sol-gel glasses,3,15 polycom glasses,16,17 hybrid materials,5,18–24 and epoxy resins.22 The key parameters concerning these materials are laser efficiency and photodegradation rate or lifetime. Recently, the most promising results have been obtained mainly with the pyrromethene-doped sol-gel hybrid materials.7,14 For these materials, slope efficiencies up to 50–86% and lifetimes of several hundred thousands pulses with 1-mJ initial energy output at 10 Hz of repetition rate have been obtained. In particular, the oxygen-free pyrromethene-doped samples have a lifetime of 10⁶ pulses.7 It has been shown that the pyrromethene dyes have higher laser efficiency and operational photostability in comparison with the other dye families, like rhodamine or perylene. With advantages such as high energy conversion, high lifetime, and thermal stability, the pyrromethene dyes are currently the most promising dyes used for solid-state laser performances. This is shown by the increase in the number of published works on pyrromethene dyes, especially 567, for solid-state lasers7,12,14,17–19,23–33 in recent years. Table 1 summarizes some of the pyrromethene data in solution and in our hybrid solid sol-gel matrix. There are currently seven commercially available pyrromethene (PM) dyes in catalogues (Exciton and Lambda-Physik): 546, 556, 567, 580, 597, 605, and 650. It is clear that the pyrromethene dye laser emissions cover the visible green–red wavelength range. As mentioned most of the published data is devoted to PM 567, as the PM 546 and PM 556 are not suited for the important 532-nm doubled-frequency Nd:YAG laser optical pumping, and therefore PM 567 corresponds to minimum wavelength shift during the dye laser emission process and thus minimum loss of energy for equal quantum conversion efficiency. Until now, only PM 567, 580, and 597 results have been well investigated.

In this communication, we report (for the first time, to our knowledge) the laser characterizations of sol-gel hybrid dye-doped samples after many years of storage in order to assess the chemical stability of our
under various conditions, immediately after they were taken from storage and, for those stored under special conditions, also after several days, in order to observe the influence that such factors as oxygen diffusion have on the samples. It appeared that, for all samples, the slope efficiencies were not affected with time, independently of their storing conditions. For example, we can see in Fig. 2 the case of a PM 567 sample characterized several weeks and several years after synthesis. All the results of slope efficiency measurements obtained for perylene orange, perylene red, rhodamine B (Rh B), PM 567, PM 580, and PM 597 are reported in Table 2. The data all correspond to single-shot use of the pump laser.

The other most important laser parameter is its operational lifetime, defined as the number of pulses that may be emitted before output energy reaches half of its initial value. With a repetition rate of 10 Hz and using a pump energy of 1 mJ, we obtained, within the data approximation, the same results for the pyrromethene-, perylene-, and rhodamine B-doped samples, as those measured 4–5 years ago.

As already demonstrated in Ref. 7, in the particular

<table>
<thead>
<tr>
<th>Pyrromethene Dye</th>
<th>λ_{Abs}^{a}</th>
<th>λ_{Fluo}^{b}</th>
<th>λ_{Laser}^{c}</th>
<th>Tunability^{d}</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM 546</td>
<td>494</td>
<td>519</td>
<td>546^{b} n. ap.</td>
<td>n. ap.</td>
</tr>
<tr>
<td>PM 556</td>
<td>498</td>
<td>533</td>
<td>586^{b} n. ap.</td>
<td>n. ap.</td>
</tr>
<tr>
<td>PM 567</td>
<td>518 520^{d}</td>
<td>547 545^{c}</td>
<td>567^{b} 560^{d}</td>
<td>545–585^{d}</td>
</tr>
<tr>
<td>PM 580</td>
<td>519 522^{d}</td>
<td>550 548^{d}</td>
<td>580^{b} 568^{d}</td>
<td>545–585^{d}</td>
</tr>
<tr>
<td>PM 597</td>
<td>524 525^{d}</td>
<td>557 570^{d}</td>
<td>593^{b} 588^{d}</td>
<td>572–612^{d}</td>
</tr>
<tr>
<td>PM 605</td>
<td>545 543^{d}</td>
<td>582 579^{d}</td>
<td>590^{b} 585–625^{d}</td>
<td>590–620</td>
</tr>
<tr>
<td>PM 650</td>
<td>590 612</td>
<td>630^{f}</td>
<td>under study</td>
<td>604–630</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pyrromethene Dye</th>
<th>λ_{Abs}^{a}</th>
<th>λ_{Fluo}^{b}</th>
<th>λ_{Laser}^{c}</th>
<th>Tunability^{d}</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM 546</td>
<td>494</td>
<td>519</td>
<td>546^{b} n. ap.</td>
<td>n. ap.</td>
</tr>
<tr>
<td>PM 556</td>
<td>498</td>
<td>533</td>
<td>586^{b} n. ap.</td>
<td>n. ap.</td>
</tr>
<tr>
<td>PM 567</td>
<td>518 520^{d}</td>
<td>547 545^{c}</td>
<td>567^{b} 560^{d}</td>
<td>545–585^{d}</td>
</tr>
<tr>
<td>PM 580</td>
<td>519 522^{d}</td>
<td>550 548^{d}</td>
<td>580^{b} 568^{d}</td>
<td>545–585^{d}</td>
</tr>
<tr>
<td>PM 597</td>
<td>524 525^{d}</td>
<td>557 570^{d}</td>
<td>593^{b} 588^{d}</td>
<td>572–612^{d}</td>
</tr>
<tr>
<td>PM 605</td>
<td>545 543^{d}</td>
<td>582 579^{d}</td>
<td>590^{b} 585–625^{d}</td>
<td>590–620</td>
</tr>
<tr>
<td>PM 650</td>
<td>590 612</td>
<td>630^{f}</td>
<td>under study</td>
<td>604–630</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pyrromethene Dye</th>
<th>λ_{Abs}^{a}</th>
<th>λ_{Fluo}^{b}</th>
<th>λ_{Laser}^{c}</th>
<th>Tunability^{d}</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM 546</td>
<td>494</td>
<td>519</td>
<td>546^{b} n. ap.</td>
<td>n. ap.</td>
</tr>
<tr>
<td>PM 556</td>
<td>498</td>
<td>533</td>
<td>586^{b} n. ap.</td>
<td>n. ap.</td>
</tr>
<tr>
<td>PM 567</td>
<td>518 520^{d}</td>
<td>547 545^{c}</td>
<td>567^{b} 560^{d}</td>
<td>545–585^{d}</td>
</tr>
<tr>
<td>PM 580</td>
<td>519 522^{d}</td>
<td>550 548^{d}</td>
<td>580^{b} 568^{d}</td>
<td>545–585^{d}</td>
</tr>
<tr>
<td>PM 597</td>
<td>524 525^{d}</td>
<td>557 570^{d}</td>
<td>593^{b} 588^{d}</td>
<td>572–612^{d}</td>
</tr>
<tr>
<td>PM 605</td>
<td>545 543^{d}</td>
<td>582 579^{d}</td>
<td>590^{b} 585–625^{d}</td>
<td>590–620</td>
</tr>
<tr>
<td>PM 650</td>
<td>590 612</td>
<td>630^{f}</td>
<td>under study</td>
<td>604–630</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pyrromethene Dye</th>
<th>λ_{Abs}^{a}</th>
<th>λ_{Fluo}^{b}</th>
<th>λ_{Laser}^{c}</th>
<th>Tunability^{d}</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM 546</td>
<td>494</td>
<td>519</td>
<td>546^{b} n. ap.</td>
<td>n. ap.</td>
</tr>
<tr>
<td>PM 556</td>
<td>498</td>
<td>533</td>
<td>586^{b} n. ap.</td>
<td>n. ap.</td>
</tr>
<tr>
<td>PM 567</td>
<td>518 520^{d}</td>
<td>547 545^{c}</td>
<td>567^{b} 560^{d}</td>
<td>545–585^{d}</td>
</tr>
<tr>
<td>PM 580</td>
<td>519 522^{d}</td>
<td>550 548^{d}</td>
<td>580^{b} 568^{d}</td>
<td>545–585^{d}</td>
</tr>
<tr>
<td>PM 597</td>
<td>524 525^{d}</td>
<td>557 570^{d}</td>
<td>593^{b} 588^{d}</td>
<td>572–612^{d}</td>
</tr>
<tr>
<td>PM 605</td>
<td>545 543^{d}</td>
<td>582 579^{d}</td>
<td>590^{b} 585–625^{d}</td>
<td>590–620</td>
</tr>
<tr>
<td>PM 650</td>
<td>590 612</td>
<td>630^{f}</td>
<td>under study</td>
<td>604–630</td>
</tr>
</tbody>
</table>

Aging of Dye Doped Hybrid Sol-Gel Materials

The samples under investigation reported in this section are pyrromethene (567, 580, and 597), perylene (orange and red) and rhodamine (B) doped matrices prepared between 1995 and 1996 whose initial performances as gain media of solid-state lasers were reported previously. The samples were stored either under nitrogen atmosphere or in normal ambient air; some were stored in a dry environment, others in a humid one, most of them in absence of light.

To study the samples, we used the same configuration of the laser cavity as before, depicted in Fig. 1 and reported in our previous paper, i.e., a 10-cm-long stable plano-concave linear cavity. The concave mirror, with a 10-m radius of curvature, is dichroic, with T_{in} = 80% at 532 nm, and R_{in} > 80% in the 550–650 nm range. The flat output coupler transmits 90% energy in the 550–650 nm range. The excitation laser is a frequency-doubled Nd:YAG emitting 6-ns pulse FWHM at a 532-nm wavelength; its repetition rate may be varied between a single shot and 10 Hz.

We measured the slope efficiency of samples stored under various conditions, immediately after they were taken from storage and, for those stored under special conditions, also after several days, in order to observe the influence that such factors as oxygen diffusion have on the samples. It appeared that, for all samples, the slope efficiencies were not affected with time, independently of their storing conditions. For example, we can see in Fig. 2 the case of a PM 567 sample characterized several weeks and several years after synthesis. All the results of slope efficiency measurements obtained for perylene orange, perylene red, rhodamine B (Rh B), PM 567, PM 580, and PM 597 are reported in Table 2. The data all correspond to single-shot use of the pump laser.

The other most important laser parameter is its operational lifetime, defined as the number of pulses that may be emitted before output energy reaches half of its initial value. With a repetition rate of 10 Hz and using a pump energy of 1 mJ, we obtained, within the data approximation, the same results for the pyrromethene-, perylene-, and rhodamine B-doped samples, as those measured 4–5 years ago.

As already demonstrated in Ref. 7, in the particular

![Fig. 1](image-url)

Fig. 1. Configuration of the laser cavity. The cavity is linear, 10 cm long, and plano-concave. The input mirror is dichroic with a 10-m radius, T_{in} = 80% at 532 nm, and R_{in} > 80% in the 550–650 nm range. The flat output coupler has T_{out} = 90% in the 550–650 nm range. The Nd:YAG laser delivers pulses with 6-ns FWHM at 532 nm and 10 Hz.
Fig. 2. Laser conversion efficiency of a PM 567 doped sample prepared in April 1996. (1) conversion efficiency of 76% as obtained in 1996, (2) conversion efficiency of 80% as obtained in 2001. The damage threshold is almost the same: input energy of ~8 mJ.

In the case of the pyrromethene-doped samples (PM 567, PM 580, and PM 597), we observe that the operational lifetime is not affected by pumping repetition rate when varied in the 0.2–10 Hz range, indicating the absence of nonlinear thermally induced extra degradation for these molecules.

With these samples, we also used more powerful input pulse energy in order to start the measurements with laser output energy of 1 mJ for the same samples (repetition rate, 10 Hz). For example, the upper portion of Fig. 3 shows a lifetime of about 2×10^3 pulses for a PM 597-doped xerogel sample (5.5 \times 10$^{-4}$ mol/l concentration; 1-cm thickness) stored for 5 years. For all of the pyrromethene-doped samples studied in these conditions, we measured lifetimes of several hundred thousand pulses (shown in Table 3).

We also repeated the procedure, degassing a sample under vacuum and placing it in a sealed cell. With such “oxygen free and protected” PM 597-doped sample, the slope conversion efficiency was not affected and the operational lifetime was increased 5-fold from 2×10^5 to above 10^6 pulses (lower portion of Fig. 3).

These results indicate that such xerogel organo-mineral host matrices doped with organic chromophores are chemically stable. Their properties, as measured by their use as efficient gain media of solid-state dye lasers, remain unchanged over periods of several years (>5 years). This may be due to the fact that the solid matrix is composed of a three-dimensional inorganic network of siloxane bridges (Si-O-Si) with covalently bonded methyl–CH$_3$ groups, the chromophores being inserted in this network. The organic methyl group provides the organic dye with the necessary environment for efficient fluorescence emission, i.e., weak electron–phonon coupling. The rigid-lattice inorganic network protects the dyes from impurities, in particular preventing oxygen attack over time. Practically speaking, the hybrid matrix provides an almost ideal microscale local environment for the dye molecules trapped within the pore. Further physicochemical investigations of doped matrix aging, however, are necessary in order to better understand eventual aging mechanisms.

Table 2. Laser Conversion Efficiency of Dye Doped Hybrid Xerogel Samples Prepared in 1995 and 1996; Measurements Were Made in 1996 and at the Beginning of 2001a

<table>
<thead>
<tr>
<th>Dye and Slope efficiency (%)</th>
<th>PO</th>
<th>PR</th>
<th>PM 567</th>
<th>PM 580</th>
<th>PM 597</th>
<th>RhB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996</td>
<td>52</td>
<td>12</td>
<td>76</td>
<td>71</td>
<td>60</td>
<td>30</td>
</tr>
<tr>
<td>2001</td>
<td>55</td>
<td>13</td>
<td>80</td>
<td>70</td>
<td>55</td>
<td>31</td>
</tr>
</tbody>
</table>

aConcentration of perylene orange (PO) and rhodamine B (RhB) is 2×10^{-4} mol/l; concentration of perylene red (PR), PM 567, PM 580, and PM 597 is 5.5 \times 10$^{-4}$ mol/l. The measurements have an error bar estimated at a few percent. All of the results are obtained with a single-shot use of the pump laser.

Table 3. Lifetimes ($E_{\text{output}} > 1/2 E_{\text{initial}}$) of Three Pyrromethene Doped Samples, $c = 5.5 \times 10^{-4}$ mol/l. Operation Conditions: $E_{\text{initial}} = 1$ mJ, Repetition Rate = 10 Hz. Data Error Bar Is ~5%.

<table>
<thead>
<tr>
<th>Lifetime ($\times 10^5$ pulses)</th>
<th>PM 567</th>
<th>PM 580</th>
<th>PM 597</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996</td>
<td>190</td>
<td>300</td>
<td>190</td>
</tr>
<tr>
<td>2001</td>
<td>180</td>
<td>260</td>
<td>210</td>
</tr>
</tbody>
</table>
B. Laser Performance of Pyrromethene 605 Doped Hybrid Solid Matrix

The second novel result in this communication concerns the introduction of PM 605 into hybrid sol-gel material. The method for general synthesis of hybrid xerogel materials is identical to the other chromophore doped systems we have reported on, and has been previously described. Sol-gel materials doped with PM 605 were prepared from an organically modified precursor specifically, methyltriethoxysilane. Hydrolysis of the silicon alkoxides was performed under acidic conditions with acetone as the common solvent. After several hours of hydrolysis at room temperature, a small amount of amine-modified silane, 3-triethoxysilylpropylamine, was added to neutralize the acidity of the medium, thereby increasing the polymerization reaction rate. The acetonic solution of PM 605, Exciton, Inc, was then added to yield a concentration in the range from 10^{-4} to 5.5×10^{-4} mol/l. Such sol-gel protocol has been monitored using NMR 29Si signal. Dried samples are finally cut and polished to optical quality about nanometer rms. Typical absorption and fluorescence spectra of such material are presented in Fig. 4.

The laser characterization of PM 605-doped samples was measured with the same laser cavity configuration as described above (Fig. 1). Figure 5 represents the laser conversion efficiency obtained in 2001 of PM 605-doped sample prepared 5 years ago. Figure 6 shows the output energy evolution of one PM 605 xerogel-doped sample with pumping conditions of 1 mJ/pulse at 10 Hz; the lifetime is close to 2×10^5 pulses. The results of laser conversion and operational lifetime (for initial output energy of 1 mJ/pulse at 10-Hz repetition rate) as a function of dye concentration are presented in Table 4. The best slope efficiency of 68% is achieved with a concentration of 2×10^{-5} mol/l, and the best lifetime of 1×10^5 pulses is obtained for the highest sample concentration of 5.5×10^{-4} mol/l. As already known, the best lifetimes are effectively obtained with overconcentrated samples with respect to conversion efficiency. As in the case of the other pyrromethenes (567, 580, and 597), the operational lifetime of PM 605-doped samples are not affected by the repetition rate in range from 0.2 to 10 Hz. The tunability achieved with a diffraction grating in Littrow configuration is linked to the large fluorescent band of the dye molecules; we obtained 585–625 nm for sample concentration of 2×10^{-4} mol/l, pumped at an energy of about 1 mJ, typically 3 times above threshold. Such data, although not reported at the time, had been obtained shortly after their synthesis and confirmed recently as for the other samples reported in the preceding section. It can be noted that the PM 605 dye is the most efficient pyrromethene dye we have tested so far on the red edge of the spectral band covered by this family. However, on the blue side of PM 605, PM597 would be preferred.

3. Conclusion

Results of dye-doped sol-gel materials used as gain media of laser systems, studied both shortly after material synthesis and after several years of storage in different conditions, demonstrate the excellent chemical stability of these materials. The data show
Table 4. Laser Characteristics of PM 605 Doped Xerogel Samples as a Function of Dye Concentration

<table>
<thead>
<tr>
<th>Concentration (×10^{-4} mol/l)</th>
<th>0.1</th>
<th>0.2</th>
<th>0.55</th>
<th>1</th>
<th>2</th>
<th>5.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slope efficiency (%)</td>
<td>24</td>
<td>68</td>
<td>63</td>
<td>60</td>
<td>57</td>
<td>58</td>
</tr>
<tr>
<td>Lifetime (in 10^3 number of pulses)</td>
<td><0.1</td>
<td>4</td>
<td>11</td>
<td>52</td>
<td>98</td>
<td>100</td>
</tr>
</tbody>
</table>

* The laser conversion efficiency corresponds to a single-shot operation of the laser system. The lifetime was measured with an initial output energy of approximately 1 mJ/pulse at 10 Hz.

conclusively that the excellent conversion efficiencies and relatively good operational lifetimes do not evolve with time. This is the first time (to our knowledge) that such results, very significant for future practical applications outside the laboratory, are being published for such hybrid dye-doped materials.

In addition, we also report the successful use of PM 605-doped hybrid sol-gel material for solid-state dye laser. Efficiency is comparable with previously reported samples of the same family: conversion efficiency up to 68%, tunability in the 585–625 nm range (extending the spectral range of this “PM-doped” family in the red), and operational lifetime of over 10^5 pulses in the millijoule regime.

These results, especially those concerning the pyrromethene family, are very promising and encouraging in terms of future applications in which solid-state dye-doped materials could well partially replace conventional liquid doped solutions.

This work was partially supported by the bilateral collaboration project 9073 between the Centre National de la Recherche Scientifique (France) and the National Center for Sciences and Technology (Vietnam).

References

20 April 2003 / Vol. 42, No. 12 / APPLIED OPTICS 2217