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Abstract: We report what we believe to be the first Yb:SrF2 regenerative 

femtosecond amplifier. The regenerative amplifier produces 325-fs pulses 

at 100-Hz repetition rate with an energy before compression of 1.4 mJ. The 

interest of Yb:SrF2 in such regenerative amplifiers and its complementarity 

to its well-known isotype Yb:CaF2 is also discussed. 
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1. Introduction  

The rising demand for efficient micro-processing laser sources has led to the development of 

high repetition rate ultra-short pulse solid-state lasers. Regenerative amplifiers permit 

amplification of ultra-short pulses with a gain of several orders of magnitude [1]. However, 

gain narrowing limits the pulse duration after amplification so that crystals with broad gain 

spectrum are needed to obtain really short pulses. Furthermore, an energy level around 1 mJ 

is required, which implies that materials with long fluorescence lifetimes should be used. 

Spectroscopic and thermal properties of ytterbium-doped (Ca, Ba, Sr)F2 laser crystals 

make them ideal candidates for high power laser applications [2,3]. Their crystallographic 

properties are well-known [4]. Specifically, there has been a recent renewed interest in 

Yb:CaF2 [5]. Indeed, its high thermal conductivity, 9.7W.m
-1

.K
-1

 for an undoped crystal, its 

broad and smooth emission and absorption cross sections, owing to the particular Yb
3+

 cluster 

responsible for the lasing properties inside the doped crystal [4,6], and its long fluorescence 

lifetime (2.4 ms), enable the generation of energetic laser pulses at different repetition rates. 

Based on Yb:CaF2, a terawatt system already generated 197-mJ, 192-fs pulses at a repetition 

rate of 1 Hz [7], and a regenerative amplifier system was used to generate 0.8-mJ, 178-fs 

pulses at a 500 Hz repetition rate [8]. Furthermore, at cryogenic temperature, a co-doped 

Yb
3+

,Na
+
:CaF2 amplifier [9] has delivered 173-fs, 2.5-mJ pulses at a 1 kHz repetition rate and 

a Yb
3+

:CaF2 amplifier has already produced 200-fs, 6-mJ pulses at 500 Hz repetition rate 

[10]. 

At room temperature the spectroscopic characteristics of Yb:CaF2 and Yb:SrF2 are very 

similar. However, each of them has its own advantages, a higher peak absorption cross 

section around 980 nm and a longer fluorescence lifetime (2.9 ms) for Yb:SrF2 [2,11], and a 

wider and larger gain cross section spectrum for Yb:CaF2 [2]. In a regenerative amplifier 

configuration, the longer fluorescence lifetime is crucial since it permits higher energy 

storage, which leads potentially to higher energy pulses with repetition rates in the 100 Hz 

range. We also notice that the Yb:SrF2 gain cross section spectrum is shifted to shorter 

wavelengths in comparison to the Yb:CaF2 one. This is interesting for addressing different 

wavelengths.  

Moreover, reference [2] indicates that crystal growth seems to lead to comparable optical 

qualities. Indeed for a 2.6%Yb-doped CaF2 and a 2.9%Yb-doped SrF2, the authors measured 

about the same laser threshold, the same slope efficiency and the same wavelength tunability. 

Furthermore, because of the simple cubic structure of these materials, high optical quality 

ceramics can be prepared [12-15]. Indeed, laser oscillations under diode pumping have been 

http://cmdo.cnrs.fr/
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recently obtained with slope efficiencies not far from those obtained with single crystals of 

similar compositions [12-14].  

Finally, these very close properties have also permitted to obtain, with single crystals, 

relatively similar results in femtosecond operation. Ultra-short mode-locked oscillators have 

been demonstrated, with a pulse duration of 99 fs and an average output power of 380 mW 

for Yb:CaF2 [16], and 143 fs with a power of 450 mW for Yb:SrF2 [17]. The pulse duration 

was shorter with Yb:CaF2 because of Kerr lens-assisted mode-locking, which was not 

observed in the case of Yb:SrF2 because of stability concern probably due to the longer 

emission lifetime of Yb:SrF2 compared to Yb:CaF2.  

From the amplification point of view, the longer lifetime of Yb:SrF2 becomes a strong 

advantage for energy storage. In fact, the operating regimes addressed by these two crystals in 

amplifier configuration are not exactly the same: for high average power laser amplification, 

Yb:CaF2 shows more interesting thermal properties [18],  whereas, from the point of view of 

energy storage and energy extraction, Yb:SrF2 seems more appropriate, especially at low 

repetition rate. It is therefore interesting to investigate the potential of Yb:SrF2 in a 

regenerative amplifier and compare the results with its more popular isotype Yb:CaF2. 

For that purpose, we present here a room-temperature diode-pumped Yb:SrF2 

regenerative amplifier, in order to compare the performances of Yb:SrF2 to Yb:CaF2 and 

discuss its potential in short-pulse amplifiers.  

2. Experimental setup 

The experiment is performed with a 4-mm-long, 2.9%Yb-doped SrF2 crystal positioned at 

Brewster angle and mounted on a copper holder inside the cavity. The cavity is presented in 

fig. 1, and is very similar to the one described in [8], which is essential to allow a good 

comparison with the 2.6%Yb-doped CaF2.  

 

 
    

Fig. 1 Experimental setup 

The seed pulses are generated by a broadband Yb:CALGO oscillator, at a repetition rate of 27 

MHz [19], with a spectrum of 15 nm centered at 1043 nm. They are stretched up to 260 ps 

with a transmission grating (1600 l/mm). Then, a thin-film polarizer (TFP), a Faraday rotator 

and a half-wave plate separate the input and the output beam of the regenerative amplifier. 

The regenerative cavity has a length around 1.5 m, contains a TFP and a BBO Pockels cell 

(PC) for polarization switching, to inject seed pulses from the oscillator and extract amplified 

pulses. The PC acts as a quarter-wave plate at 45° in static regime, and as a half-wave plate 

with high voltage. The crystal is longitudinally pumped through a dichroic mirror by a 13W-

fiber-coupled laser diode, emitting at 980 nm (200 µm core diameter with a NA of 0.22).  



We optimize the overlap between the laser and the pump beams inside the crystal using two 

50-mm focal length triplets, resulting in a focal spot of 200 µm. The chirped pulses are finally 

compressed with two transmission gratings (1600 l/mm) with an overall efficiency of 60%. 
 

3. Results  

The Q-switched regime permits to evaluate the achievable energy, average power and 

spectrum before regenerative configuration. At a low repetition rate of 100 Hz, we obtain up 

to 1.4 mJ, and at a high repetition rate of 5 kHz, the power is 580 mW. The spectrum presents 

two peaks (fig. 2) at 1027 and 1040 nm. The peak at 1027 nm is the highest, so that despite 

the shift between the oscillator spectrum and the Yb:SrF2 gain bandwidth, we expect the 

amplified spectrum to be shifted towards shorter wavelengths. In order to benefit from the 

entire gain spectrum we use a broad spectral bandwidth oscillator centered at 1040 nm that 

exhibits a low but non-negligible spectral intensity at 1027 nm. In this case the lower gain 

peak at 1040 nm is seeded with more spectral energy density than the intense peak at 1027 

nm to counterbalance the smaller gain at 1040 nm.  

 
Fig. 2 Evolution of the spectrum in Q-switched and injected regime (black-red), and oscillator spectrum (blue) 

 

The obtained amplified spectrum shown in fig. 2 shows that the wavelength shift between 

the oscillator and the amplifier gain is too large and does not allow broadband amplification, 

since only a weak shoulder appears on the short wavelength side of the amplified spectrum. 

In these conditions, the spectral bandwidth (FWHM) of the amplified pulse is only 5.8 nm 

(fig. 2). This leads to a pulse duration of about 330 fs almost independent of the repetition 

rate. The pulse duration with Yb:SrF2 is longer than with Yb:CaF2 (178 fs) because in the 

latter case it was possible to amplify simultaneously the two peaks located at 1036 nm and 

1047 nm. 

With Yb:SrF2, at 100 Hz repetition rate, we obtain a pulse duration of 325 fs for a 

spectral bandwidth of 5.8 nm (FWHM), as measured with a frequency-resolved optical gating 

(SHG-FROG) and an autocorrelator (fig. 3). The Fourier transform-limited pulse duration 

with this measured spectrum is 305 fs. The difference comes from a small amount of high-

order uncompensated spectral phase as shown on the SHG-FROG phase measurement (fig. 

3). The energies before and after compression are 1.4 mJ and 850 µJ respectively, which 

leads to an-optical-to-optical efficiency of 1.1% before compression. Furthermore, with a 

pump absorption of 52%, the laser/absorbed pump power efficiency is about 2.1%. We think, 

this relatively low efficiency is mainly due to a lower gain compared to Yb:CaF2. The build-



up time in the present case is 1.7 µs compared to 1.4 µs in the case of Yb:CaF2. The beam 

profile has a Gaussian shape, with M
2 
< 1.1 both in vertical and horizontal directions. 

 

 

 
Fig. 3 Recompressed pulse measurement with SHG-FROG at 100-Hz repetition rate 

 

The pulse energy and average output power versus repetition rate are plotted in figure 4 

after compression. At high repetition rate, the energy is strongly reduced and the output 

power reaches 540 mW before compression and 320 mW after. In these conditions, the 

optical-to-optical efficiency is 4.2 % prior to compression, and due to the pump absorption 

increase to 58 %, we obtain a laser/absorbed pump power efficiency of 7.2 %.  

 

 
Fig. 4 Evolution of output pulse energy and average power after compression versus repetition rate 

4. Discussion 

We have obtained shorter pulses with an Yb:CaF2 regenerative amplifier, mainly due to the 

better overlap between the oscillator and the Yb:CaF2 gain spectra. Indeed, the Yb:SrF2 gain 

spectrum is shifted to shorter wavelengths, and only a part of the spectrum is amplified. The 

spectrum obtained in the Q-switched regime gives information about the material gain 

spectrum. In this regime, when we observe (fig. 5) spectra obtained with Yb:CaF2 and 

325 fs 5.8 nm 



Yb:SrF2, we notice that they are remarkably complementary. In fact, the two spectra have a 

“camel” shape, with peaks located at 1027 and 1041 nm and a dip at 1036 nm for Yb:SrF2, 

and peaks at 1036 and 1047 nm and a dip at 1041 nm for Yb:CaF2. Thus, by combining the 

two materials we should obtain a broadband gain spectrum between 1025 and 1050 nm. 

Seeded by a broadband oscillator, with a spectrum centered at 1038 nm, a regenerative 

amplifier with both crystals in the cavity should lead to sub-100fs laser pulses, with the 

potential for a few millijoules pulses at a high repetition rate. 

 

 
Fig. 5 Yb:SrF2 and Yb:CaF2 spectra in a Q-switched regime 

 

Another way to obtain this very broad spectrum with both crystals is to combine them 

into one single mixed Yb:CaxSr1-xF2 crystal or ceramic [12-14]. As already demonstrated in 

reference [13], smooth and very broad spectra can be obtained for example with Yb:CaF2-

SrF2 and Yb:SrF2-BaF2 materials. 

5. Conclusion 

We have demonstrated the first diode-pumped Yb:SrF2 regenerative amplifier at high 

repetition rate. At a 100 Hz repetition rate, we obtain 330-fs pulses with an energy of 850 µJ 

(after compression). The highest average power achieved at high repetition rate is 540 mW 

prior to compression, which corresponds to an optical-to-optical efficiency of 4.2%. These 

results are interesting despite the fact they are less impressive than with Yb:CaF2 in the same 

conditions. Indeed, the gain spectra of these crystals happen to be very complementary, and 

open an almost flat gain window between 1025 nm and 1050 nm.  Shorter pulses with a high 

energy at a high repetition rate should be obtained by seeding the amplifier with a broadband 

oscillator centered at 1034 nm, and by using a combination of Yb:CaF2 and Yb:SrF2 crystals. 
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