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Abstract

We study quantum transport in anisotropic 3D disorder and show that non rotation invariant cor-

relations can induce rich diffusion and localization properties. For instance, structured finite-range

correlations can lead to the inversion of the transport anisotropy. Moreover, working beyond the

self-consistent theory of localization, we include the disorder-induced shift of the energy states and

show that it strongly affects the mobility edge. Implications to recent experiments are discussed.
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Coherent transport in disordered media is strongly affected by anisotropy effects. This

occurs in a variety of systems, e.g. electrons in MOSFETs [1], diffusion-wave spectroscopy [2],

biomedical imaging [3], and light in liquid crystals [4], phosphides [5], or microcavities [6]. So

far, theoretical studies mainly focused on models of disorder made with isotropic impurities

in anisotropic media [7, 8] or stretched scatterers in isotropic media [9], which fairly describe

the above systems. However, much less is known about coherent transport in disorders with

more complex anisotropic correlations.

Here we study disorders with structured, anisotropic, finite-range correlations and show

that they can lead to rich diffusion and localization properties. This issue is particularly

relevant to optical disorder, which correlations can be controlled [10], and we focus on the

two configurations recently used to study Anderson localization (AL) of matter waves [11,

12]. Using the approach of Ref. [7], we quantitatively determine the incoherent diffusion,

quantum-corrected diffusion and localization tensors versus the particle energy. A striking

result is that weak structured correlations can induce strong anisotropy effects, for instance

the inversion of the transport anisotropy. In addition, we extend the approach of Ref. [7] by

including the disorder-induced shift of the energy states. We show that it strongly affects the

mobility edge and discuss implications to the very challenging experimental determination

of the mobility edge.

Quantum transport.— The building block to describe wave propagation in random media

is the four-point vertex Φ. It is explicitly written Φk,k′(q, ω, E) ≡ 〈k+|G(E+)|k′
+〉〈k′

−|G†(E−)|k−〉
in momentum space, with G the retarded Green operator, k± ≡ k±q/2 and k′

± ≡ k′ ±q/2

the left and right entries, E± ≡ E ± ~ω/2, and (q, ω) the Fourier conjugates of the space

and time variables [13]. Without any approximation, Φ is governed by the Bethe-Salpeter

equation (BSE) [14]

Φ = G⊗G† +G⊗G†UΦ (1)

where U is the vertex function including all irreducible scattering diagrams. The first term

in Eq. (1) describes uncorrelated propagation of the field and its conjugate in the disor-

dered medium. The second term accounts for all correlations in the density propagation.

In the independent scattering (Boltzmann) and weak disorder (Born) approximations [7],

Uk,k′(q, ω, E) ≃ C̃(k−k′), where C̃(k) is the disorder power spectrum (Fourier transform of

the correlation function [13]) and the disorder is defined with zero mean value. At this stage,

only the ladder diagrams in Eq. (1) are retained. It represents an infinite series of indepen-
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dent scattering events, which leads to Drude-like diffusion. The solution of the BSE (1) is

then dominated in the long time (ω → 0) and large distance (q → 0) limit by a diffusion

pole [14], which reads

Φk,k′(q, ω, E) =
2π

~N0(E)

δ(E − ǫ(k)) δ(E − ǫ(k′))

−iω + q·DB(E)·q (2)

in the on-shell approximation [such that ǫ(k) = ǫ(k′) = E, where ǫ(k) is the disorder-free

dispersion relation] and with N0(E) the disorder-free density of states. The components of

the Boltzmann diffusion tensor DB(E) are [7]

Di,j
B (E) =

1

N0(E)

{

〈

τE,k̂ υi υj

〉

k̂|E
(3)

+
2π

~

∑

λn
E
6=1

λn
E

1−λn
E

〈

τE,k̂υiφ
n
E,k̂

〉

k̂|E

〈

τE,k̂υjφ
n
E,k̂

〉

k̂|E

}

,

where υi = ûi · ∇kǫ(k)/~ is the velocity along axis i, τE,k̂ = ~/2π〈C̃(kE,k̂k̂ − k′)〉
k̂
′
|E

[with

k̂ ≡ k/|k| and kE,k̂ defined by ǫ(kE,k̂k̂) = E] is the on-shell scattering mean free time,

and 〈...〉
k̂|E ≡

∫

ddk
(2π)d

... δ[E − ǫ(k)] represents integration over the k-space shell defined by

ǫ(k) = E. The functions φn
E,k̂

and the real-valued positive numbers λn
E are the solutions of

the integral eigenproblem

2π

~

〈

τ
E,k̂

′C̃(kE,k̂k̂− k′)φn

E,k̂
′

〉

k̂
′
|E

= λn
E φn

E,k̂
, (4)

normalized by 2π
~

〈

τE,k̂φ
n
E,k̂

φm
E,k̂

〉

k|E
= δn,m [7]. In the following, we numerically solve the

above equations and determine DB(E) for anisotropic 3D models of disorder.

Anisotropic diffusion in 3D speckles.— Let us consider ultracold matter waves in speckle

potentials [10]. The underlying medium is the (isotropic) vacuum, for which ǫ(k) = ~
2k2/2m.

In Ref. [11] (single-speckle configuration), an optical disorder is obtained using a single

Gaussian laser beam of waist w and wavelength λL, propagating along the z axis, passed

through a ground-glass plate and focused by an optical lens of focal distance f . The disorder

correlation function C(r) has correlation lengths σ‖ = 4λLf
2/πw2 in the propagation axis

(z) and σ⊥ = λLf/πw in the orthogonal plane (x, y) [15]. In general 4f > w, and C(r)

is elongated along z (σ‖/σ⊥ ≃ 5.8 in Refs. [11, 12]). The corresponding disorder power

spectrum C̃(k) is isotropic in the (kx, ky) plane but significantly shorter in the kz axis

[see Fig. 1(a)]. In Ref. [12] (coherent-speckles configuration), the disorder results from the

interference of two mutually coherent and orthogonal speckle fields, propagating along the z
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Figure 1. (color online) Disorder power spectrum C̃(k) for the (a) single-speckle and (b) coherent-

speckles cases (Fourier transforms of the formulas in note [15]) with the parameters of Refs. [11,

12] (see text). The functions C̃(k) are represented as iso-value surfaces (at 2V 2
R
σ3
⊥) and cuts in

the planes defined by the transport eigenaxes (see text): {ûx, ûy, ûz} for (a) and {ûX ≡ (ûx−

ûz)/
√
2, ûY ≡ ûy, ûZ ≡ (ûx+ûz)/

√
2} for (b).

and x axes, respectively. The power spectrum C̃(k) then shows a complex structure, made of

the sum of two orthogonally-oriented spectra, similar to that of the single-speckle case, plus

a coherence term [15]. The latter mainly creates two broad structures (bumps), centered

on the k̂X ≡ (k̂x − k̂z)/
√
2 axis [see Fig. 1(b)], at kX ≃ ±3.8σ−1

⊥ for λL/σ⊥ ≃ 2.16 (as in

Ref. [12]). In the following we call VR ≡
√

C(r = 0) the amplitude and Eσ⊥
≡ ~

2/mσ2
⊥ the

correlation energy of the disorder.

We now discuss the behavior of the components of DB(E), shown in Fig. 2 for the two

above configurations. The transport eigenaxes follow from the symmetries of C̃(k). For the

single-speckle case [Fig. 2(a)], all quantities are isotropic in the (x, y) plane. We find that

the scattering time is shorter along z (τ
k̂z ,E

< τ
k̂{x̂,ŷ},E

). It is due to the wider extension of

C̃(k) in the plane (x, y) orthogonal to z, which offers more scattering channels to particles

travelling along z. We however find that the orbitals φn
E,k̂

contributing to Dz
B
in Eq. (4) are

associated to larger values of λn
E , and the anisotropy of DB is inversed with respect to that

of τ
k̂,E (Dz

B
> Dx,y

B ).

In order to get further insight, it is useful to note that, for isotropic systems (see also

Refs. [16, 17]), Eq. (4) is solved by the spherical harmonics Y m
l , and that only the first term

plus the Y m
1 (p-level) harmonics contribute to DB in Eq. (3). For our anisotropic disorder,

we find that the calculated orbitals φn
E,k̂

are topologically similar to the spherical harmonics,

i.e. they show similar nodal surfaces. We thus refer to ”Y m
l -like” orbitals. Note that here
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the λn
E are not degenerated in a given l-like level.

Within the on-shell Born approach, a particle of energy E probes C̃(k) inside the k-space

sphere of radius 2kE (kE ≡
√
2mE/~). For 2kE ≪ σ−1

⊥ , C̃(k) shows a strong anisotropic

divergence due to long-range correlations, which suppress the white-noise limit. We have

C̃(k) ∼ c̃(k̂)/|k| with c̃(k̂) = exp[−(σ‖/2σ⊥)
2k̂2

z/(k̂
2
x + k̂2

y)]/(k̂
2
x + k̂2

y)
1/2. This scaling shows

that τ
k̂,E and λn

E do not depend on E, and φn
E,k̂

is of the form ϕn(k̂)/
√
kE . All terms in

Eq. (3) are topologically unchanged and scale as E. Then, the anisotropy of DB remains

unchanged down to arbitrary low E and Du
B
∝ E, as observed in Fig. 2. More precisely, we

find that Dx,y
B is dominated by the first term in Eq. (3) and Dz

B
by the Y 0

1 -like orbital. For

2kE ≫ σ−1
⊥ , the situation changes: we find that, while Dz

B
is still dominated by the Y 0

1 -like

orbital, Dx,y
B is now dominated by the Y ±1

1 -like orbitals with a contribution of the Y ±1
3 -like

orbitals increasing with E. In this regime, we find τ
k̂,E ∝ kE and φn

E,k̂
∝ 1/kE . Then,

assuming weak topological change of the orbitals and the scaling 1 − λn
E ∝ 1/E (found

numerically), we get Du
B
(E) ∝ E5/2, as observed in Fig. 2. This scaling was also found in

other isotropic models of disorder [16]. Remarkably, in spite of the different contributing

terms in Eq. (3) at low and high E, the transport anisotropy is nearly independent of E,

with Dz
B
/Dx,y

B ≃ 10 [see inset of Fig. 2(a)].

For the coherent-speckles case [Fig. 2(b)], we find similar general trends. However, due

to the crossing of the two speckles, the transport eigenaxes are now the bisectors {X̂, Ẑ} =

(x̂ ∓ ẑ)/
√
2 and Ŷ = ŷ, and the anisotropy is much smaller. The function C̃(k) shows no

rotation invariance and, strictly, DX
B
, DY

B
and DZ

B
are all different. For 2kE ≪ 3.8σ−1

⊥ , the

behavior of DB(E) is governed by the central structure of C̃(k), which is marginally affected

by the coherence of the two crossed speckles [15]. The directions X̂ and Ẑ are then nearly

identical but the direction Ŷ is different: we find DY
B
< DX

B
≃ DZ

B
with DX,Z

B /DY
B
≃ 1.8.

For 2kE & 3.8σ−1
⊥ , the presence of the bumps of C̃(k) at k ≃ ±3.8σ−1

⊥ k̂X [see Fig. 1(b)]

makes the situation particularly interesting by strongly affecting the scattering of particles

along X̂. The scattering time τE,k̂ becomes highly anisotropic and the orbital dominating

DX
B

is strongly distorted. Then, DX
B

is reduced and the corresponding anisotropy factor

drops by a factor of ≃ 4. This effect is strong enough to invert the transport anisotropy, so

that DX
B
< DY

B
< DZ

B
[18].

Localization.—We now consider quantum interference corrections to Boltzmann diffusion

by including the maximally-crossed diagrams (Cooperon and Hikami contributions) into the
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Figure 2. (color online) Eigencomponents of the Boltzmann diffusion tensor (diffusion coefficients)

along the transport eigenaxes (see caption of Fig. 1) for the (a) single and (b) coherent speckle

configurations. The dotted lines are power-law fits (Du
B ∝ Eγu) to the data in the low and high

energy limits. The insets show the transport anisotropy factors.

vertex U. It yields the dynamic diffusion tensor D∗(ω,E) = DB(E) + ∆D(ω,E) with [7]

∆D(ω,E) =
−DB(E)

π~N0(E)

∫

dq

(2π)d
1

−iω + q·DB(E)·q . (5)

Following the standard self-consistent theory [19], the above equations are solved for

D∗(ω,E) after replacing DB(E) by D∗(ω,E) in the integrand of Eq. (5). Since the dif-

fusive dynamics is relevant only on length scales larger than the Boltzmann mean free

path, luB(E) ≡ d
√

m/2EDu
B(E) along each transport eigenaxis, we regularize the ultraviolet

divergence of the integral in Eq. (5) by setting an elliptic cut-off of radii 1/luB. Proceed-

ing (in 3D) in the long time limit (ω → 0), a threshold energy Ec appears, solution of

Dav
B (Ec) ≡ det{DB(Ec)}1/3 = ~/

√
3πm. For E > Ec, D∗(ω,E) converges to a real definite

positive tensor when ω → 0. It describes anisotropic normal diffusion, characterized by

the propagation kernel (2) where DB(E) is substituted to the quantum-corrected diffusion

tensor D∗(E) ≡ limω→0D∗(ω,E). For E < Ec, one finds D∗(ω,E) ∼ −iωΛ(E) for ω → 0,

where Λ(E) is a real positive definite tensor. It characterizes exponential localization in the
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Figure 3. (color online) Eigencomponents of the localization (left column; E < Ec) and quantum-

corrected diffusion (right column; E > Ec) tensors for the single (upper row; VR = 7.1Eσ⊥
) and

coherent (lower row; VR = 0.35Eσ⊥
) speckle configurations. The Boltzmann diffusion coefficients

are plotted for comparison (thin lines on the right column).

propagation kernel (2), with the anisotropic localization tensor Lloc(E) ≡
√

Λ(E).

Figure 3 shows the components of Lloc (for E < Ec) and D∗ (for E > Ec) for the single-

speckle and coherent-speckles cases (with the parameters of Refs [11, 12]). We observe that

the anisotropy factors of Lloc and D∗ are nearly independent of E, except for the inversion

of anisotropy of the coherent-speckles case [20]. In fact, the behavior of Lloc and D∗ is

completely determined by that of DB(see above). This is due to a remarkable property of

Eq. (5), showing that the quantum corrections ∆D(ω,E) do not explicitely depend on the

disorder [i.e. on C̃(k)], but only onDB(E) [7]. For instance, D∗(ω,E) has the same eigenaxes

and anisotropy factors as DB(E). For E < Ec, the anisotropy factors of Lloc(E) are thus

the square roots of those of DB(E). In the low E limit, we find Lu
loc(E) ∝

(

Du
B/D

av
B

)1/2
E3/2.

When E increases, Lu
loc(E) grows and finally diverges at Ec. For E > Ec, the anisotropy

factors of D∗(E) are the same as those of DB(E). The quantum corrections are significant

only close to Ec. For higher values of E, D∗(E) ≃ DB(E), and in the high E limit,

Du
∗ (E) ∝ (Du

B/D
av
B )E5/2.

Mobility edge.— So far, we have used the usual on-shell approach, which is expected

to fairly describe quantum transport [7, 16, 19]. It however neglects the real part of the

particle’s self-energy in the disorder, Σ′(k, E) ≡ P
∫

dk′

(2π)d
C̃(k−k

′)
E−ǫk′

(with P the Cauchy princi-

pal value), which may be a questionable approximation, in particular for estimating the

mobility edge. We incorporate Σ′(k, E) into the theory by averaging, in first approxi-
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Figure 4. (color online) On-shell (E′
c) and corrected (Ec) mobility edges as functions of the disorder

amplitude VR for the single-speckle and coherent-speckles configurations.

mation, its k-angle dependence [21]. It amounts to replace the on-shell prescription by

ǫ(k) = E ′ ≡ E −∆(E) with

∆(E) ≡ 1

4π

∫

ǫ(k)=E−∆(E)

dΩ
k̂
Σ′
(

k, E
)

(6)

where Ω
k̂
is the k-space solid angle. Within this approach, all preceeding quantities are now

regarded as functions of E ′ instead of E. In particular, the mobility edge Ec is the solution

of Ec −∆(Ec) = E ′
c, where E ′

c is determined using the on-shell approach (see above). The

on-shell (E ′
c) and corrected (Ec) mobility edges are shown in Fig. 4. It is eyecatching that

the shift of the energy states completely changes the behavior of the mobility edge. While

E ′
c is positive and increases with VR, we find that Ec is negative and decreases with VR.

For VR . Eσ⊥
, we find a similar behavior of Ec as that obtained using the SCBA method

for isotropic disorders [17]. For larger values of VR, Ec further decreases consistently with

the idea that it should approach the percolation threshold deep in the regime of classical

disorder (VR ≫ Eσ⊥
) [22].

Discussion.— Focusing on two models of optical disorder, we have shown that long-range

correlations that break rotation invariance can lead to a non-trivial energy dependence of the

transport and localization tensors. In the single-speckle case [11], the transport anisotropy

is surprisingly constant (Dz
∗/D

x,y
∗ ≃ 10 in the diffusion regime and Lz

loc/L
x,y
loc ≃ 3.2 in

the localization regime). This holds down to arbitrary small energy, due to anisotropic

long-range correlations, which suppress the white-noise limit. In the coherent-speckles

case [12], we found similar properties at low energy (with DX
∗ /D

Y
∗ ≃ DZ

∗ /D
Y
∗ ≃ 1.8 and
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LX
loc/L

Y
loc ≃ LZ

loc/L
Y
loc ≃ 1.3). Most interestingly, the two structures of the power spectrum

centered at kX ≃ ±3.8σ−1
⊥ strongly enhance the scattering along X̂ of particles with energy

such that 2kE & 3.8σ−1
⊥ . As a result, DX

B
drops below DY

B
and DZ

B
, thus inverting the

transport anisotropy. Our results provide a guideline to future studies of anisotropy effects

in experiments with ultracold atoms in 3D disorder [23]. They may also be extended to 2D

configurations [24].

Moreover, we have calculated the 3D mobility edge by extending the standard on-shell

approach, including the real part of the self-energy. Let us discuss our predictions in view

of what as been experimentally achieved so far. Comparing to Ref. [11], our calculations

significantly differ in amplitude and sign from experimental values (e.g. for VR = 600 nK×
kB ≃ 7.1Eσ⊥

, we find Ec ≃ −300 nK × kB, while +900 nK × kB is measured). However,

the method used in Ref. [11] to infer Ec from the localized fraction neglects the distorsion

of the energy distribution induced by the disorder. This method is questionnable because

the latter is, in particular, a necessary ingredient to account for negative energy states (i.e.

below the disorder mean value). Comparing to Ref. [12], we find that ∆(Ec) as calculated

here is of the same order of magnitude as the heuristic shift introduced in Ref. [12] (e.g.

for VR = h × 680Hz ≃ 0.35Eσ⊥
, we find ∆(Ec)/h = −390Hz, and the heuristic shift is

−225Hz). This signals that Σ′ provides a significant contribution to this heuristic shift.

A precise test of the present theory would however require a reliable determination of the

energy distribution in ultracold-atom experiments, which is not available yet. Finally, we

note that our approach may be improved by performing a fully off-shell calculation.
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[19] D. Vollhardt and P. Wölfle, in Electronic Phase Transitions, Eds. W. Hanke and Y. Kopalev

(Elsevier, Berlin, 1992).

[20] In Fig. 3, the inversion occurs in the diffusion regime. For higher values of VR, it can be in the

10



localization regime.

[21] This approximation is justified a posteriori by the weak k-angle variations of Σ′ around its

mean value at Ec (with standard deviations less than 10− 15%).

[22] B. I. Shklovskii, Semicond. 42, 909 (2008).

[23] In Ref. [12], the images are taken in the y − z plane. It only gives access to Dy = DY and

Dz = (DX +DZ)/2, which do not show the inversion of the transport anisotropy.

[24] M. Robert-de-Saint-Vincent et al., Phys. Rev. Lett. 104, 220602 (2010); L. Pezzé et al., New
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