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1. Introduction

Heat radiation at the nanoscale is a relatively young but flourishing research field, that
has attracted much attention in the last decade. This is on the one hand due to the fact
that this effect is nowadays experimentally accessible (Hu etall (2008); Kittel et al (2003);
Narayanaswamy et al! (2008); [Ottens et all (2011); [Rousseau etal! (2009); Shen et all (2009)),
and on the other hand due to the unusual properties of thermal radiation at nanometric
distances, which makes it highly promising for future applications in nanotechnology.
Among these near-field properties (i.e., properties at distances smaller than the thermal
wavelength), we can mention: (i) the energy exchange is not limited by the well-known
Stefan-Boltzmann law for black bodies and in fact can be several orders of magnitude larger,
(ii) thermal radiation at nanoscale is quasi monochromatic and (iii) it can be spatially strongly
correlated despite the fact that thermal radiation is often taken as a textbook example for
uncorrelated light, which is only true for distances larger than the thermal wavelength

(Carminati and Greffet (1999);[Polder and Van Hovel (1971);Shchegrov et al (2000)). For some
recent reviews see Refs. (Basu et all (2009); [Dorofevev and Vinogradoy (2011); Toulain et all
(2005); Vinogradov and Dorofeyev (2009); Volokitin and Persson (2007); Zhang (2007)).

Before we discuss possible applications exploiting the above mentioned thermal near-field
properties, we first want to give a concise description of the physical origin of the
electromagnetic fields radiated from the surface of a hot material within the framework of
fluctutational electrodynamics. Based on this formal framework we derive the heat flux
expression between two isotropic semi-infinite nonmagnetic media separated at a given
distance by a vacuum gap. By means of this expression we discuss the modes which
contribute to the heat flux in different distance regimes. In particular, we discuss the
dominant contribution of the coupled surface modes at the nanoscale and illustrate the specific
properties (i) and (ii) with some numerical results. Finally, we reformulate the heat flux
expression in the same manner as it is done for the electronic transport at a mesoscopic

scale (Dattd (2002); Imry (2002)).
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1.1 Fluctuating electrodynamics

Let’s first consider a given medium at a fixed temperature T. We choose a volume V of this
medium such that it is large compared to the size of the constituents of the material, i.e., the
electrons, atoms or ions, but small on a macroscopic length scale as for example the size of the
considered medium. Then the macroscopic electromagnetic fields E, D, B and H fullfilling the
macroscopic Maxwell equations @ ))

V-D(rt) = p°(rt) and VB =20, )
V- B(1,t) =0 and  V xH(rt) =j(r, ) + oD (x, 1) )

ot
can be regarded as the volume average over such a volume @)). Here p®
and j¢ are external charges or currents, respectively. Within this macroscopic or continuum
description, the material properties can be described by a permittivity tensor €;; and a
permeability tensor p;; with i,j = 1,2,3 relating the fields D and E and B and H. When
introducing the Fourier components as

E(r,w) = / dte“'E(r,t), H(r,w) = / dtel“tH(r,t), etc, 3)

then we can write D = ¢ge - E and B = pop - H. Here, €9 and y are the permittivity and the
permeability of the vacuum. In the following we are only interested in non-magnetic materials
so that ji is given by the unit tensor, i.e., we have B = poH. Note, that here we have already
neglected any spatial dispersion of the permittivity, which can play an important role in the

near-field of metals (Chapuis et all (2008); Ford and Weber (1984); [Joulain and Henkel (2006)).

Within a neutral material there are no external charges and currents, but the random thermal
motion of the constituents of matter, i.e., of the electrons, atoms or ions, induces within
the average volume V a macroscopic fluctuating charge density pf and a current jf, which
replace the external charges and currents in Maxwell’s equations (I) and @) and therefore
generate fluctuating electromagnetic fields Ef and Hf, which are now considered to be random
processes as well as pf and jf. Since the latter are the sum of many microscopic random charges
and currents inside the average volume V, we can apply the central limit theorem and infer that
these fluctuating quantities are Gaussian distributed m d@)). That means that all
higher moments of these quantities are determined by their mean value and variance. This
statement is also true for the fluctuating fields, because there exists a linear relation between
the electromagnetic fields and the generating currents which can be stated as

Ef(r, w) = iwpyg / dr’GE(r, v, w) - J (", w), (4)
%4

Hf(r,w) = iwpy / dr’GH(r, v, w) -ff(r”,w), (5)
14

where the integrals are taken over the volume V which contains the fluctuating
source currents; GE and GH are the classical dyadic electric and magnetic Green’s

functions m d@)).

By assuming that due to the thermal motion no charges will be created or destroyed we have
(of) = 0, where the brackets symbolize the ensemble average. If we now further assume that
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the mean fluctuating currents are vanishing in average, i.e., (j) = 0, then we find that (Ef) =
(H) = 050 that in average the fields do no work on external charges or currents. In order to
complete the framework of fluctuating electrodynamics first developed by Rytov

)) we have to specify the second moment, i.e., the correlation function of the fluctuating
currents or charges. In fluctuating electrodynamics this correlation function is specified by the

fluctuation dissipation theorem and reads (Lifshitz and Pitaevskii (2002))

(ff(r,w)ﬁ(r’,w’)) =2n1w0(w, T) [&j(w) — &(w)]6(w — w')é(xr — ). (6)

The delta-function d(r — ') shows up because we have neglected spatial dispersion. The
second delta function 6(w — w') reflects the fact that we have a stationary situation. Indeed,
the fluctuation dissipation theorem is only valid in thermal equilibrium so that by applying
this theorem we have assumed that the medium containing the fluctuating currents is in
thermal equilibrium at temperature T. The function

hiw hw

@((U, T) = 7 + eihw/(kBT) 1 (7)
is the mean energy of a harmonic oscillator in thermal equilibrium and consists of the vacuum
and the thermal part; kg is Boltzmann’s and 27t/ is Planck’s constant. From the appearance
of I in ®(w, T) it becomes obvious that the fluctuation dissipation theorem is in principle
a quantum mechanical relation. Hence, fluctuating electrodynamics combines the classical
stochastic electromagnetic fields with the quantum mechanical fluctuation dissipation
theorem and has therefore to be considered as a semi-classical approach )).

Equipped with the correlation function for the source currents in Eq. (@) and the linear
relations in Eqgs. @) and () we can now determine the correlation functions of the
electromagnetic fields (Ef(r,w)ﬁjf-(r’,w’)), (I:Ilf(r,w)I:I]f(r’,w’)), and <E"lf(r,w)I:I]f(r’,w’)) in
terms of the Green’s functions. Hence, if we know the classical electromagnetic Green’s
functions GF and GH for a given geometry we can evaluate the correlation functions of
the fields allowing for determining for example Casimir forces or heat fluxes. Although
some purely quantum mechanical approaches exist dAgama] (1975); Tanowicz et all (2003);
Lifshitz and Pitaevskii (2002)) fluctuating electrodynamics has the advantage of being

conceptionally simple while giving the correct results for the correlation functions of the fields.

1.2 Heat flux expression

Now we want to determine the heat flux between two semi-infinite media (see Fig.[T) which
are at local thermal equilibrium and have the temperatures T; and T,. We assume that both
media are separated by a vacuum gap of thickness d. In order to determine the heat flux,
we first consider T, = 0 so that we consider only fluctuating currents j g in medium 1. The
fluctuating fields E{ and Hg inside the vacuum gap generated by the fluctuating sources in
medium 1 can be expressed in terms of the relations @) and (8). From these expressions one
can determine the mean Poynting vector in z direction

(S17%) = (Bl x Hf) - e, ®)

by means of the fluctuation dissipation theorem in Eq. (6). The resulting expression contains
the dyadic Green’s functions G (r,r”,w) and GH(r,1",w) for that layered geometry with
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source points r’’ inside medium 1 and observation points r inside the vacuum gap. For the
given layered geometry the Green'’s functions are well known and can for example be found
in (2000)). For determining the net heat flux one has also to consider the opposite
case with T; = 0 so that only fluctuating currents inside medium 2 are taken into account.
Then the net heat flux inside the vacuum gap is given by the difference

© = (5;7%) — ($I71). ©
For two isotropic media we find (Polder and Van Hove (1971))
®dw d?k

The second integral of the energy transmission coefficient 7;(w, x;d) is carried out over all
transverse wave vectors k = (ky, ky)". This means it includes propagating modes as well as
evanescent modes. The division into propagating and evanescent modes stems from the fact
that the electromagnetic waves inside the vacuum gap region have a phase factor exp[i(kyx +
kyy + kzoz) — iwt] with kg = Vw?/c? — k2, where c is the velocity of light in vacuum. Hence,
ko is purely real for all lateral wave vectors x < w/c and therefore the phase factor gives an
oscillatory solution with respect to z, whereas kg is for all « > w/c purely imaginary so that
the phase factor gives an exponential damping with respect to z. The latter modes are called
evanescent modes, whereas modes with ¥ < w/c are called propagating modes. Note, that
the vacuum part in @(w, T) does not contribute to the flux ®.

d

Fig. 1. Sketch of the considered geometry: Two semi-infinite materials at local thermal
equilibrium with temperatures T and T, are separated by a vacuum gap of thickness d.

The energy transmission coefficient 7;(w, ;d) is different for propagating and evanescent
modes and can be stated as (Polder and Van Hovd (1971))

1— |12 =122 /D22, k<w/c
Tj(w,x;d) = ( ‘1]| ! 2 |]2‘k)/d‘ ) lz 2 / (11)
Am(r; ) Im(r7)e™ [kl /D%, k> w/e
for j = {s,p} where r} and r]Z are the usual Fresnel coefficients
i ko—k‘ i e~(w)k0—k-
r(w, k) = 22 und r(w, k) = =22 2 12
s(e®) kzo + kzi p(r) €i(w)kzo + kzi (42
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for s- and p-polarized light, where k,; = \/€;(w)w?/c? — k2. We have further introduced the
Fabry-Pérot-like denominator D}z, defined by (j = {s,p})

12 1.2 2ik;od\—1
D] = (1—I’ji’je 120 ) (13)
which appears as a consequence of the multiple reflections inside the vacuum gap.

1.3 Nanoscale heat flux

The expression in Eq. (I0) together with the energy transmission coefficient in Eq. (II) is
very general and allows the determination of the heat flux between two arbitrary isotropic
semi-infinite bodies kept at fixed temperatures T; and T; for any distance d. In particular this
expression contains the Stefan-Boltzmann law for the heat flux between two black bodies. This
can be seen as follows: a black body is a body which absorbs all incoming radiation. For a
semi-infinite body this situation is realized, when the Fresnel reflection coefficients are exactly
zero for both polarizations. Then all incoming radiation is transmitted and will be absorbed
inside the semi-infinite medium. Hence, by assuming that the Fresnel coefficients are zero we
obtain from Eq. ([I) that the energy transmission coefficient 7;(w,«;d) = 1 for s- and one
for p-polarized light with ¥ < w/c and 7}(w, k;d) = 0 for x > w/c. In other words, all
propagating modes contribute with a maximal transmission of 1 to the heat flux. Then one
can easily compute the heat flux from Eq. (I0) yielding

00 2

w c

Dpp :/ [O(w,T1) = O(w,T)]( 5= )7 = Bs(Tf — T5) (14)
0 o ) 4

which is the well-known Stefan-Boltzmann law for the heat flux between two black bodies

with the Stefan-Boltzmann constant ogg = 5.67 - 1078 Wm 2K 4.

From this derivation of the Stefan-Boltzmann law we see that it can be a limit for the
propagating modes only, since only for these modes (x < w/c) on the left of the light line
w = cx [see Fig.[2(a)] the energy transmission coefficient has its maximum value and is zero
for the evanescent modes (x > w/c) on the right of the light line in Fig. 2l (a). This fact can
also be formulated in terms of the number of contributing modes. To this end consider a
quantisation box in x and y direction with a length Ly = Ly = L. For very large L the integral
over the lateral wave vectors in Eq. ([I0) is equivalent to a sum over the modes k, = 27n, /L
and ky, = 27tny, /L with ny,n, € IN, ie,,

d%x 1 d2x 1
/(Zn)z_ﬂ/(Zn)ZHLzzl' (15)

ia My, ity

Here )., ,, 1 is the number of contributing modes and L2 Ynyn, 1 the density of states.
Hence, for a given frequency w only the modes in a circle [see Fig. [2] (b)] with radius w/c
contribute, but with a transmission factor of one for each polarisation, this means the number
of contributing modes is limited to the region x < w/c.

For real materials, the number of contributing modes is not limited to the region x < w/c. As
was already put forward by (Cravalho et al.,| (1967)) total internal reflection modes become
frustrated if the gap distance d is much smaller than the thermal wavelength Ay, = hic/ (kgT)
and can therefore tunnel through the vacuum gap and hence contribute to the heat flux. Since
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evanescent modes

K

(a) w-x diagram (b) wave vector space

Fig. 2. Sketch of the contributing modes. (a) shows the w-« diagram. The light line at w = cx
divides the w-«x space into the propagating and evanescent part, i.e., the propagating modes
inside the vacuum gap are on the left of the light line, whereas the evanescent modes are on
the right of the light line. For a black body all propagating modes contribute with transmission
1 to the heat flux. (b) shows the space of lateral wave vectors for a fixed frequency w. All
modes inside the circle with radius w/c are propagating modes, and all modes outside that
circle are evanescent.

these modes are propagating inside the material but evanescent in the vacuum region they
are determined by ¥ > w/c and x < /€;(w)w/c. For a polar material as SiC, which can be
described by the permittivity

2 o .
e1(w) = e2(w) = e (M) = c(w), (16)
wi —w? —iyw

with the longitudinal phonon frequency wy = 1.827 - 10'*rad/s, the transversal phonon
frequency wr = 1.495 - 10" rad/s, the damping v = 0.9 -10?rad/s and ex = 6.7, we
illustrate schematically in Fig.[3] the regions for which one can expect frustrated modes. For
the sake of simplicity we neglect the damping for the discussion of the contributing modes
and assume a real permittivity. We will later add the absorption again, since it is vital for the
nanoscale heat transfer. Note in Fig.Bl(a), that in the so called reststrahlen region wt < w < wr
no optical phonons can be excited. Within this frequency band the permittivity is negative
so that the material behaves effectively like a metal, i.e., the reflectivity is close to one. From
Fig.[Bl(b) it is obvious that due to the frustrated internal reflection the number of contributing
modes for the heat flux increases, but is still limited to ¥ < \/e(w)w/c.

Before we can discuss the energy transmission coefficient and the heat flux, we need to
discuss another kind of evanescent mode which is responsible for the tremendous increase
of the heat flux at nanoscale, the so-called surface phonon polariton (Kliewer and Fuchs
)). This mode is characterized by the fact that the electromagnetic fields are evanescent
inside and outside the medium so that these modes are confined to the boundary of the
medium itself. Assuming an infinite large distance d between the halfspaces, then both can
be considered as individual semi-infinite bodies with negligible coupling. For such isotropic
nonmagnetic halfspaces the surface modes are purely p-polarized and fulfill the dispersion
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(a) w-x diagram (b) wave vector space

Fig. 3. Sketch of the frustrated modes. The modes which can propagate inside the dielectric
are on the left of the polariton lines w = cx/+/€. The internal reflection modes are on the left
of the polariton lines and on the right of the light line within the green region.

ky
®
®w=cK
@
ky
O
K
(a) w-k diagram (b) wave vector space

Fig. 4. Sketch of the surface phonon polariton modes for a given distance d.

relation (Kliewer and Fuchs (1974))

é(w)

@)+ 1 (17)

KSpPhp =
Furthermore, a necessary condition for having surface modes is that e(w) < 0, i.e., for polar

materials like SiC separated by vacuum it can only exist within the reststrahlen band wr <
w < wr. When the two semi-infinite material are placed at a distance d smaller than the

penetration length of this surface mode in vacuum, i.e., 1/Im(4 fw?/c? — K%Php), these modes

will couple. This coupling removes the two-fold degeneracy and produces a splitting of the
dispersion relation dﬁeﬂ )), which is determined by the relation

[~Im(rp)? + Re(rp)? + 2ilm(rp)Re(rp) e~ 2mkad) = 1 (18)
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and schematically illustrated in Fig. [ (a). Since we are interested in the transmission
coefficient of such modes, we now consider a permittivity with absorption, or y # 0. For small
absorption, more precise for Im(rp) < Re(rp), the dispersion relation for the coupled surface
s coincides with the resonance condition of the energy transmission coefficient
(199%)

[~Im(rp)? + Re(rp)?]e2imkaod) = 1 (19)

for which the evanescent part of the energy transmission coefficient in Eq. (I} has its maximal
value of one, i.e., the energy transmission coefficient is one for the surface phonon polaritons
as long as Im(rp) < Re(rp) is fullfilled. Nonetheless, for very large x > d~! > w/c the
energy transmission coefficient in Eq. (TI) is damped exponentially due to the exponential
exp(—2Im(ky)d) =~ exp(—2xd). Here, the exact damping of the energy transmission
coefficient is determined by the losses of the material )). Hence, the coupled
surface phonon polariton provides for distances smaller than d < ¢/(w+/€(w)) a number
of modes proportional to d~2 as illustrated in Fig. B(b) contributing to the heat flux which
eventually results in a larger contribution than that of the frustrated internal reflection modes.

Now we are in a good starting position to discuss the energy transmission coefficient between
two semi-infinite SiC plates assuming that T} = 300K and T, = 0 so that Ay, = 7.6 um. For
this purpose we plot in Fig.[B the energy transmission coefficient 7, (w, x; d) in w-x space for
distances (a) d = 5um, (b) d = 500nm and (c) 4 = 100nm. In Fig.[5] (a) we observe that
for a relatively large distance the transmission coefficient is dominated by the propagating
modes on the left of the light line and is maximal for the Fabry-Pérot modes inside the gap.
Nonetheless, the surface phonon polariton modes already contribute inside the reststrahlen
region. One can observe that in this region the surface phonon mode dispersion is continued
on the left of the light line. This mode is evanescent inside the medium, but propagating in
the vacuum gap so that it can be considered as a wave guide mode. As for surface phonon
polaritons these guided modes do not contribute to the energy flux if there is no absorption,
i.e., if Im(e) = 0, whereas the Fabry-Pérot modes and the frustrated modes do contribute. For
smaller distances we can see in Fig[5[b) that the surface modes and frustrated modes come
into play. For even smaller distances the energy transmission coefficient equals one for all
modes which can exist inside the bulk SiC (on the left of the phonon polariton lines) and for
the surface modes [see Fig. (c)], which will give the main contribution to the heat flux, since
the number of contributing modes is very large [see Fig.Bl(d)].

The resulting spectral heat flux @, is now plotted in Fig. [f{a). It can be observed that
for very small distances the spectrum becomes quasi monochromatic around the frequency
of the surface mode resonance wgp,p = 1.787 - 10'* rad /s which is defined by the pole of
the denominator in Eq. {I7), i.e., through the implicit relations Re[e(wspnp)] = —1 and
Im[e(wsppp)] < 1. The distance dependence is shown in Fig. [6(b) where the flux ® is
normalized to the heat flux between two black bodies ®pg = 459.27 Wm 2. The contributions
are divided into the propagating, the frustrated, and the surface phonon polariton part. One
can clearly see that the heat flux rises for distances smaller than the thermal wavelength
At = 7.6 um due to the frustrated modes and exceeds the black body limit at d ~ 3 ym.
For even smaller distances (d < 100nm) the surface modes start to dominate the heat flux
completely and give a characteristic 1/d> dependence, since the number of contributing
modes is for these modes proportional to 1/d?. Note, that on the nanoscale at a distance of
d = 10nm the heat flux exceeds the black body limit by a factor of 1000! For some asymptotic
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(c) d =100nm

Fig. 5. Transmission coefficient 7, (w, x; d) between two SiC plates for different distances in
w-k space. Note that (d) is the same as (c) but for a large x range, showing that the number of
contributing modes for the coupled surface modes is much larger than for the frustrated
modes. The dashed lines are the phonon polariton lines for SiC. Here, u = fiw/ (kgT) is a
rescaled frequency so that for T = 300 K we have w = u - 4.14 - 10'3rad /s.

expression concerning the heat flux in different distance regimes see (Rousseau et all (2009b;
2010)).

10000 1000 p=
d =50000 nm —— propagating modes
1000 d =5000 nm h frustrated modes
_ d=500nm 100 , SPhP
R 100 d=100nm - total
= Fy -
s 10 s ; g 10
o H i -
= E)
S :
ey ! . 4
- 1 .
0.1 J ﬁ/
0.01 0.1 .
1.2 14 16 1.8 2 22 10 107 10°® 10°
/10" rads™ d/m
(a) spectral heat flux &, (b) total heat flux ®

Fig. 6. (a) spectral heat flux @, between two SiC halfspaces at T} = 300K and T, = 0K for
different distances. (b) total heat flux ® over distance.

Finally, we want to express the formula for ® in a way which highlights the number of modes
contributing to the heat flux. To this end, we start with Eq. (I0) assuming T} = T and T, =
T + AT. For small temperature differences AT we can linearize Eq. (I0) defining the radiative
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heat transfer coefficient /1,4 through

0P

D = h,q(T)AT = ﬁAT (20)
By introducing the dimensionless variable u = hw/(kgT) and the mean transmission
coefficient
— du u,x;d
T = Jodu ( ) 1)
I du fu

with f(u) = u?e"/(e* — 1) we find a Landauer-like expression for the heat flux (Biehs et al
)
m? k2 T 2
®— ( Y / &K )AT 22)

J=s.p
Here, 7%k3T/(3h) is the universal quantum of thermal conductance d@ (1983);
|Reg9_and_Kir_CZ£nmN| (1999)). Hence, each mode can at most contribute one quantum of
thermal conductance, since the mean transmission coefficient 7]- € [0,1]. This representation
allows for studying the tradeoff between the mean transmission coefficient and the number
of modes. In Fig.[Zlwe show a plot of the mean transmission coefficient 7, for two SiC slabs
varying the distance. It can be seen that the mean transmission coefficient for the surface
modes is extremely small. Nonetheless, the coupled surface modes give the dominant heat
transfer mechanism for small distances. This is due to the number of modes which increases
dramatically « x? explaining the 1/d? increase in heat flux due to the coupled surface modes.
For polar materials there is a cutoff value for the spatial wave vectors of the phonons given by
71/ a, where a is the lattice constant. This sets an ultimate limit to the heat flux and removes the
1/d? divergency. The limits of the heat flux in the near-field regime are for example disscussed

in Refs. (Basu and Zhang (2009); Ben-Abdallah an lain (2010)).

1

0.1

0.01

d=10nm

d=100nm - ;
d=1000 nm

mean transmission coefficient

0.001 -
102 10" 1 10" 102 10® 10t
KA

Fig. 7. Mean transmission coefficient 7}3 for two SiC slabs with varying distances d.

2. Thermal imaging

Measurement and control of temperature at the nanoscale are important issues in
nanotechnology. There are nowadays several possibilities for mapping the temperature
above a surface or a nanostructure. For instance, the fluorescence polarization anisotropy
of suspended molecules placed around a nanostructure can be used to map the local
temperature of nanoscaled sources m M)) On the other hand, the properties
of the fluctuating electromagnetic fields can directly be used for a contact-free measurement
of surface properties as local temperatures and local material properties. One step in this
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direction was done by De Wilde et al. (De Wilde etall (2006)) [and recently Kajihara et
al. d]ga;_lhana_e_t_a]_] (2010))] who have developed a SNOM-based method in order to scatter the
thermal near field into the far field and to measure the photonic local density of states of that
surface. Very recently, a similar but promising imaging method was established which consist
in measuring the thermal near-field spectra of surfaces in order to characterize their material
properties as for instance the local free-carrier concentration and mobility M)).

Here, we will review a method of thermal imaging called near-field scanning thermal
microscopy (NSThM), which was developed in the Oldenburg group of Achim Kittel and
Jiirgen Parisi (Kittel et al (2005); Miiller-Hirsch et al. (1999); Wischnath et al (2008)). It is based
on an STM tip which is augmented by a thermocouple in the tip apex. With the help of the
STM ability one can control the surface-tip distance, whereas the thermocouple allows for
measuring the local temperature at the tip position, which can be varied in a distance range
of 0.1nm to about 100nm. In contrast to usual thermal profilers used in scanning thermal
microscopy (SThM), the NSThM probe operates at ultra high vacuum conditions rather than
at ambient conditions (IMF )). Hence, the energy or heat flow is not mediated by
gas molecules, nor a liquid film of adsorbates, nor solid-solid conduction, but by the near field
interaction between the tip and the sample mediated by the fluctating electromagnetic field.
In other words, the NSThM exploits the enhanced radiative heat transfer at the nanoscale for
surface imaging.

(a) Schematic drawing of the NSTHM (b) SEM image of a typical NSTHM tip.
tip.

Fig. 8. Near field scanning thermal microscope developed in the group of Achim Kittel in
Oldenburg )). Reprinted with permission from Appl. Phys. Lett., Vol. 93,
193109 (2008). Copyright 2008, American Institute of Physics.

As shown in Fig.[8] the tip consists of a platinum wire protruding about 500 nm from a glass
capillary. A gold coating establishes the gold-platinum thermocouple in coaxial configuration
at the very end of the tip. At the foremost part the tip radius is less than 50 nm allowing
for a high lateral resolution when scanning a sample surface. When the probe is moving in
proximity to a cold or hot sample surface the tip is slightly cooled down or heated up at the
very end resulting in a temperature gradient within the tip. This temperature gradient is
the source of a thermovoltage Vj;, which is the measured quantity. Now, the thermovoltage is
directly proportional to the temperature difference ATy, in the tip wich allows for determining
the local temperature of the sample surface or the heat flow between the tip and the sample.
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In particular, for the heat flux ® one has (Wischnath et al (2008))

1
d=V,—— 23
thSRg: ( )

where S is the Seebeck coefficient of the probe’s thermocouple and Rﬁf is its thermal resistance,
which can in principle be determined experimentally. Hence, the heat flow is also directly
proportional to Vi, times a tip-dependent factor of proportionality.

In order to provide an interpretation of the data measured with an NSThM tip one can model
it as a simple dipole associated with a given temperature T; situated at ry;, above the sample
surface with a temperature T, as sketched in Fig.[0] Within such a simple dipole model it can

be shown that the heat flux is given by (Chapuis et al| (2008b); Mdkmmmm (2007);
Dorofeyeyl (1998); Mulet et al| (2001); Pendryl (1999))

o= Y /Oﬁwzwxm[a,-(w)}[@(w,m—@)(w,Tz)}Df(w,rﬁp) (24)
i=EM

where ag/y; is the electric/magnetic polarizability of the tip apex and DE/M(w, Ttip)
is the electric/magnetic local densitiy of states (LDOS) above the sample
surface (Joulainetall (2003)). Here, the spectral power absorbed by the tip apex is
given by Im[a;(w)]D!(w, 14ip)O(w, T2), ie., it is proportional to the imaginary part of the
polarizability of the tip and proportional to the energy density above the surface which is
given by the product Di(w, 1tip)O(w, T2). On the other hand the power emitted by the tip

and absorbed within the bulk medium is proportional to Im[a;(w)]D'(w, 14ip)O(w, T1). In
fact, when considering the flux between two metals not supporting surface plasmons for

Th1 =300K and T, < T; this expression simplifies to (Biehs et all (2008); Riiting et all (2010))

O Im["‘M(‘Uth)]DM(‘Uthr rtip)' (25)

This means, the heat flux is directly proportional to the magnetic LDOS above the sample
evaluated at the tip position ry;, and the thermal frequency wy, ~ 2.82kgT /. Hence, roughly
speaking by measuring the thermovoltage the NSThM measures the LDOS of the sample
surface. Note, that this expression is strictly valid for surface tip distances much larger than
the tip radius only assuming a spherical metallic sensor tip. Indeed the value of the heat
flux as well as the thermal near-field image of a structured surface depend on the shape and
the material properties of the tip apex as was shown for ellipsoidal sensor tips (dielectric
and metallic) in (Biehs et all (2010b); [Huth et al| (2010)). Hence, for a more refined model
it is important to account for the sensor shape and to include the contributions of higher
multipoles.

For structured as well as for rough surfaces (Biehs et all (]MMH, 2008); Ri ting et all (2010))

the LDOS can be calculated pertubatively by using for example the perturbation approach
of dm @)) if the height differences of the surface profile are the smallest length scales
and in particular smaller than the thermal wavelength (Henkel and Sandoghd ar (1998)). This
allows for comparision of the NSThM data with theory, i.e., with the numerically evaluated
LDOS DM (win, rﬁp). To this end, one can use the STM ability of the NSThM probe to obtain the
topographical information of the sample surface. Using this data for the theoretical calculation
one can compare the theoretical results for the LDOS with the measured thermovoltage Vy,.
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T

Fig. 9. Schematic of the tip-sample geometry. The sensor tip is assumed to have a spherical
tip apex so that it can be modeled by a simple dipole placed in the center of the tip apex at

rtip .

Such a comparision is shown in Fig.[[0lfor the scan of a 100 nm x 100 nm gold surface. During
the measurement the gold surface is cooled down to about 110 K, whereas the tip is kept at
293 K. The tip-surface distance is kept constant and is smaller than 1nm. Due to this small
distance the dipole model together with the first-order perturbation theory is strictly speaking
not valid anymore. Nonetheless, the data fit very well with the LDOS calculated for a constant
distance of 9nm above the surface showing that the measured signal follows qualitatively
the LDOS of the thermal electromagnetic field above the surface profile evaluated at the
dominant thermal frequency wy, ~ 10 rad/s. Further quantitative comparisions with the
predictions of a refined model for different samples and scan modi are desirable for exploring
the possibilities opened up by the NSThM.

(a) S ()

1.0 3.5

Fig. 10. (a) Numerically calculated LDOS in 10°m 3 s at a constant distance of 9nm above
the two-dimensional topography directly extracted from the STM data (b) A plot of the
thermovoltage data which corresponds to the temperature gradient in the tip and varies as
the temperature in the tip apex varies (in arbitrary units). Reprinted with permission from
Appl. Phys. Lett., Vol. 93, 193109 (2008). Copyright 2008, American Institute of Physics.

In summary, the NSThM provides the possibility for a contact-free measurement of surface
properties by exploiting the enhanced radiative heat flux at the nanoscale. In particular, it
allows for measuring the heat flux between the nanometer-sized tip and a surface in a distance
regime of a few nanometers above the sample surface. The measured thermovoltage signal
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is not only proportional to the heat flux between the tip and the sample surface, but also
facilitates the measurement of the local surface temperature. On the other hand, since the heat
flux depends on the material properties of the sample, the measured signal could also be used
to access local material properties, while a spectral measurement as in )) is

more suitable for that purpose.

3. Thermal management with anisotropic media

A proper understanding of near-field heat transfer naturally gave rise to new ideas
on how to control the heat flux between closely separated structures, i.e., on thermal
management at the micro/nanoscale. Such a control can be achieved, for instance, by thermal

rectifiers (Basu and Francoeut (2011); Otey et al (2010)), thermal transistors (Ojanen and Jauh
)) and thermal modulators (Biehsetall (2011B); [van Zwol et al (2010)) for thermal
photons. Here we review a very interesting approach to heat-flux modulation that consists in
actively changing the relative orientation of electrically anisotropic materials, while keeping a
fixed (small) distance between them. However, before going into the specifics of that subject
we would like to briefly comment another approach to heat flux modulation, namely, with the
use of phase change materials.

In our context, a phase change material (PCM) can be defined as a medium that shows two
distinct solid phases, one amorphous and the other crystalline, and that can be switched
from one to the other in a sufficiently short time (Wuttig and Yamada (2007)). The switching
typically goes through the liquid phase as well, and can be summarized in a series of three
steps (Wuttig and Yamadd (2007)). First we take a PCM in the crystalline phase and heat it up
quickly with an intense short pulse. The subsequent cooling is thus also very fast and leads to
a quenching process, trapping the material in an amorphous state. The return to the crystalline
state is performed by a weaker and longer pulse, that heats up the medium just enough to
allow the transition. The considerable difference in optical and electrical properties between
the amorphous and crystalline states of some PCMs opens the door to several potentially
interesting applications. Among them, we find the possibility of actively controlling the
heat flux by switching the PCM back and forth among its two phases, which can be done
as fast as 100 ns (Wuttie and Yamadd (2007)). Not only the modulation is quick, but it was
also shown (van Zwol et al (2010; 2011b)) that for certain distances the switching changes the
heat flux by one order of magnitude and that the cycle is fairly repeatable (107 — 10'2 times),
making it a good candidate for possible applications in thermal management.

3.1 The heat transfer between planar anisotropic materials

In order to fix ideas, let us consider the situation depicted in Fig.[[lwhere we have two linear
semi-infinite media at different temperatures, but at this point not necessarily homogeneous
or isotropic. The expression for the transfered heat is given by

Hg(Ty, Ty, a) = /A dA - (8172 —s271) = d?r(s;72 —s37), (26)

z=0
where r| = (x,y) and S172is given by () and the integration can be over any surface A that
completely separates the bodies, that for convenience (and with no loss of generality) we took
as the plane z = z(. By using the Fourier expansions (@) and the Green’s dyad introduced in
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@B, we can recast the integrand of the previous expression into

(53 = [ 52 0w ) - Ofw, T2) 5., @)

where (Volokitin and Persson (2007))

(Sw) =2ReTr /drh (G(r, )9,9,G  (r,1') — 9,G (r, )0 G(x, r’)) (28)

z'=z=2z9
and @(w, T;) was defined in (10).

The conclusion that we draw from Eqs. 26)-(28) is that, in order to evaluate the heat transfer
for a given geometry we have to determine the Green’s dyadic inside the gap region. In most
cases this is surely a formidable task, but for planar homogeneous media, even if anisotropic,
it is possible to simplify things enough so semi-analytic expressions are obtainable. This
is not to say that everything was made easy - in fact even in this simplified case the
calculations are fairly long (Chewl (1995); Tomas (2002)) [or requires some indirect arguments,
see (Philbin and Leonhardf (2008))], so we shall just quote the final result for the Green tensor

r 2 / 1KD 1‘” T H) I:]])lz (ﬂeikz(](z_z/) n RleikZ(](Z+Z/))

+ID21 (RZRl eikzo(Z’—Z)e2ikzgd + R2e2ikz(]de—ikzg(z+z’))

, (29)

where R; (i = 1,2) are the 2 x 2 reflection matrices characterizing interfaces (to be extensively
discussed in the next section) and ID;; are defined by

D;; = (1 — R;Rjesk0d) 1 (30)

When inserting Eq. (29) into the heat flux formula we find the analogue of {{0) for anisotropic
media, which reads (Biehs et al! (2011))

d?k
<Sw> = /W 7—A((U,K/,d), (31)
where
Tr[(1 — RIRy)Dyp (1 — RIR;) D], K <w/c
Talw,k,d) = {Tr[( ~Ry)Dp(Ry — IRI)]DH’L]e*Z‘kZO‘d, K> w/c (32)

where Tr stands for the two-dimensional trace. From the previous equation we see that the
whole problem is now reduced essentially to the calculation of the reflection matrices Ry, Ry,
meaning that the problem has become essentially classical: the reflection coefficients can
be found by considering a classical plane wave impinging on a vacuum/magnetodielectric
interface, with no fluctuating fields involved. Since this is a somewhat long exercise, we give
an outline for it in the next section.
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3.2 Reflection coefficients for anisotropic materials

Let us consider the situation depicted on Fig. [T} that shows an incoming plane wave being
reflected by an anisotropic (homogeneous) half-space. In the orthonormal coordinate system
defined by the incident plane the incident fields are

Ein = [e50d + ey = (nk’ — k)] ellbe ¥ +inZ =), (3)
Hin = [e9' — ey (qin¥ — ko) | el s an =0, (34)
where ¢, efn are respectively the transverse electric (TE) and transverse magnetic (TM)
incoming amplitudes, and we defined ky = (w/c)sinbi, and gin = (w/c)cosbiy. The

reflected wave has a similar expression

R C N R ; Jx — in ’_
Eof = [efefy' — efefa(q,-nx’ + kx/z’)] et (ko ¥ =gz’ ~wt) (35)
— P o s € Y i(k X' —qinz' —wt)
Href - erefy + eref;(qinx + x'Z ) e s (36)
where we have used gref = —gin. Our problem now consists in finding the amplitudes e},

efef, so we can construct the reflection matrix given by

R 3w, k) 7P (w, k) -
e r *(w, k) r}f)’p(w, k)|’ 37)
where, by definition
S8 n f pss epf
: ref / _ _ref
r; (w, k) s T (w, k) -5
mn mn
s Cret Cpet
rj’p(w, K) = ;Tf , r}?’p(w, K) = ;Tf (38)
m m

Fig. 11. An incident plane wave impinging on an anisotropic material.

The determination of such amplitudes is carried out by solving Maxwell’s equations and
imposing the proper boundary conditions on the interface (and on infinity). That means that
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we have to find the transmitted amplitudes as well, which in turn requires that we state the
constitutive relations for the materials involved. For anisotropic magnetodielectric media we
have

€xx €xy €xz Ey Hxx Hxy Pxz Hy
D=¢€-E= |eyx €yy €yz| - |Ey and B=p-H= |pyx plyy pyz | - | Hy (39)
€zx €zy €zz E; Hzx Hzy Pzz H,

where it is assumed that (i) the material tensors € and p are functions of frequency only, so no
spatial dispersion is present, and that (ii) the materials involved do not present what is called
bi-anisotropy m )), which manifests itself in non-vanishing cross couplings
between D and H (and also B and E), and finally that (iii) the whole system is time-reversible,

implying on €x, = €yx, fixy = pyx (Landau and Lifshitz (2007)).

The degree of anisotropy of a material is roughly governed by the eigenvalues and
eigenvectors of € and p, which are in turn connected to the crystallographic structure of
the material (Landau and Lifshitd (2007)). In the simplest case we have a cubic lattice,
which has completely degenerate eigenvalues and is therefore not different from an isotropic
medium. In the next level we have the trigonal, tetragonal and hexagonal lattices dﬁ
@)), all characterized by two degenerate eigenvalues, or, in other words, by a preferred
axis. Increasing the complexity a bit more we get to the orthorhombic lattice )),
which presents 3 different eigenvalues but still has the eigenvectors crystallographic fixed
(and orthogonal to each other). Finally, in the top of the list are the monoclinic and triclinic
lattices )), which have no eigenvalue degeneracy and show also the so-called
dispersion of axes ifshitz (2007)), meaning that the direction of the eigenvectors
depend upon frequency.

Substituting the constitutive relations into Maxwell’s equations ([@)-(2), we get

V(e E)=0, V-B=0 (40)
_ 10B .. 1 OE
VXE——EE, VX(/L 'B)—EE EI (41)

again reminding that we are now solving a classical reflection/transmission problem, so
o(r,t) = j(r,t) = 0. By assuming plane waves as solutions inside the material as well, we
get

E= e(Z/)Ei(kx/wat) , €= (ex’r ey’s ez’)/
H= h(Z/)ei(kx/X/_wt) 7 h = (hx’/hy’rhz’)/ (42)

and using that ky is conserved across the interface, we see that the z’ components can be
eliminated as

ey = —ckx/hy//wezrz/ , hz’ = Ckx/eyr/wyzrzr, (43)

leaving a total of 4 linearly independent solutions for a given ks and w )). In order
to determine the remaining x’ and y’ components of e and h it is convenient to introduce
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a vector u with components u; = ey, uy = ey, u3 = hy and uy = hy. With the ansatz
up=u ]-(O)eiqz/ we can transform @0)-@I) into an algebraic linear system of equations

c
Lu=——gu, 44
u A (44)
where Lis a4 x 4 matrix and the possible 4’s are determined by
wq\
det (L + TI> —0. (45)

The analytical solutions of (@4) and {3) for an arbitrary anisotropic magnetoelectric behavior
are certainly very cumbersome, and to best of our knowledge they were never written down
explicitly. The general case for electric anisotropy only (y;; = J;;) was dealt in

)), while the magnetoelectric orthorhombic case was treated in M m». Due to
the size and scope of this work it is not possible to reproduce the details here, so the interested
reader is kindly referred to the references just mentioned in order to find the explicit solutions
not only to (#4) and @5) but also to the reflection coefficients themselves.

z

Fig. 12. Two gratings at different temperatures twisted with respect to each other. Reprinted
with permission from Appl. Phys. Lett., Vol. 98, 243102 (2011). Copyright 2008, American
Institute of Physics.

3.3 Results

With the explicit expressions for the reflection matrices, we can calculate the transmission
factor in (B2) and therefore the heat transfer 27) with BI). In order to have a concrete
situation in mind, let us imagine that we have the situation depicted in the Fig. where two
grating structures are facing each other at an arbitrary twisting angle )). In
the effective medium approximation, those gratings may be described as anisotropic media
with different dielectric/conduction properties in y and x, z directions. Assuming a simple
Maxwell-Garnett model )) for the respective permittivities, we get

én, (@)
1= fi) + fien,(w)’
where ¢y, is the permittivity of the i-th host medium, and f; is the filling factor of the air
inclusions in the i-th grating.

(46)

elx(w) = (W) = en (@)1= fi) + fi , eyy(w) = (
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Substituting expressions @6) into (35)-(40) of Ref. (2008)) and then into BI) we
get the heat transfer between the two gratings in the effective medium approximation. In
Fig.[[3(a) we plot the heat flux between two gold gratings as a function of the relative angle
of twist between them, for fixed distances. We see that the flux is dramatically reduced as we
twist the gratings, up to almost 80% at ¢ = 71/2 for distances as large as 1 ym. Unfortunately
there is no simple physical picture that allows us to understand such effect, but it clearly
indicates that symmetric configurations transmit heat more efficiently that asymmetric ones.
This is further supported by Fig.[[3(b), where the heat flux between two SiC gratings is shown.
The reduction in the flux is less impressive in this case (although still quite significative),
but the upside is that here we have more direct interpretation: for SiC gratings the surface
modes give an important contribution to the flux, so it is intuitive that mismatching surface
mode dispersion relations (for twisted structures) couple less effectively than matching ones
(for parallel gratings) and will therefore give rise to a smaller transmission factor, and that is
indeed what is observed.

1 1
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Fig. 13. The heat flux (S,)(¢) between two (a) Au and (b) SiC gratings, normalized by the
flux (S;)(0°) when the gratings are aligned. The angle ¢ measures the relative twisting
between the gratings, and the filling factor is fixed at f = 0.3. Reprinted with permission
from Appl. Phys. Lett., Vol. 98, 243102 (2011). Copyright 2008, American Institute of Physics.

Going back to the Au gratings, we see that the large suppression obtained by just rotating
the structures with respect to one another suggests that such a setup could be used as a
thermal modulator controlled by the twisting angle: in the parallel position there would be a
heat flux (position "on"), in the orthogonal one there would not (position "off"). The on/off
switching could as fast as several tens of kilohertz, and it would be extremely robust as the
relative rotation does not wear off the material. Such thermal modulators can for example be
interesting for fast heat flux modulation and thermal management of nano-electromechanical

devices m».

4. Near-field thermophotovoltaics

Thermophotovoltaic (TPV) devices m @)) are energy conversion systems that
generate electric power directly from thermal radiation. The basic principle (see Fig. [I4) is
similar to the classical photovoltaic conversion. A source of photons radiates in the direction
of a p-n junction which converts the photons which have a sufficient energy into electron-hole
pairs which, in turn, can be used to generate electricity. However contrary to classical systems,
TPV devices operates in the near-infrared and not in the visible range. The efficiency of a
photovoltaic cell is defined as the ratio § = Pg/ Pyq of the electric power P produced by the
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photovoltaic cell and the net radiative power P4 exchanged between the hot source and the
p-n junction.

Propagating
photons

Evanescent
photons

Thermal
source
Thermal

Filter source

Fig. 14. Principle of thermophotovoltaic energy conversion devices. (a) In far field, the
photovotlaic (PV) cell is located at long distance (compared to the thermal wavelength) from
a thermal source. Propagating photons only reach the cell. A filter can eventually select the
photons with an energy higher than that of the energy gap of the cell. (b) In near-field TPV
the cell is located at subwavelength distance from the source. Evanescent photons are the
main contributors to the radiative power transfered from the source to the cell.

In far field, this efficiency is in principle limited by the thermodynamic Schockley-Queisser
limit (Shockley and Queisser (1961)) wich corresponds to the case where the source is a
perfect black body and is typically about 33%. This limit could be easily overcome with
a monochromatic source when the frequency of emission coincides with the gap energy of
the semiconductor. In this case 17 would be equal to one. However, first it is difficult to
have natural materials with a monochromatic emission so that some photons are generally
dissipated incide the cell without participating to the conversion. Second, the production of
electricity depends directly on the magnitude of radiative flux received by the cell. But, in the
far field, the heat flux cannot exceed that of black body. On the other hand, in the near-field
the heat flux can be several orders of magnitude larger than that of a black body, so that
near-field TPV conversion (Basu et al| (2009);[Laroche et al! (2006); Narayanaswamy and € hen
(2003);/Pan et al! (2000); Park et al| (2007)) seems to be a promising technology for an intensive

production of electricity.

Generaly speaking, in (far or near-field) TPV devices, the maximal power which can be

extracted from the cell reads (Laroche et all (2006))

Per = Fiinlph Voc, (47)

where Ly, is the photogeneration current (which corresponds to photons that are effectively
converted), Vo is the open-circuit voltage (which correspond to a vanishing current into the
diode). The factor Fyy is called fill factor and depends on I, and on the saturation current I
of the diode. When we assume that each absorbed photon with an energy higher than the gap
energy Eg produces an electron-hole pair, the photogeneration current reads

)
o o Prad(w)

It immediately follows from this equation that an increase in the radiative power exchanged
between the source and the cell leads to an enhancement of the photogeneration current. On
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the other hand, the fill factor is given by (Laroche et al! (2006))

1 11’1(11’1(1 h/IO))
Fiin = {1 - 7} [1 - - }, (49)
In(In/Io) In(In/Io)
with the dark current (Ashcroft and Mermin (1976))
n?Dy, 12De
Iy=e : + ) . 50
0 (NDTﬁ/Z NATel/z ( )

In Eq.(50) n; denotes the intrinsic carrier concentration, Np (N,4) the donor (acceptor)
concentration, De (Dy,) the diffusion constant of electrons (holes) and . and T, represent the
electron-hole pair lifetime in the p-doped and n-doped domains of the cell. In Fig.[I5we see
that for a plane tungsten thermal source in front of a GaSb cell (see ) for optical
properties) the radiative power exchanged increases dramaticaly at subwavength distances
compared to what we observe in far field. As direct consequence, the photocurrent generated
in the GaSb cell follows an analog behavior.
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Fig. 15. (a) Radiative power exchanged between a tungsten source at 2000K and a GaSb cell
at 300K. (b) Photocurrent in the GaSb cell with respect to the separation distance z of the
thermal source. Ny = Np = 10~ 7em=3; 1; = 4.3 x 1012cm 3. Physical properties are taken

from (Rosencher and Vinter (2002))

Once the photocurrent and the dark current are known, the electric power [see Eq. @7)] can
be calculated using the open circuit voltage (Laroche et all (2006))

kgT I
Voo = 1 og(%). (51)

Fig. clearly shows that the near-field TPV device produces much more electricity than a
classical TPV conversion system. At a distance between the thermal source and the cell of
z = 100nm the production is approximatly enhanced by a factor of 5. At 10nm this factor
reaches a value of about 50 times the far-field value. These results show that the near-field TPV
conversion is a promising technology that could offer new solutions for energy production in
the next decades.

P. B.-A. and FS.S. R. acknowledge the support of the Agence Nationale de la Recherche
through the Source-TPV project ANR 2010 BLANC 0928 01. This research was partially
supported by Triangle de la Physique, under the contract 2010-037T-EIEM.
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%103

Fig. 16. Electric power generated by a Tungsten-GaSb cell with respect to the separation

distance cell-source (same parameters as in (Laroche et all (2006))).
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