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Dynamics of a cold atom cloud in an anharmonic trap
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A combined gravitomagnetic trap was used to measure how the anharmonicity of a trapping potential affects
the dynamics of a cold atomic cloud. A displacement of the effective potential minimum as a function of the
ensemble temperature was observed. The effect is a direct consequence of the thermal nature of the atomic
sample. The results of both a theory approach to the dynamical evolution of the atomic cloud and a numerical
simulation are in very good agreement with the experimental observations. The effect can be exploited to devise
a novel measurement technique for the temperature of a trapped atomic cloud, as well as to separate thermal and
condensed phases in Bose-Einstein condensation experiments.
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I. INTRODUCTION

Trapping [1] and guiding [2,3] neutral cold atoms with
static magnetic fields is a well-developed technique, and
it represents an important tool for reaching Bose-Einstein
condensation [4–6]. Harmonic confining configurations are
normally adopted in cold atom experiments. This allows
for the use of simple, standard techniques to analyze the
dynamics of trapped particles; for example, the equipartition
theorem is valid [7]. In contrast, anharmonicity not only brings
about a rise in complexity, but also is at the basis of many
interesting phenomena and applications. Before the advent of
cold atom techniques, it was proved that a particle trapped in
an anharmonic potential emits a narrow line with no Doppler
broadening [8]. More recently, the anharmonicity of the trap
has been exploited to turn laser-induced parametric excitation
of atomic motion from a heating source into a robust way
to force evaporative cooling, both in far-off-resonance optical
traps [9] and in magnetic traps [10]. Anharmonic traps opened
the way to fast rotating Bose-Einstein condensate (BEC)
studies: in this regime, provided that the interaction energy
is weak enough, a giant vortex forms and circular superflow at
a supersonic speed occurs [11]. Similar effects are presently
under investigation for Fermi gases [12,13].

The study of the dynamics of a BEC in a microfabricated
magnetic waveguide [14] revealed several nonlinear effects
caused by the anharmonic nature of the potential: high
harmonics generation for the motion of the center of mass
(CM), coupling between internal and external dynamics, mode
mixing, and chaotic dynamics in case of strong excitations.
More in general, the scaling of the trap dimensions in
miniaturized trapping configurations [15], though allowing for
stronger confinement, yields a higher degree of nonlinearity.
This issue poses stringent constraints on integrated atom optics
aiming at high-precision inertial sensing devices and on the
measurement of atom-surface interactions.

In this paper, we study the dynamics of a cold sample
of 87Rb after its transfer in an anharmonic trapping potential
resulting from the combination of a suitably tailored magnetic
field and standard uniform gravity [16]. The analysis, both
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theoretical and experimental, shows that the dynamics is
strongly affected by anharmonic terms in the potential ex-
pansion. Moreover, the equilibrium point of the CM of a cloud
depends on the temperature of the loaded atoms. Remarkably,
due to the finite initial temperature and extension of the cloud,
even an optimal atomic transfer leads to a vertical oscillation
of the cloud.

The effect discussed here can be used to devise a novel
way to measure the temperature of a cold sample of atoms
confined in an anharmonic trap. Moreover, it could play a role
in schemes aiming at the spatial separation of the thermal and
the condensed phase in BEC experiments.

The article is structured as follows. In Sec. II the role
of the anharmonicity of a combined gravitomagnetic trap
in the atomic dynamics is theoretically discussed, whereas
Sec. III describes the results of a numerical simulation that
mimics the ensemble behavior. The experimental setup is
the topic of Sec. IV. Section V presents the experimental
data, which are in very good agreement with the results of
the numerical simulation. Conclusions and perspectives are
reported in Sec. VI.

II. ANHARMONIC TRAPPING POTENTIAL

In this section the effects of anharmonicity of a combined,
cylindrically symmetric gravitomagnetic potential on the
dynamics of a trapped atomic cloud are analyzed. The general
gravitomagnetic potential for a paramagnetic atom having
magnetic moment µ is [16]

UGM = UG0 + mgz + µ|B|, (1)

where UG0 represents an offset value, m the atom mass,
and g the modulus of the gravity acceleration. The uniform
gravitational field is assumed to be directed along z, which is
chosen to be the symmetry axis of the applied magnetic field
and the related cylindrical coordinate system (ρ,φ,z).

Let a point on the z axis be the origin. The Taylor expansion
of the magnetic field in a neighborhood of the origin is
determined up to the third order by the four parameters B0, B ′,
B ′′, and B ′′′, which correspond to the first four axial magnetic
field moments, evaluated in the origin: the axial bias field Bz,
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the axial gradient of the axial component of the magnetic field
∂Bz/∂z, and so on. The magnetic field components result:

Bρ = −1
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where O(r4), with r2 = ρ2 + z2, groups terms of order higher
than 3. If B0 is different from 0 and the z axis is oriented so that
B0 > 0, the Taylor expansion of the modulus of the magnetic
field in a suitable neighborhood of the origin and up to the
second order results in

|B| = B0 + B ′z + 1
2B ′′z2 + 1

2χB ′′ρ2 + O(r3), (3)

where χ is the ratio between the radial and the axial curvature:

χ ≡ 1

4B ′′

(
B ′2

B0
− 2B ′′

)
. (4)

Setting an axial point to be the minimum of the combined
potential requires the gradient of UGM to vanish there and
the Hessian of UGM to be non-negative in its neighborhood.
With regard to the radial gradient, the condition is always
satisfied if ρ = 0. The following discussion is devoted to this
axial solution only. However, as we aim at investigating the
dynamics of an atom cloud rather than a single atom, we
consider the axial gradient condition in a neighborhood of
the axis, thus allowing ρ to be (slightly) different from 0.
Differentiating along z and equating to 0, Eq. (1) gives

γ + B · ∂z B
|B| = 0, (5)

where γ ≡ mg/µ is the magnetic field gradient that com-
pensates gravity. For the F = 2, mF = 2 state of 87Rb, γ =
15.4 G/cm. This value has to be doubled for atoms either in
the F = 2, mF = 1 state or in the F = 1, mF = −1 state. Let
B ′ = −γ . Then, assuming again that B0 > 0, using Eqs. (2)
and (3), and keeping the terms up to the second order, Eq. (5)
becomes

(1 + ε)z2 − 2δz − 1

2
χρ2

(
1 + ε

χ

)
= 0, (6)

where the lengthlike parameter δ is defined as δ ≡ −B0/2B ′,
whereas the dimensionless parameter ε, defined as ε ≡
B0B

′′′/2B ′B ′′, expresses the entity of the third-order com-
ponent B ′′′ in terms of the three lower-order ones. On the axis
(ρ = 0), one of the two solutions for the axial position of the
trap center coincides—as expected—with the origin. Off axis,
the 0 of Eq. (6) next to the origin results in

z0 =
δ −

√
δ2 + 1

2χρ2(1 + ε)
(

1 + ε
χ

)
1 + ε

. (7)

According to Eq. (7), and as a consequence of the nonlin-
earity of the potential, the axial position of the trap bottom
progressively drops with ρ. The nonlinearity is mainly due

TABLE I. Main four terms in the Taylor expansion of the axial
magnetic field in the configuration center and related values of
significant parameters discussed in Sec. II.

Parameter Value

B0 (G) 0.50
B ′ (G cm−1) −15.4
B ′′ (G cm−2) 91
B ′′′ (G cm−3) 25
χ 0.80
δ (mm) 0.16
ε −4.5 × 10−3

T0 (µK) 3.2

to the square-root operation required by the modulus of the
field |B|. It is important to remark that this occurs even in the
case of vanishing B ′′′ and despite the apparent harmonicity
of the potential resulting from Eq. (3). If ε � 1, as in the
experimental implementation described later (see Table I),
Eq. (7) can be written as

z0 = δ −
√

δ2 + 1
2χρ2. (8)

Henceforth, we consider the atom cloud confined in the
combined trap as an ensemble and apply the ergodic hypothesis
[7]; related statistical averages are denoted “〈 〉.” Averaging
Eq. (8) requires knowledge of the distribution of ρ. This can
be evaluated by assuming the trap to be harmonic in first
approximation, so that the spatial distribution of atoms in each
Cartesian direction is Gaussian. It follows that

P (ρ) = 2ρ

〈ρ2〉e
−ρ2/〈ρ2〉. (9)

The average of z0(ρ), given by Eq. (8), over the distribution
given by Eq. (9) results in

〈z0〉 = −δ

√
π

2

ea

√
a

erfc (
√

a), (10)

where erfc is the complementary error function and the
parameter a is defined as

a ≡ 2δ2

χ〈ρ2〉 . (11)

The average radial quadratic displacement 〈ρ2〉 can
be evaluated in first approximation by using the energy
equipartition—the potential energy is then equally divided
between the three spatial modes—and the virial theorem. So

1

2
µBχB ′′〈ρ2〉 = E

3
, (12)

where E is the average total energy. In contrast, the average
total energy E of a trapped atom can be evaluated by knowing
the temperature T and the spatial distribution of the cloud
just before the transfer to the gravitomagnetic trap. The abrupt
switching of the confining potential provides a potential energy
contribution to the cloud, whereas it does not increase the
kinetic energy. It follows that

E = 3
2kB(T + TU ), (13)
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where TU is a positive, temperature-like parameter accounting
for the potential energy contribution.

The combination of Eqs. (10)–(13) yields the following
dependence of the CM equilibrium position 〈z0〉 on the initial
temperature T (a = T0

T +TU
):

〈z0〉 = −δ

√
π

2
e

T0
T +TU

√
T + TU

T0
erfc

(√
T0

T + TU

)
, (14)

where T0, defined as

T0 ≡ µB

kB

B2
0B ′′

2B ′2 , (15)

is a second temperature-like parameter depending exclusively
on the characteristics of the trapping magnetic field.

Equation (14) predicts the curve representing 〈z0〉 vs.
T —and vs. TU —to be decreasing. Remarkably, even con-
sidering the transfer of a pointlike atom cloud prepared at
the trap minimum (TU = 0, corresponding to an optimal
mode matching), the cloud then has to vertically oscillate
with an amplitude proportional to the temperature. At very
low temperatures (T � T0), 〈z0〉 linearly decreases with
T as d〈z0〉/dT � −δ/2T0, independently of TU . All these
behaviors are confirmed by the numerical simulation described
in the next section.

III. NUMERICAL SIMULATION

To study the atomic cloud dynamics in a complete nonlinear
regime, we carried out a numerical simulation by integrating
the dynamic equations of an initial set of atoms. The
simulation uses a fourth-order Runge-Kutta algorithm [17]
to evaluate the individual trajectory of each atom within the
combined gravitomagnetic potential. The initial conditions for
the simulation are the position and velocity of an ensemble
of atoms. The coordinates are randomly chosen in such a
way that the spatial distribution is Gaussian, spherical, and
centered at the origin; the velocity distribution corresponds
to a Maxwell-Boltzmann function at a given temperature T .
Because of the low atomic density observed in the combined
gravitomagnetic trap, interparticle collisions are not taken into
account. The loss channels represented by collisions with the
background gas and by Majorana spin-flips could be easily
implemented in the simulation, though without changing the
results. The magnetic field adopted in all the simulations shown
hereafter is that used in the experiment described in the next
paragraph (see Table I).

Two trapped clouds were simultaneously evaluated over a
time span of 2 s after the loading: the first one, henceforth
referred to as the upper cloud, represented a set of 1000
atoms in the F = 2, mF = 2 state of 87Rb; the second
one—henceforth, the lower cloud—represented a set of 1000
atoms either in the F = 2, mF = 1 state or in the F = 1, mF =
−1 one. For each cloud, the steady-state CM equilibrium
position 〈z0〉 is obtained by averaging the axial position of
all the particles during the evolution interval considered. An
alternative possibility is to evaluate the fast Fourier transform
of the CM axial evolution and use the DC component; for long
enough intervals, the two approaches give similar results.
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FIG. 1. Center-of-mass equilibrium position 〈z0〉 as a function of
the initial temperature for the upper (top) and lower (bottom) cloud.
The atomic sample is released at z = 0, with an initial rms radius
set to 0.1 mm (open squares) and 1 mm (filled circles). The solid
lines in the upper plot represent the fit of Eq. (14) to the points, using
TU as a unique fit parameter. The dashed line represents the linear
behavior at low T , having a slope of −δ/2T0 = −0.025 mm/µK. For
the lower cloud the oscillation center in the harmonic case occurs at
z = −1.7 mm.

First, the CM equilibrium position 〈z0〉 was considered as
a function of the temperature T of the transferred ensemble.
As shown in Fig. 1, 〈z0〉 decreases when the temperature T

increases for both the upper cloud and the lower one. Moreover,
the outcomes of simulations carried out for initial rms radius√

〈ρ2〉 = 0.1 and 1 mm show that 〈z0〉 is further lowered
when the starting size, and thus the initial potential energy
TU , is increased. The trend predicted by Eq. (14)—shown in
Fig. 1 for the upper cloud only—is well confirmed by the
simulations.

With regard to the upper cloud, Fig. 2 shows the dependence
of 〈z0〉 both on the initial rms dimension of the cloud and on
its initial axial displacement (T is set to 5 µK). The behavior
resulting from the simulations is well described by Eq. (14) if
each of these two parameters does not exceed 1 mm. Outside
this range, two approximations used to derive Eq. (14) are
no longer valid, so that this equation becomes progressively
inadequate to describe the dynamics of the system: first,
higher-order terms in the Taylor expansion of the modulus of
the magnetic field in Eq. (3) cannot be neglected anymore;
second, Eq. (14) relies on the expressions of the energy
equipartition and the virial theorem for a harmonic potential, an
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FIG. 2. Center-of-mass equilibrium position 〈z0〉 of the upper
cloud as a function of the rms radius

√
〈ρ2〉 (top) and the initial axial

position zstart (bottom) of the loaded atomic cloud. In the first case,
the solid line represents the behavior predicted by Eq. (14) when the
temperature of the transferred cloud was set to 5 µK. With regard
to the second case, open squares and filled circles correspond to the
results of two simulations carried out by fixing

√
〈ρ2〉 to 0.1 and

1 mm, respectively; the solid line represents the behavior for the
smaller cloud predicted by Eq. (14)—again, when the temperature of
the transferred cloud was set to 5 µK.

assumption that loses its validity when anharmonicity becomes
significant. The marked asymmetric dependence of 〈z0〉 on the
initial axial position zstart reflects the strong asymmetry of the
anharmonicity along the z axis, mainly due to the presence
of a 0 of the magnetic field on the axis at z ∼= 0.36 mm.
At this point, whose position can be evaluated by solving
the third-degree equation obtained by setting Eq. (2b) to
0, the magnetic force, proportional to the spatial derivative
of the magnetic field modulus, is discontinuous.

IV. EXPERIMENTAL APPARATUS

Our experiment uses a gravitomagnetic trap for 87Rb,
as described in [18]. A magneto-optical trap (MOT) with
typically 106 atoms is the source for loading the combined
trapping potential. The MOT center is coincident with the
minimum of the combined trap to ease the atomic transfer.
The magnet configuration is made up of three pairs of coaxial,
circular coils. Each pair is used to control one of the first
three terms in the Taylor expansion of the magnetic field in
the configuration center: in more detail, the internal, central,
and external coils mainly act on B ′′, B ′, and B0, respectively.

The values adopted in the experiment for these terms, as
well as for B ′′′, are reported in Table I. Typically, a few
tens of thousands of atoms are loaded in the combined
potential.

The central coil pair is used in the MOT phase to produce
a quadrupolar magnetic field having an axial gradient of
−15.4 G/cm at the origin. This value exactly compensates for
the gravitational force on the rubidium atoms in the F = 2,
mF = 2 state.

The temperature T of the atoms to be loaded in the
combined potential was set through a subDoppler cooling
phase: by changing the final frequency of the cooling radiation,
the temperature could be in the interval from 5 to 40 µK with
a precision of about 1 µK. The temperature of the atoms
released from the MOT was determined by measuring the
ballistic expansion of the freely falling cloud upon turning off
the magneto-optical confinement.

Two power MOSFETs are used to fast-switch the magnetic
field configuration between MOT (current only in the gradient
coils) and the gravitomagnetic trap (same current in the bias,
gradient, and curvature coils): the switching interval was
measured to be less than 200 µs. The magnetic field bias could
be varied by acting on a variable shunt resistance. A spurious,
off-axis component in the origin was compensated by means
of a coaxial coil pair with horizontal axis. The coil pair was fed
in series to the rest of the magnetic field sources. To optimize
the atomic transfer from the MOT to the combined potential
(in terms of both the number and the temperature of loaded
atoms), the external magnetic field was minimized below
50 mG using three orthogonal couples of coils in Helmholtz
configuration.

V. MEASUREMENTS

To study the atom dynamics within the combined potential,
the region was imaged after a trapping time interval 	t varying
from 30 to 300 ms, with a 10-ms step. The imaging was
carried out with a 2-ms pulse of MOT beams, while the
magnetic field was turned off to avoid accelerating the atoms.
The fluorescence of the trapped atoms was captured by a
high-resolution CCD camera. As expected, two atom clouds
were trapped in the gravitomagnetic potential, as shown in the
sequence in Fig. 3. The upper cloud is made of atoms in the
F = 2, mF = 2 state, whereas the lower one is populated by
atoms either in the F = 2, mF = 1 state or in the F = 1,
mF = −1 one. The relative population in the two clouds
could be controlled by optical pumping. In the measurements
presented here, each cloud contains about 2 × 104 atoms. The
lifetime of the atoms in the trap was τ = 4.5(2) s.

The left column in Fig. 3 shows an experimental sequence
obtained by setting the temperature of the MOT cloud at
5 µK; images shown were taken at multiples of 50 ms. The
right column shows a numerical simulation carried out by
assuming the same starting temperature and the same rms
radius (0.2 mm). There is a very good agreement between
the experimental data and the numerical data, for both the
motion of the CM and that relative to it. As far as the
lower cloud is considered, the agreement can be visually
appreciated regarding the vertical oscillation phase, the radial
expansion of the ensemble, and the recontraction of the cloud
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FIG. 3. (Color online) Oscillation of the two clouds within
the gravitomagnetic potential: measurement (left) and numerical
simulation (right). The temperature and the rms radius of the released
atomic ensemble were 5 µK and 0.2 mm, respectively. The simulation
was run with 2 × 104 atoms in each cloud. The grid spacing
is 2 mm.

to a size comparable to the initial one at z = −2.5 mm and
	t = 150 ms. With regard to the upper cloud, the agreement
was verified with a fitting procedure, as discussed here. It must
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FIG. 4. Center-of-mass time evolution of the two clouds (T =
12 µK).

be noted that in the experimental sequence in Fig. 3 the upper
cloud shows a horizontal oscillation, due to an out-of-axis
initial position. The observed oscillations and breathings of
the clouds can be explained in terms of kinematic evolution of
the noninteracting particles within the anharmonic potential.

Figure 4 shows the CM position zCM of the clouds in an
experimental sequence like that shown in Fig. 3. Given a
frame, the position was evaluated by fitting the image with
a two-dimensional, asymmetric Gaussian distribution. The
frequencies resulting from fitting a sinusoidal law of motion for
the upper and the lower cloud are 14.0(1) and 10.2(2) Hz, re-
spectively. According to the sinusoidal fit, the lower cloud—as
well as the upper one—reaches its maximum at approximately
	t = 0; however, the starting position extrapolated by the fit
does not coincide with the position where the MOT is released.
This effect is due to the wide axial excursion of the lower
cloud, whose outer tail is lost because of contact with the cell
windows during the first cycle. The effect becomes worse as
the temperature increases, thus preventing the assessment of
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FIG. 5. Axial oscillation center of the upper atomic ensemble
in the combined potential (open squares). The solid line represents
Eq. (14) “displaced” by a fixed value 	z = −0.16(1) mm. This
parameter was obtained by fitting on the experimental data the sum of
	z and the curve of Eq. (14). The existence of such a displacement is
justified by possibly imperfect calibrations of the experimental setup.
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the temperature dependence of the CM equilibrium position
for the lower cloud. For this reason, in the following, only the
upper cloud is considered.

Effects of the anharmonicity, for example, in terms of
coupling between the CM modes and the internal modes of
each cloud, are not immediately evident in the time evolution
shown in both Fig. 3 and Fig. 4; this is mainly due to
the small number of oscillation periods occurring within
the reported 300-ms interval. However, anharmonicity effects
become manifest when the position of the oscillation center,
that is, the measured value of the CM equilibrium position 〈z0〉,
is considered. This parameter is assessed via the sinusoidal fit
in Fig. 4. For the upper cloud, measurement of the dependence
of the CM equilibrium position 〈z0〉 on the initial temperature
T was carried out by analyzing time sequences acquired
at different temperatures, ranging from 5 to 22 µK. Each
sequence was made up of 28 images (from 30 to 300 ms, with
a 10-ms step) and required about 4 min. The corresponding
temperature T was measured before and after the sequence;
the resulting temperature variation was typically 0.5 µK, and
a linear drift was assumed. The rms radius of the loaded cloud
was typically 0.2 mm.

Figure 5 shows the measured dependence of the CM oscil-
lation center as a function of temperature: the anharmonicity-

driven height drop is confirmed, and the agreement with the
predictions of Eq. (14) is very good.

VI. CONCLUSIONS

We have studied the dynamics of a cold atomic cloud loaded
in an anharmonic trapping potential. As a consequence of the
anharmonicity, the ensemble shows an axial oscillation of the
CM whatever its initial position. The oscillation center shows
a temperature-dependent displacement that can be described
by a theoretical model relying on the third-order expansion
of the magnetic field. The effect was studied by means of a
numerical simulation and experimentally verified. The effect
could be used to measure the temperature of an atomic cloud
without turning off the potential, as well as to separate the
thermal and condensed phases in BEC experiments.
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