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Flattening Earth acceleration in atomic fountains
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A method to compensate for Earth’s gravity tide over an extended axial region is reported. Flattening
acceleration is important in experiments where the coupling of the dynamics of free-falling probes to the gravity
gradient generates stochastic noise on the measurement. Optimized cylindrically symmetric mass distributions
lower Earth’s tidal effect over 10 cm by a factor 10°. A multimass compensation system with comparable
performance is devised for tall atom interferometers. Reducing the gravity gradient is essential in terrestrial
experiments based on atom fountain configurations being developed to precisely test general relativity or the

neutrality of matter.
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I. INTRODUCTION

Cold atom fountains are nowadays important scientific
and technological instruments, competing with the state of
the art in several measurement fields. The cesium fountain
clock [1] defines the standard time, and fountain-based
inertial sensors [2,3] have achieved sensitivities and accura-
cies that compare favorably with competing methods. Such
performances have been used to realize atom interferometry
tests of general relativity [4,5], and measure fundamental
constants and their time variation [6—-8]. Other fountain-based
experiments designed to carry out tests of the equivalence
principle [9], measure matter neutrality [10], and detect
gravitational waves [11] are presently under construction.

These experiments require precise knowledge of the trajec-
tory of the free-falling atomic probe in Earth’s gravitational
field. The noise on the initial position and velocity of the probe
translates into stochastic noise of the output measurement
whenever it depends on the gravity acceleration g(z); this
happens because of the vertical inhomogeneity of Earth’s
gravitational field, which is expressed in terms of a vertical
gravity gradient I'y,. By solving the equation of motion in the
gravitational potential ¢(z) = goz + 1/2T"y z?, it turns out that
a vertical displacement 8z of the probe at the beginning of the
experiment has the same effect of changing the acceleration
by ég = 8zI'y during all the free fall. On the other hand, an
initial change in the vertical velocity v, provides the effect
analogous to changing the acceleration by §g = dv.I'yt at
each time ¢ during the experimental sequence. The fluctuating
initial position and velocity of the probe are a source of
stochastic noise, which must be considered in the evaluation
of the experimental sensitivity; its effect can be reduced
by compensating the gravity gradient in the measurement
region.

To date, the only fountain-based atom interferometer in
which the uncertainty given by the atomic position in the
gravitational field is reduced by using nearby compensation
masses is the gravity gradiometer [7,12]. In this case, two
interferometers are realized in the regions where the total
vertical acceleration presents stationary points resulting from
heavy source masses (whose main purpose is to provide the
gravitational signal to measure G); in this way, the uncertainty
on the phase measurement due to the atom positioning is scaled
down by 2 orders of magnitude.
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In general, producing a stationary point of the vertical
acceleration solves the effect of the gravity gradient in
experiments in which the probe is at a fixed height in Earth’s
gravitational field. In this case, an approach that aims to
cancel out the gradient and successive terms in the Taylor
expansion of the gravitational potential at that point can be
adopted (e.g., [13] for Earth-based experiments, and [14,15]
for free-fall orbiting ones).

In this article the case of a probe moving vertically during
the experiment is considered, which turns the problem from
flattening Earth’s gravitational field at just one point to
flattening it over an extended axial region. Given a set of
physical and geometrical constraints, the best configuration
of cylindrically symmetric masses that achieve this goal is
sought. The sensitivity improvement due to the flattening
of the acceleration is analyzed for three-pulse Raman atom
interferometry, and the method is further adapted to reduce
the phase noise generated by the gravity gradient in tall
fountain-based atom interferometers.

II. EARTH GRAVITY GRADIENT

Earth’s gravity gradient can be written as a second-order
tensor. The main components of this tensor are diagonal when a
coordinate system with the local vertical as one axis is adopted:

'y 0 O
Fi.i ~ 0 'y 0 y (D)
0 0 Ty

where I'; and I'y are a compression orthogonal to the vertical
axis and a tension along it, given by

GM
Iy = —m7 (2a)
2GM

In the previous equations, M is the mass of Earth, R its
radius, 4 the orbital altitude, and G the Newtonian gravitational
constant. Since Earth is not spherically symmetric, there
are small variations in these principal components, and off-
diagonal terms are not perfectly vanishing. In this article Earth
is assumed to be perfectly spherical, and the equality sign is set
in Eq. (1). The typical gravity-gradient value at Earth surface
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is about 3 x 1076 s72. The tide contribution of nearby masses
must also be carefully considered in relation to the specific
experimental setup; here only the compensating masses are
assumed to be in the neighborhood of the region of interest.

III. FLATTENING EARTH ACCELERATION

To counteract the gravity gradient generated by Earth over
an axially extended region, the natural candidate is a ring
mass coaxial with the same region, and with local gravity.
The gravity gradient of such a mass at the center of the
configuration is also a tensor with vanishing off-diagonal
elements. As for the spherical Earth contribution, and as a
consequence of the solenoidal nature of the gravitational field
in mass-free space, the vertical gradient is twice that of the
horizontal, but the sign of the tensor is opposite with respect to
that of Earth. As noted in [14], the tensor gravity-gradient field
at the center of a mass ring is the same as the field that would be
produced by a negative mass placed below that point. Reducing
the axial gradient I'y by means of a mass ring thus brings the
same decrease factor to the radial gradient I'y;. Because of
the symmetry of the problem, a description in the cylindrical
coordinate system is adopted where the z axis coincides with
the gravity-gradient stabilization direction and the origin is at
the center of the compensation region. The discussion is then
restricted to the half-plane ¢ = 0.

Once the basic building element of the gravity compensator
is defined, the physical and geometrical constraints of the
problem must be analyzed. First considerations include the
density and the density homogeneity of the mass compensator.
A detailed analysis of the material choice is beyond the scope
of the present article; as a basic rule it must be taken into
account that a high density allows for a compact compensation
configuration, and high homogeneity is an advantage.

Geometric constraints include the extension of the axial
region to be compensated, and the boundaries of the region
that can be occupied by the compensator mass. The allowed
region is in general a square torus, defined by an internal and
an external radius, and by an axial extension, symmetric with
respect to the origin for the sake of simplicity. The internal
radius boundary is necessary to house the vacuum tube of the
atomic fountain, possible magnetic coils, magnetic shields,
and electrodes.

The next step is to find the optimal mass distribution that
fulfills the physical and geometrical requirements. Different
parameters can be adopted to evaluate the configurations:
(1) the maximum acceleration gradient in the region L
where a flat acceleration is pursued; (2) the difference
between the maximum and the minimum acceleration over L;
(3) the mean square variance of the acceleration with respect
to its average value over L. A mixed strategy showing the
fastest convergence to the best configuration was chosen: first,
the condition of flat average acceleration is obtained (this
condition is verified when the acceleration has the same value
at the two extremes of L), and then the residual roughness
of the acceleration is smoothed by minimizing the last of the
three previous parameters.

The search for the optimal configuration is carried out
with a numerical optimization technique, since the problem
is too complex to be treated analytically. The square toroidal
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region suitable for the compensator is parameterized by
approximating it with N finite mass rings. Fine radial and
axial steps reduce systematic effects given by the mass
discretization. The kth ring has a linear mass density A; which
satisfies the relation A < Amax (Amax 18 given by the maximum
density and the adopted ring section), and its position is given
by the vector ry = [px,zx], which describes the intersection of
the ring center with the half-plane ¢ = 0. With the ring coaxial
to the gravity-gradient compensation axis, oy is its radius and
7y 1s the axial distance of its center from the origin.

Each mass ring produces a vertical acceleration at z on the
axis:

Pr 2k — 2)
8pa(2) =206 — R 3)
[pi + (zx — 2]
The axial gradient of the previous formula gives
082 (2) 2z — 2)* — p?
[pz(2) = =250 = 27 0 Gy k (4)

9z [02 + Gz — 22

and the average gradient the ring produces on the axis in the
region —a < z < a is then

1

“ 1
(Fpk.zk> = Z \/_[J Fpk,zk(z)dz == %[gpk,zk(a) - gp/(,zk(_a)]
&)

The numerical procedure to optimize the mass distribution is
based on the simulated-annealing Metropolis algorithm [16].
The first step consists of filling the region where the mass
rings generate a negative average gravity gradient over the
region of interest L with the maximum allowed density in
each ring. In the example presented here, L is defined by
setting @ = 5 cm, and the region verifying (I',, ., ) < 0O is that
within the two dashed lines in Fig. 2. The filling procedure
systematically selects the rings within the allowed region by
increasing the radius, so as to pick up bigger contributions to
the gradient compensation first. As an example, in Fig. 1 the
residual average gradient over L is plotted versus the external
radius of the filled region, once the internal radius is set (shown
are the cases of radius 4, 6, and 8 cm). The filling process stops
when the average gradient over L crosses the zero: beyond
that Earth’s gradient would be overcompensated. The second
part in Fig. 1 shows the vertical acceleration obtained once
the compensation condition is reached. As the inset points
out, the average acceleration over L is flat, and the residual
inhomogeneity is already of the order of 5% of its initial
value for the three configurations. Notably, the homogeneity
improves for bigger internal radius, at the expense of a bigger
size and mass.

If the allowed region with the correct sign contribution to
the gravity gradient is completely filled before the zero-order
compensation is reached, the procedure stops. Otherwise, it
is the starting point of a Monte Carlo optimization algorithm.
The evolution is carried out in this way: at each step, two
rings are randomly chosen within the allowed region; the
two relative average gradients over L are calculated; the two
rings’ mass densities are scaled so as to provide a vanishing
contribution to the average gradient when summed together.
The two density values are scaled with respect to a preset
value dA, and their global sign is chosen so as to decrease
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FIG. 1. (Top) Average acceleration gradient over the region of
interest (between —5 and 5 cm) as a function of the external radius of
the compensator, when only the region with negative gradient is filled
with mass. Shown are the cases of internal radius fixed to 4 (solid),
6 (dashed), and 8 cm (dotted). The horizontal solid line is at Earth
gravity-gradient value. (Bottom) Residual acceleration on the axis for
the three previous configurations, with the external radius fixed by the
passage through the zero of the upper curves. The thin solid straight
line represents Earth acceleration. The inset shows the acceleration in
the region of interest; here the slope of Earth acceleration is divided
by 20 for comparison.

the mean square variance of the gravity gradient over L. The
couple of densities is then added to the density matrix, with
a further normalization if the condition 0 < Ay < Apax IS not
verified. The evolutionary step is then repeated. The parameter
dX is progressively lowered along the evolution, following
a simulated annealing schedule defined on a trial-and-error
approach to optimize the convergence to the optimal solution.

Figure 2 shows an example of the best mass compensator
obtained for different external radii. The conditions adopted
for the calculation are density 10* kg/ m?, internal radius R;,, =
4 cm, half-height of the allowed region for the compensator
13 cm, and half-height of the compensation region @ = 5 cm.
The section of each mass ring is 0.1 x 0.1 mm?, whereas
the resulting acceleration is calculated over a grid with step
0.1 mm. The first plot shows the configuration reached at
the conclusion of the initial filling procedure, which occurs
for Rexy = 12.6 cm. In the next two plots, the external
radius is set to 13.5 and 14.2 cm. Notably, the optimization
procedure always makes use of the larger radius mass rings
verifying (I',, ..} < 0, since their contribution over L is more

@ ;.
- ‘ 2 ot I [V} =10
;//
,._...-e.f" -5 - 45
) £
- E g 0 T - 0 5
) N
— R 45 ,______.‘j‘ )4 -5
\ "-..“‘
L b d 40 b ~ 10
\“‘-. 5\“"“.
| 1 1 1 1 1
0 5 10 15 0 5 10 15
T T T T T T
(@) e
- - = f 410
W e 45 ..-..—-‘)’;"’ 45
j N
— i 4 -5 '---ﬂ-...; 1 -5
B 5\_‘;‘:::‘ 410 b \%_ -10
1 1 l‘ 1 1 1
0 5 10 15 0 5 10 15
p (cm) p (cm)

FIG. 2. The two dashed lines represent the set of mass rings giving
vanishing average gradient (I',, . ) on the region of interest L, as
given by Eq. (5) when a = 5 cm. The dotted lines are the geometric
constraints on the compensation mass. The internal radius of the
configurations is set to 4 cm, the axial borders are at 13 cm, the
external radius is set to 12.6, 13.5, 14.2, and 15 cm from (a) to (d).
In the last image, there is an aperture of 1 cm on the horizontal
symmetry plane of the configuration. The gray region is filled with
mass, as determined by the optimization algorithm. The total mass of
each configuration is 70, 101, 117, and 116 kg from (a) to (d).

homogeneous. The gravity gradient overcompensation these
rings cause is canceled in two different ways: by adding mass
rings outside of the dashed boundaries, and by removing the
highly inhomogeneous contributions of close components.
The underlying random selection process works to smooth
the residual acceleration curve. The resulting acceleration
in the compensation region for the configurations is presented
in Fig. 3, where Earth’s acceleration with a gradient reduced
by a factor 100 is plotted for comparison. Considering the
region between —4 and 4 cm, noteworthy reductions in residual
gravity gradient by factors of about 10? and 10° are achieved
for the configuration having external radius 13.5 and 14.2 cm,
respectively. The acceleration can be further smoothed by
running the optimization after increasing the allowed region
for the mass compensator.

The optimization algorithm can handle more complex
geometrical constraints by defining a suitable multiplicative
loss function for the evaluation of the configuration efficiency.
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FIG. 3. Residual acceleration on the axis for the configurations
(b), (c), and (d) in Fig. 2, respectively, in solid, dashed, and dotted line.
The thin straight line with positive slope is shown for reference and
represents Earth’s acceleration, when its gravity gradient is divided
by a factor 100.

Such function is unitary within the allowed space region,
whereas in the forbidden regions it increases the negative
contributions to the efficiency and decreases the positive
ones. An exponential growth for the suppression effect over
a suitable length scale can be defined as in [17], where the
shape of a magnetic trap for neutral atoms is optimized. As an
example, in Fig. 2(d) a 1-cm-high optical access is imposed
on the horizontal symmetry plane of the compensation mass.
The resulting compensation factor for the gravity gradient is a
remarkable 102

The result of the optimization algorithm are configurations
where the mass is confined in well-defined regions having
the maximum allowed density. The precise realization of the
compensator masses by machining is therefore feasible.

IV. ATOM INTERFEROMETERS

In fountain-based atom interferometry the fluctuations of
the initial position and velocity of the atomic clouds cause a
phase noise that eventually limits the measurement sensitivity.
Consideringan /2 — w — m /2 sequence with a time interval 7
between the pulses, the phase shift given by an initial vertical
displacement §z is —kegt T2y 8z, where likeg is the momentum
difference between the wave-function trajectories, and I'y
the vertical component of the gravity gradient as defined in
Egs. (2). The phase contribution due to an initial velocity
shift §v, is —keffT3FV8UZ. In [10] a 10-m atomic gravity
gradiometer to test atom and neutron neutrality is proposed,
and Earth’s gravity gradient is assumed to be reduced to
10% over the whole measurement region by an engineered
local mass distribution. Even so, the atomic position and
velocity must be controlled at the 1-um and 1-pum/s levels,
respectively, for shot-noise-limited sensitivity. Moreover, if
the sensitivity is improved toward the Heisenberg limit by
employing entangled atomic states [18], the control degree of
the atomic dynamics must scale proportionately.

By flattening Earth’s acceleration over 10 cm, the mass
configurations of the previous section strongly reduce the
dynamics-induced noise for interferometers with a pulse
spacing of the order of 100 ms symmetric with respect
to the m pulse, since these are completely realized within
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the flattened region. However, the sensitivity of an atom
interferometer scales with the square of the pulse spacing,
therefore, increasing the free-fall interval is a straightforward
way to obtain better precision. The solution presented so far to
reduce the phase noise determined by the gravity gradient soon
becomes impracticable, because of the total mass required. For
a 1-m compensation and a mass-free internal radius of 4 cm,
the mass of the zero-order compensator is about 10* kg, and
the residual gravity gradient is 30% with respect to Earth’s.

The fact that the gravity gradient couples the atomic
position and velocity to the interferometric phase only when
the pulses are delivered is exploited to solve this problem.
For a three-pulse interferometer symmetric with respect to the
apogee, it is then possible to devise a configuration with only
two 10-cm compensators, one in the axial region where the
two /2 pulses interact with the cloud, and one at the top of
the trajectory where the 7 pulse acts. In this way, an effective
compensation of the gravity gradient at levels comparable with
those shown in the previous section is obtained also for very
tall configurations. Notably, the relative positioning of the two
compensators (which can be done at the um level by adopting
stiff supports and optical interferometry measurements) affects
the accuracy of the phase measurement, but not the precision.
The required control degree for the atomic position and
velocity is then strongly relaxed.

This multimass compensation scheme can be adapted to
the case characterized by a large spatial splitting at the time
of the  pulse, as shown in Fig. 4. In the example presented,
the interrogation time of the experiment is 7 =1.16 s, a
velocity splitting of hikegs /M aom ~ 1 m/s is adopted (allowed
by improved large momentum transfer beam splitters [19]),
and this results in an ~1-m splitting at the apogee. The pulse
timing is chosen to send the 7 pulse not at the top of the
cloud trajectories to avoid degeneracy between oppositely
directed kg in the case of retroreflected Raman beams. Four
mass compensators are required, one for each region where
the atomic wave function is manipulated by the laser field.
The 1-m/s velocity splitting requires about 85 pulses in
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FIG. 4. (Color online) Atom wave-function trajectories versus
time for a gravimeter implementingan /2 — w — 7 /2 pulse sequence.
The pulse spacing is T = 1.16 s, the velocity splitting between the
two paths is v = 1 m/s, and the vertical velocity at the time of the
first w/2 pulse is 11 m/s. In gray, and labeled (A)—(D), are shown
the four regions on the axis where atoms interact with Raman pulses
and where compensator masses are placed to locally flatten Earth’s
acceleration.

013622-4



FLATTENING EARTH ACCELERATION IN ATOMIC FOUNTAINS

the case of rubidium atoms and Raman lasers close to the
D, line. Given a 10-cm vertical region for each composite
pulse, and with the maximum atomic velocity during the
interferometer sequence of 11 m/s, the time interval for each
optical pulse is 100 us. Assuming a compensation of Earth’s
gravity gradient to 0.1% in each 10-cm region, the initial
position fluctuations of the atomic cloud have to be controlled
at the 100-um level and the initial velocity at the 100-pm/s
level for shot-noise-limited sensitivity. These values must scale
accordingly to the sensitivity improvement given by the use
of entangled sources. Additional masses must be placed in the
case of a gravity gradiometer employing two clouds flying at a
given distance and subjected to the same laser pulse sequence.

V. CONCLUSIONS

A method to lower Earth’s tidal effect over extended
axial regions has been presented that achieves reductions
in the residual gradient over 10 cm by factors of 10° and
more. In the case of fountain atom interferometry, a smooth
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acceleration region allows the reduction of the statistical
effect of atom positioning: the interferometric phase contains
two terms coupling the gravity gradient to the atomic initial
position and initial velocity. The method is further adapted
to cope with tall Raman atom interferometers, and more
specifically for the cases in which flattening the acceleration
over the entire atomic trajectory would require a prohibitively
heavy mass. The approach relies on a multimass scheme
that compensates the gravity gradient only in the regions
where atoms interact with the interferometric pulses. By
strongly relaxing the requirements on the atomic dynamics
side, the compensation method can play an important role in
obtaining the very high sensitivities targeted in several atom
interferometry experiments being developed nowadays.
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