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We show that quantum Fisher information provides a sufficient condition to recognize multiparticle

entanglement in an N qubit state. The same criterion gives a necessary and sufficient condition for sub-

shot-noise phase sensitivity in the estimation of a collective rotation angle �. The analysis therefore

singles out the class of entangled states which are useful to overcome classical phase sensitivity in

metrology and sensors. We finally study the creation of useful entangled states by the nonlinear dynamical

evolution of two decoupled Bose-Einstein condensates or trapped ions.
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Introduction.—The ability to create and manipulate en-
tangled states of many-particle systems is a far-reaching
possibility of quantum mechanics. Several efforts have
been devoted, in the last few years, to exploiting entangle-
ment to design new technologies for secure communica-
tion, metrology, and fast computation or to unveil founda-
tional problems of quantum mechanics. From the experi-
mental point of view, trapped Bose-Einstein condensates
(BECs) [1,2], cold or thermal atoms [3], and trapped ions
[4] are important candidates for the creation of large-scale
quantum entanglement. It is important to emphasize, how-
ever, that not all entangled states are equally useful for de-
veloping protocols that outperform classical operations.
Generally speaking, current measures of entanglement
mostly focus on the algebraic separability properties of
quantum states. This notion should be extended for quan-
tum technological applications, where it is essential to
classify entanglement on the basis of some additional phy-
sical or algebraic properties required by the specific task.
These attributes are crucially related to nonseparability, but
are not necessarily possessed by all entangled states.

In this Letter, we develop a general framework to study
the interplay between entanglement and phase estimation
in metrology and quantum sensors [5]. A quantum state
�̂inp must necessarily be entangled in order to be useful for

estimating a phase shift � with a sensitivity �� beyond the
shot noise, which is the maximum limit attainable with
separable states. Nevertheless not all entangled states can
perform better than separable states. Here we introduce a
new criterion, on a generic �̂inp, which is sufficient to

recognize multiparticle entanglement and is necessary
and sufficient for sub-shot-noise phase estimation sensitiv-
ity. We separate entangled states into two classes on the
basis of an additional geometrical (or kinetic, see below)
property in the Hilbert space. Our analysis uses basic tools
of parameter estimation theory and provides a simple and
experimentally measurable condition, Eq. (3), which ex-
tends other criteria discussed in the literature based on the
concept of spin squeezing [1]. We will show, with an
example experimentally achievable with dilute BECs and

trapped ions, how nonlinearity can generate a class of
states which are entangled, useful for sub-shot-noise inter-
ferometry, but not spin squeezed.
A state of N particles in two modes (N qubits) is

separable (nonentangled) when it can be written as [1,6]

�̂ sep ¼
X
k

pk�̂
ð1Þ
k � �̂ð2Þ

k � . . . � �̂ðNÞ
k ; (1)

where pk > 0,
P

kpk ¼ 1, and �̂ðiÞ
k is the density matrix for

the ith particle. How can entangled states be recognized?
Let us introduce the ‘‘fictitious’’ angular momentum op-

erator Ĵ ¼ P
N
l¼1 �̂

ðlÞ, where �̂ðlÞ is a Pauli matrix operating

on the lth particle. According to the current literature, if a
state �̂inp satisfies the inequality

�2 � Nð�Ĵ ~n3Þ2
hĴ ~n1i2 þ hĴ ~n2i2

< 1; (2)

then it is particle entangled [1,7,8] and spin squeezed
[1,9,10] along the direction ~n3, with ~n1, ~n2, and ~n3 three

mutually orthogonal unit vectors and Ĵ ~ni ¼ Ĵ � ~ni.
Here we introduce a different sufficient condition for

particle entanglement:

�2 � N

FQ½�̂inp; Ĵ ~n�
< 1; (3)

where FQ½�̂inp; Ĵ ~n� ¼ 4ð�R̂Þ2 is the quantum Fisher infor-

mation (QFI) [11–14] and ~n is an arbitrary direction. The

Hermitian operator R̂ is the solution of the equation

fR̂; �̂inpg ¼ i½Ĵ ~n; �̂inp� [15]. It is possible to demonstrate

that �2 � �2 [16]. Therefore, Eq. (3) recognizes a class of
states which are entangled, �2 < 1, and not spin squeezed,
�2 � 1, as, for instance, the maximally entangled state [8].
Notice that, for a pure state, �̂inp ¼ jc inpihc inpj, we have

FQ½�̂inp; Ĵ ~n� ¼ 4ð�Ĵ ~nÞ2 [11] and the sufficient condition

for multiparticle entanglement, Eq. (3), assumes the ap-
pealing form
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�2
ps � N

4ð�Ĵ ~nÞ2
< 1: (4)

The QFI is naturally related to the problem of phase
estimation. Generally speaking, an interferometer is quan-
tum mechanically described as a collective, linear, rotation

of the input state by an angle �: �̂outð�Þ ¼ ei�Ĵ ~n �̂inpe
�i�Ĵ ~n .

The goal is to estimate � with a sensitivity overcoming the

shot-noise limit ��sn � 1=
ffiffiffiffi
N

p
. For instance, in Mach-

Zehnder interferometry, � is a relative phase shift among
the two arms of the interferometer, and the rotation is about
the ~n ¼ ~y axis.

For an arbitrary interferometer and phase estimation
strategy, the phase sensitivity is limited by a fundamental
bound, the Quantum Cramer-Rao (QCR) [12], which only
depends on the specific choice of the input state,

��QCR ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FQ½�̂inp; Ĵ ~n�

q ¼ �ffiffiffiffi
N

p : (5)

A comparison with Eq. (5) reveals that Eq. (3) is not only a
sufficient condition for particle-entanglement, as already
discussed, but also a necessary and sufficient condition for
sub-shot-noise phase estimation. This is a main result of
this work: �< 1 provides the class of entangled states
which are useful for sub-shot-noise sensitivity. In other

words, with chosen �̂inp and Ĵ � ~n, if the corresponding

value of the QFI is such that �< 1, then the state is
entangled, and if used as input of an interferometer realiz-

ing the unitary transformation e�i�Ĵ ~n , it provides a phase
estimation sensitivity higher than any interferometer using
classical (separable) states. On the other hand, the class of
entangled states for which � � 1 cannot provide a sensi-
tivity higher than the classical shot noise.

The QFI, which links Eqs. (3) and (5), has a simple

interpretation as square of a ‘‘statistical speed,’’ �2
F �

FQ½�̂inp; Ĵ ~n� ¼ ½dlð�Þ=d��2. This corresponds to the rate

of change of the absolute statistical distance lð�Þ among
two pure states in the Hilbert space (or in the space of
density operators for general mixtures) along the path
parametrized by � [11,14]. The absolute statistical distance
is the maximum number of distinguishable states along the
path parametrized by �, optimized over all possible gener-
alized quantum measurements. According to Eq. (3), use-
ful entanglement corresponds to high speed, j�Fj> j�crj,
with j�crj ¼

ffiffiffiffi
N

p
a critical velocity that cannot be over-

come by separable states. The maximum speed (strongest
entanglement) is j�maxj ¼ N, and therefore the fundamen-
tal (Heisenberg) limit in phase sensitivity is ��HL ¼ 1=N.
Physically, this simply means that, under the action of
some unitary evolution, useful entangled states evolve
(become distinguishable) more rapidly than any separable
state.

Entanglement.—Let us introduce the inequalities

1

M2kð�Þ
�
dMkð�Þ
d�

�
2 � FQ½�̂inp; Ĵ ~n� � 4ð�Ĵ ~nÞ2; (6)

where Mkð�Þ � Tr½M̂k�̂out�, with M̂ an arbitrary observ-
able [17]. The right-hand side of Eq. (6) allows us to

demonstrate Eq. (3) by showing that FQ½�̂sep; Ĵ ~n� � N

for any arbitrary unit vector ~n in the pseudo angular
momentum space. First, notice that, for separable

states, �̂k ¼ �̂ð1Þ
k � �̂ð2Þ

k � . . . � �̂ðNÞ
k , we have 4ð�Ĵ ~nÞ2¼

N�4
PN

i¼1hĵðiÞ~n i2�N. Combining this result with Eq. (6)

and the convexity of the QFI [16] (i.e., for an arbitrary

mixture �̂ ¼ P
kpk�̂k, FQ½�̂; Ĵ ~n� � P

kpkFQ½�̂k; Ĵ ~n�), we
obtain that FQ½�̂sep; Ĵ ~n� � N, where the equality sign can

be saturated only with pure states. Moreover, since

4ð�Ĵ ~nÞ2 � 4hĴ2~ni � N2, we obtain FQ½�̂inp; Ĵ ~n� � N2.

Then, from Eq. (5), it follows that ��HL is the highest
possible phase sensitivity.
Using the left-hand side of Eq. (6) we now demonstrate

that � � � for any arbitrary �̂inp. We consider, without loss

of generality, a direction ~n � ~n2 such that hĴ ~n2i ¼ 0. By

choosing M̂ ¼ Ĵ ~n3 � hĴ ~n3i in Eq. (6), we obtain that

FQ½�̂inp; Ĵ ~n� � ðdM1=d�Þ2=M2 ¼ N=�2. Then Eq. (3)

shows that � � �: the class of states satisfying �< 1 is
wider and includes the class of states defined by Eq. (2).
Nonlinear dynamics.—We now discuss the connection

between nonlinear dynamics, entanglement, and spin
squeezing. We consider a coherent spin state, jj; ji ~n1 ¼Pþj

�¼�j
1
2j

ffiffiffiffiffiffiffiffiffiffiffi
ð 2j
j��Þ

q
jj;�i ~n3 [18,19], with j ¼ N=2. This state

is separable (�2 ¼ 1), and we investigate the possibility of
strongly entangling the particles by the nonlinear evolution

e
�i�Ĵ2

~n3 . A direct calculation of Eqs. (2) and (3) with ~n � ~n2
(where the expectation values are computed over the state

jc ð�Þi ¼ e
�i�Ĵ2

~n3 jj; ji ~n1) gives
�2 ¼ ðcos�Þ�2ðN�1Þ; (7)

�2 ¼ 2=½ðN þ 1Þ � ðN � 1Þðcos2�ÞN�2�: (8)

Notice that �2 � 1, while �2 � 1 for all values of �: the
state jc ð�Þi is not spin squeezed but still (usefully) en-
tangled. A comparison between Eq. (7) and Eq. (8) is
presented in Fig. 1(a) for N � 1. We emphasize two

time scales in the dynamical evolution of �2: for 0< �<

1=
ffiffiffiffi
N

p
, �2 decreases from 1 to 2=N; for 1=

ffiffiffiffi
N

p � � �
	=2� 1=

ffiffiffiffi
N

p
, it reaches the plateau �2 ¼ 2=N. The dy-

namics are periodic with period T ¼ 	=2 for even values
of N and T ¼ 	 for odd N (in which case �2 ¼ 1=N at
� ¼ 	=2).
Kitagawa and Ueda [10] have pointed out that the non-

linear evolution e
�i�Ĵ2

~n3 actually creates spin squeezing, for

� � 1=
ffiffiffiffi
N

p
, along a particular direction. The maximum
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squeezing is obtained for the state j ~c ð�Þi ¼ ei
Ĵ ~n1 jc ð�Þi,
where 
ðN; �Þ ¼ 1

2 arctan
B
A , A ¼ 1� ðcos2�ÞN�2, and

B ¼ 4 sin�ðcos�ÞN�2. We have

�2 ¼ ½4þ ðN � 1ÞðA�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
Þ�=4ðcos�Þ2N�2: (9)

Equation (9), as a function of �, is shown in Fig. 1(a) [20].

We have �2 < 1 for 0< � � 1:15=
ffiffiffiffi
N

p
, and the minimum,

�2
min ¼ 1=N2=3, is reached at � ¼ 1:2=N2=3. For 1=

ffiffiffiffi
N

p
&

� � 	=2, �2 > 1 and it converges to Eq. (7), which even-
tually diverges at � ¼ 	=2.

Heisenberg limit.—So far we have demonstrated that the
nonlinear evolution of a coherent spin state creates particle
entanglement useful for sub-shot-noise sensitivity. This
protocol has advantages when compared to the spin-
squeezing approach discussed in [10] for improving the
phase sensitivity of a Mach-Zehnder interferometer[21].

While spin squeezing is created only for short times, � &

1=
ffiffiffiffi
N

p
, and along a direction 
ðN; �Þ which strongly de-

pends on � and N, our scheme does not require any addi-
tional rotation of the initial state, is fairly independent on
the evolution time, and reaches the Heisenberg limit [22],

��HL ¼ 1=N, for times for � * 1=
ffiffiffiffi
N

p
. Here we apply

these results to a realistic BEC experimental setup. The
coherent spin state can be created by splitting an initial
condensate into two modes with the ramping of a potential
barrier or by quickly transferring half of the particles from
an initial condensate to two different hyperfine levels with

a 	=2 Bragg pulse. The nonlinear evolution, e�i�Ĵ2z , where
� ¼ Ect, Ec is the charging energy, and t is the evolution
time, is naturally provided by particle-particle interaction
[23]. The nonlinear dynamics of an initial separable state
has been also recently experimentally demonstrated with

trapped ions [4]. Here we consider a Mach-Zehnder inter-
ferometer with input state jc ð�Þi and infer the true value of
the phase shift � from the measurement of the relative
number of particles at the output ports. These are charac-
terized by conditional probabilities Pð�jj; �; �Þ ¼
jzhj; �je�i�Ĵy jc ð�Þij2, with � the result of a measurement.
To achieve ��QCR, Eq. (5), we consider a Bayesian esti-

mation scheme [24,25]. In Fig. 1(b) we plot the results of

numerical simulations for � ¼ 1=
ffiffiffiffi
N

p
and � ¼ 	=2. We

show �� as a function of the total number of particles used
in the estimation process NT ¼ Np, with p ¼ popt ¼ 20

the optimal number of independent measurements. The
filled circles are numerical results [minima in the inset of
1(b)], and the solid line is�� ¼ 8:9=NT . We notice that the
more popular phase estimation scheme based on the mea-

surement of average moments ofĴz [9] and the correspond-
ing error propagation analysis only provide shot noise.
Can we understand the origin of sub-shot noise without

spin squeezing? Let us investigate the phase structures
characterizing the conditional probability distributions
Pð�jj; �; �Þ, defined for discrete values of �j � � � j.
These distributions contain all of the available information

P(
µ|

j, 
θ 

,τ
)

P(
µ|

j, 
θ 

,τ
)

P(
µ|

j, 
θ 

,τ
)

FIG. 2 (color online). (a–c) Distributions Pð�jj; �; �Þ plotted
as a function of � along circles of radius� (taken as a continuum
variable) at three different times during the nonlinear evolution:
(a) � ¼ 0, (b) � ¼ 	=4, and (c) � ¼ 	=2. The solid lines delimit
the typical size of the substructures. (d–f) Pð�jj; �; �Þ as a
function of �, and for (d) � ¼ 0, � ¼ 7:5, (e) � ¼ 	=4, � ¼
2:5, and (f) � ¼ 	=2, � ¼ 3:5. Here N ¼ 15.
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FIG. 1 (color online). (a) Plot of Eqs. (7) (dash-dotted black
line), (8) (solid blue line), and (9) (dashed red line) as a function
of �

ffiffiffiffi
N

p
(here N ¼ 104). The states having �2, �2 < 1 (i.e.,

below the horizontal dotted line in the figure) are useful for
quantum interferometry. (b) Phase sensitivity as a function of the
total number of particles NT ¼ Np. Filled circles are results of
numerical simulations, the solid black line is the Heisenberg
limit �� ¼ 8:9=NT , obtained for p ¼ popt, and the dashed blue

line is the shot noise �� ¼ 1=
ffiffiffiffiffiffiffi
NT

p
. Inset: �� as a function of the

number of measurements p, for fixed values of NT . The optimal
working point (minimum of each curve) is popt ¼ 20, indepen-

dent from NT .
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about the parameter � that can be extracted from the mea-
surement of �. In Figs. 2(a)–2(c) we plot Pð�jj; �; �Þ, as a
function of �, along circles of radius �, at three differ-
ent times during the nonlinear evolution: 2(a) � ¼ 0,
2(b) � ¼ 	=4, and 2(c) � ¼ 	=2. The typical size of the

substructures is	1=
ffiffiffiffi
N

p
in 2(a) and	1=N in 2(b) and 2(c)

as indicated, in the figure, by solid lines. This is also shown
in Figs. 2(d)–2(f) where we plot Pð�jj; �; �Þ for different
� and the same � as in Figs. 2(a)–2(c). The size of the
relevant substructures indicates the smallest rotation angle
needed to make the rotated state orthogonal to the initial
one.

Conclusion.—We have explored the interplay between
multiparticle entanglement and quantum interferometry. A
key role is played by the quantum Fisher information. We
obtained a sufficient condition for N-particles entangle-
ment, �< 1 [Eq. (3)], which is more general than, and
incorporates, the spin squeezing condition [Eq. (2)]. Large
entanglement can be obtained through a nonlinear evolu-
tion and used to reach a phase sensitivity at the Heisenberg
limit. Our results can have practical impact on precision
spectroscopy, atomic clock, and atomic or optical interfer-
ometry, and can be implemented with Bose-Einstein con-
densates and trapped ions within the current technology.
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