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Linear amplifiers are necessarily affected by a minimal amount of noise, which is needed in order to preserve the
linearity and the unitarity prescribed by quantum mechanics. Such a limitation might be partially overcome if the
process is realized by conditioning its operation on a trigger event, for instance, the result of a measurement. Here
we present a detailed analysis of a noiseless amplifier, implemented using linear optics, a down-conversion-based
single-photon source, and single-photon detection. Our results demonstrate an amplification adding a level
of noise lower than the minimum allowed by quantum mechanics for deterministic amplifiers. This is made
possible by the nondeterministic character of our device, whose success rate is sufficiently low not to violate any
fundamental limit. We compare our experimental data to a model taking into account the main imperfections of

the setup and find a good agreement.

DOI: 10.1103/PhysRevA.83.063801

I. INTRODUCTION

The classical description of a linear-amplifying device uses
two key parameters: its gain and its added noise. To some
extent, these two parameters are independent, and one can
imagine a device working at an arbitrary large gain with
an arbitrarily small noise. However, the classical picture
does not tell us the full story, and fundamental limitations
appear when looking at the quantum aspects of the process.
Then, the amplification of an arbitrary signal does affect its
fluctuation properties, depending on the effective gain of the
device [1]. This can be understood by noticing that a noiseless
deterministic phase-independent amplifier would allow one to
improve the initial signal-to-noise ratio (SNR) on an input
beam, and eventually to violate Heisenberg’s inequalities. In a
more rigourous framework, one can observe that it is necessary
to introduce an extra noise operator so that the output field can
satisfy the canonical commutation relations.

These limitations can be partially overcome if we renounce
to a deterministic implementation. The idea is to achieve noise-
less amplification only for a fraction of the total events, with
a success probability low enough not to increase the net infor-
mation. In this case we need a suitable triggering mechanism
able to sort the successful events from the whole ensemble.

Several proposal have been presented to realize proba-
bilistic noiseless amplification [2—4]. The present paper is
devoted to the device proposed in Ref. [2], based on a variation
of the teleportation protocol, with a detailed analysis of its
experimental realization [5] and of the theoretical model used
to describe the data.

This work is organized as follows. In Sec. II we give a brief
review of the fundamental concepts about the amplification of
quantum signals. In Sec. III we detail our experimental setup
and present a simple theoretical model. Section IV discusses
the results, and conclusions and perspectives are presented in
Sec. V.

II. AMPLIFICATION OF QUANTUM SIGNALS

A. General framework

Coherent states have been introduced by Glauber as
the translation into quantum language of states exhibiting
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quasiclassical properties [6]. Their classicality manifests in
the fact that for a large average photon number, one can define
almost perfectly an amplitude and a phase, as for classical
fields. However, at weaker intensities quantum features are
predominant, hence their application to quantum cryptography
[7]. This approach to quantum key distribution somehow
bridges between classical and quantum communications, as
it exploits quantum characteristics of laser pulses, which
can be easily transmitted over ordinarily channels. Different
from classical communication, adopting an amplifier in order
to recover losses from the transmission is not a winning
strategy for several reasons [8]. The main drawback is that
amplification does affect the fluctuation properties of coherent
states, corrupting their property of being minimal incertitude
packets, which is crucial for their use in quantum cryptography.

To illustrate this, we recall the treatment of a quantum
amplifier presented by Caves [1]. Consider an optical field,
whose quadratures are defined as

X = /Nola' +a),
P =iy/No(@' - a),

where af and a are the creation and destruction operators,
respectively, and Ny is a constant including normalization
factors. In these terms, one can write the Heisenberg relation
as [X, P] = 2i Ny. We show in Fig. 1(a) a contour plot for the
case of coherent states, relevant to our investigation. An ideal
amplifier would perform the transformation X — gx X,P —
gp P, where we allowed the gain to be phase dependent by
introducing two distinct values gx, g p. In general, this transfor-
mation does not produce physically meaningful quadratures, as
they do not satisfy the uncertainty relation. It is then necessary
to introduce two auxiliary noise fields By, Bp:

(1)

Xow = gXXin + By,

2)
Pout = gp Pin + Bp.
The noise fields average to zero, and they need to satisfy
[Bx,Bp] = 2iNo(gxgp — D). 3)
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FIG. 1. (Color online) Amplification of coherent states. The quantum states are shown as a contour plot in the phase space. (a) The initial
coherent state with variance one and amplitude o = 1. (b) Phase-dependent amplification. In this case only the X quadrature is amplified by
a factor g, while its conjugate P is deamplified by 1/g. Variances are modified accordingly, so that the amplification does not lead to a better
(or worse) resolution in X. This process results from a passage in a collinear optical parametric amplifier (c-OPA). (c) Phase-independent
amplification. The gain g is the same for all quadratures; consequently the round shape is preserved. Nevertheless the resolution is worse than
the initial case due to excess noise. This operation can be realized by tuning an OPA in a noncollinear regime (nc-OPA). (d) Noiseless amplifier.
The input amplitude is increased for any value of its phase, without affecting its noise properties.

For a phase-dependent amplifier, the excess noise may van-
ish if gx = 1/gp. This does not imply, however, that the
amplification is noiseless: The gain also enhances quantum
fluctuations by a factor gf(. What the device actually does
preserve is the initial SNR of the input field [Fig. 1(b)]. For
a phase-independent amplifier, gy = gp = g, and an excess
noise contribution of (2g> — 1) vacuum units appears. The
SNR is worsened during the amplification process [Fig. 1(c)].
Comparing these two situations, a phase-dependent ampli-
fieris often called “noiseless,” in the sense that it adds no excess
noise, as compared with the phase-independent case. However,
throughout this paper we will reserve this term only for an ideal
amplifier that would strictly preserve the noise property of the
input for both quadratures [Fig. 1(d)]: Such a device is thus
forbidden within the framework of Egs. (2) and (3).

B. The noiseless amplifier

In order to overcome the bound (3) and realize a noiseless
process, we can take inspiration from the linear optical
approach to quantum computing, as proposed by Knill,
Laflamme, and Milburn (KLM) [9].

When measurements come into play, an initial state |v;,)
is not necessarily linked to the resulting output |{y) by a
unitary evolution. The pivot in KLM scheme is to exploit this
to simulate Kerr-like interaction between two photons using
uniquely linear elements. To do so, some extra resources need
to be brought in: These have to interact linearly with the target
photons; then subsequently they are measured. The output is
observed only when a particular measurement result occurs,
and other events are discarded. We could possibly design a
similar scheme to create an extremely nonlinear effect such as
the one needed for noiseless amplification.

The first proposal in this sense has been put forward by Raph
and Lund, based on a variant of teleportation; as said above,
our implementation is a direct realization of their protocol.
Different schemes adopt either mixing with a thermal state
and photon subtraction [4] or sequences of photon addition and
subtraction [3]. The conceptual scheme is shown in Fig. 2(a).

For the moment, we restrict our attention to weak intensities
coherent states (]| <« 1), which can be well approximated
by a development up to the single-photon term:

la) >~ [0) + | 1). 4)

The ancillary resource needed to accomplish the task is a
single-photon state |1). This photon is split on an asymmetric
beam splitter (A-BS) with reflectivity r, generating an entan-
gled state:

V1=r21)7|0)g +rl0)7[1)g, (&)

where 7 ,R denote the output modes of the A-BS. The T
mode represents the output port of the amplifier. The input
state is made to interfere with the R mode on a symmetric
beam splitter (S-BS); then photon counting is performed at the
out-ports. We accept the run when a single photon is measured
by the detector D; and no photons arrive on the detector D,.
This event can arise from two distinct occurrences: Either the
single photon came from the entangled state, and then the
vacuum is left on the T mode, or the single photon came from
the input, and thus a single photon is present on the 7 mode.
Quantum interference generates the state

0) + ga|1), (6)

with g =+/1 —r2/r > 1 acting as a gain factor. If the
condition g|la|| < 1 is satisfied, the superposition (6) is still
an adequate approximation of the coherent state |go), resulting
in the implementation of the noiseless amplifier. Conditioning
on the event when one photon is detected by D, and a vacuum
by D; also results in a successful run, up to a w phase shift
on the single-photon component. Both events are acceptable
if active phase modulation is applied.

For arbitrary input intensities, we can imagine splitting |o)
on an N-port beam splitter in such a way that |la||/+/N is
sufficiently weak. Each portion is then amplified by the device
described above, and the outputs are recombined on a second
N-port splitter; see Fig. 2(b). As the output states are not
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FIG. 2. (Color online) Teleportation-based noiseless amplifier. (a) Single-stage amplifier for ||«|| < 1. A single photon is split on an
asymmetric beam splitter (A-BS). The input state |ct) is superposed with reflected output of the A-BS on asymmetric beam splitter (S-BS). A
successful run is flagged by a single-photon event on detector D, and no photons on detector D,, or vice versa. The transmitted mode is the
output of the amplifier, and, conditioned on the right detection events, it is approximately in the amplified state |gor). (b) Multistage amplifier
for arbitrary intensities. The input is divided into N equal parts, each of them having an acceptable intensity to be amplified in a single stage,
depicted as boxes labeled g. The N outputs are then recombined, and the run is accepted only if no photons are detected on the remaining N—1

ports.

exactly coherent states, it is necessary to ensure that all the
radiation emerges from a single port. The success probability
P =N exp[—(g2 — 1)|le?||] becomes exponentially small as
|l || increases, preventing any overall information gain.

The protocol can be interpreted as a variant of the teleporta-
tion scheme adopted for the “quantum scissors” [10,11], which
correspond to the case > = 1/2. It was originally proposed
with the aim of truncating a coherent state to its single-photon
component so as to generate an optical qubit. It retains the main
features of the teleportation scheme by the use of an entangled
resource—the split single photon—and a joint measurement,
obtained from interference on the S-BS and photon counting.
The working principle of the amplifier is indeed to teleport the
information coded in the input coherent state—e.g., its phase
and amplitude—to a more intense beam.

C. Gain and noise figures

In our implementation we will consider the amplitude
(measured from the origin) as the signal. This suggests to
quantify the amplification by an effective gain g.q defined as
the ratio of the output and input mean values:

<X0ut)

(Xin>

where without restriction of generality we have defined the
X axis along the direction of the input.

Actual implementations of a noiseless amplifier will be
unavoidably affected by nonideal components, resulting in
excess noise. We then need an indicator to compare the noise
at the input and at the output while taking into account
the amplification. A suggestion in this sense comes from
electronics and from quantum nondemolition measurements
[7,12—14]. The question to be asked is what level of noise
should we add to the input to find the one actually observed at
the output, were we operating a noiseless device. The quantity

(5X§ut)
g2

, (7

8eff =

Neg= — (8 X3, ®)
called “equivalent input noise,” relates according to this picture

the variance of the output state (§X2,,) to the initial variance

(6X2) and the gain g. Here Neq is defined for the X quadrature,
but the definition can be extended to any arbitrary direction of
the phase space.

In the case of a usual phase-dependent amplifier for the X
quadrature, the variance at the output is proportional to the
one at the input (§X2,) = g%(8X2): Neq vanishes, meaning
that the initial fluctuation properties are preserved as said
above [15,16]. For the phase-independent device, one has
Neg = |g2 — 1|/g%; hence excess noise is introduced in the
process. This holds true if we allow for g < 0, i.e., a beam
splitter with transmittivity g: Even if the fluctuation properties
for a coherent state are left untouched, N is useful to flag a
reduction in resolution due to losses.

The ideal case for the noiseless amplifier shows
Neq = (1 — g?)/g* < 0: The device acts as a kind of noise
eater for the input state. This condition cannot be met by
any deterministic device; therefore we can use the criterion
Neq < 0 as the distinctive feature of a noiseless amplification
process, even if it is nonideal.

III. THE EXPERIMENT

A. Description of the setup

While the implementation of the general device is a techni-
cal challenge, a single-stage noiseless amplifier is well within
present experimental possibilities. This study goes beyond an
academic exercise, given the interest of weak coherent states
for quantum cryptography [17]. In our investigation we also
aim to establish experimentally the maximum useful value of
[l || that one can feed in the amplifier without being severely
affected by the abrupt truncation (6).

The scheme of our setup is shown in Fig. 3. Single photons
are produced by using a nonlinear crystal optical parametric
amplifier (OPA). This process generates photon pairs in two
correlated modes; the presence of a single photon on one
mode is inferred by a click on a single-photon detector
Dy placed on the other “twin” mode [18]. The source is a
100 pum thick KNbOj; slab, pumped by doubled Ti:sapphire
laser pulses (Ppax = 3.3 mW, A, = 423.5 nm, Ar = 220 fs,
repetition rate 800 kHz). Phase matching is temperature tuned
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FIG. 3. (Color online) Diagram of the experimental setup. We
used single photons produced by an optical parametric amplifier
(OPA), which is then split over two polarization modes by the
A-BS, realized with a half-wave plate (HWP) and a polarizer. This is
recombined with the input |«) on the S-BS, realized again by a HWP
and a polarizer. The output state is analyzed by homodyne detection,
using a phase reference coherent with the input. See text for more
details.

to obtain frequency degenerate emission at an angle ~3°.
Photons on the heralding mode are filtered by a single-mode
fiber and a grating-slit assembly transmitting over a bandwidth
~1 nm centered on degeneracy A = 2.

In order to preserve phase stability without active locking,
we realized a polarization encoding of the T and R modes,
corresponding to the horizontal (H) and vertical (V) com-
ponents, respectively. This allows us to realize the A-BS by
the combination of a half-wave plate (HWP) and a polarizing
beam splitter (PBS): The polarization is prepared in the state
r|V)++/1 —r%|H), and then the photon is split over two
spatial modes.

The input is fed through the second input port of the PBS: Its
H component represents the coherent input |«) to be amplified,
and the V component is a phase reference. In this way both
the coherent state and the split single photon are on the same
spatial R mode, but with orthogonal polarizations. We can
now make these two interfere by a HWP and a PBS, set to
implement the S-BS. In the ideal case, we would have one
detector on each output of the PBS; due to the limited efficiency
of our single-photon detection (~10%), D, can be dropped
from the actual implementation without significantly affecting
the performance of the amplifier. Hence, our device works
conditionally on a coincidence count between Dy and D;.

On the T mode we have both the actual output of the
amplifier and the reference signal. We can perform homodyne
measurements on both polarization modes [19], so as to obtain
the quadratures of the output state on H and a sorting signal
on V. The latter gives us the instantaneous value of the phase
of the coherent state |o), hence the measured quadrature.
Data from the H detection are thus sorted accordingly, which
amounts to choosing « to be real and positive. The extinction
ratio of used polarizing cubes, around 10~4, is sufficiently low
in order to have negligible effects, provided that the difference
of amplitude between the coherent state and the reference
signal does not become too important.

PHYSICAL REVIEW A 83, 063801 (2011)
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FIG. 4. (Color online) Modeling of the experiment. The imper-
fections of our setup are taken into account by a series of linear
elements, which allow us to calculate an explicit expression for the
Wigner function of the output state. Symbols are explained in the
text.

B. Modeling of the experiment

The components used in the experiment present several
departures from the ideal behavior, which will affect the output.
In order to take into account these imperfections, we adopt the
methods developed in Refs. [18,20]. Our treatment is split in
two steps: First we compute the actual state produced by our
single-photon source, then we feed it as the ancilla for the
noiseless amplifier. The conceptual layout is shown in Fig. 4.

Concerning the source, two-mode squeezing ideally occurs
with a gain cosh?(s), which depends on the pump power. In
the actual OPA, parasite processes occur that cause excess
noise to appear on these modes. This effect can be modeled by
two fictitious squeezers with gain cosh’(ys), where y is the
relative strength of the two squeezers. These are represented
in Fig. 4.

The quality of our single-photon resource is also limited
by heralding. Indeed, this is also performed with a limited
efficiency: In a fraction £ of the events, we detect the correct
mode, which will be correlated with the mode of the local
oscillator. The remaining cases represent a background of
spurious events, whose detection does not affect the other
mode. Due to low detection efficiency u, we can substitute the
exact expression of the detection operator with the annihilation
operator a. The expression of the state conditionally prepared
by our OPA is then [18]

_x2 + p2 _.\'2+1)2
e 2
o2

1
Wl(x,p)=;<1—8+5— o2 ©)]

where
o = 2n[cosh?(s) cosh®(ys) — 1] + 1,

5 2tn  sinh?(s) cosh?(ys)
" 02 1 —sech?(s)sech?(ys)’

(10)

and 7 is the efficiency of the homodyne detector, HD. We
have adopted the convention Ny = 1/2 corresponding to
[X,P] =i. This expression is valid in the limit of low effi-
ciency of the heralding APD, as is the case for our experiment,
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FIG. 5. (Color online) Experimental results for the amplification. (a) Values of the amplitude of the oscillations in vacuum units; errors are
indicated as the uncertainties on a sinusoid fit on the raw data. (b) Measured effective gain. The solid line is the prediction obtained by our
model. The dotted line gives the prediction for perfect single-photon and mode matching, and the dashed line gives the prediction for perfect

mode matching € = 1 and experimental single photon.

but gives satisfactory numerical results in the general case [18].
The state is characterized by two parameters o and &, which
can be extracted directly from the quadrature histograms [18].

We now turn our attention to the noiseless amplifier.
When conditioning is considered, we have to take into
account finite mode matching between the single-photon mode
and the coherent state, as this can be achieved with finite
precision. The description of the input then needs two different
modes: one that is indistinguishable from the one of the
single photon a@,,, and a second in the orthogonal subspace
d .. The mode of the coherent state has contributions from
both subspaces dy=4+/¢d;/++/1 —€a,. The parameter e~1
quantifies the quality of the interference occurring at S-BS. In
order to simplify our calculations, we can rescale the detection
efficiency w of the second APD as v = p/n, by considering
loss n on the mode a,. This creates a symmetry for the two
arms of the S-BS and thus simplifies the treatment. We are
then working with these two states in our amplifier: (1) the
single-photon state (9) and (2) a coherent state with an effective
amplitude aefr=./7+/c0r.

This is the starting point for the modelization of the
amplifier. The first step consists in mixing the single photon
with the vacuum Wy (x, po) on the A-BS, having transmittivity
t, and reflectivity r:

Wass(x, p,xo0, po) = Wi(tx — rxo,tp — rpo)
X Wo(rx + txo,rp + tpp). (11)

We now make the reflected mode interfere with the
coherent state on the S-BS and then trace over the mode
we are not observing. This gives a more complex expression
Wses(x,p,x1,p1) describing the output mode (x,p), and
the mode (x1, p;) arriving on the APD. As above, detection on
the latter is represented by the application of the a operator. The
final state we obtain corresponds to a good conditioning event.
However, we find imperfectly matching results in uncorrelated
events, very much as is the case for the modal purity £ in the

single-photon state (9). An effective modal purity &.¢ has to
be introduced to weight the two contributions:

Py
P+ P’
where P, (P1) is the probability of detecting one photon
from the mode &, (4.). Conditioning on a bad event clearly
corresponds to observing the state (9) after transmission

through the ABS. This does not affect its structure but modifies
its characteristic parameters as o> ol=t0’+1-1°

and§ — &, = t28 o as a result from the extra loss.

Seff = (12)

Some mampulatlon leads to the final expression:

%)

Wampl(x D) =

24p?
2

+ey(x® 4+ pHle 7, (13)

where the parameters ¢; are given in the Appendix. We then
can express the mean value of measured quadratures and show
that it effectively acts as an amplifier for small amplitudes :
V2ga cos(9)/Emten[(1 + 807 — 1]
(14807 — 1+ en(ga)y?
= Vebeng(Xun(®) + Ol(g)’]. (15)

This model has been used to obtain analytic predictions about
the behavior of our device.

(Xou(9)) =

(14)

IV. RESULTS

The value of the input ||«|| is directly measured by photon
counting at D;; the overall detection efficiency has been
previously measured by means of a well-calibrated input. It has
also been checked that the input analyzed with the APD and the
homodyne detector gave consistent results, taking efficiencies
into account.

The output state is characterized measuring 2 00 000 values
of quadratures, sorted into 12 histograms; as explained above
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FIG. 6. (Color online) Experimental results for the noise. (a) Values of the variance, normalized to vacuum noise: average (M), maximal
(A), and minimal (e) values. (b) Reinterpretation in terms of equivalent input noise N.q; only mean values are shown. The solid line is the
prediction obtained by our model. The dotted line gives the prediction for perfect single-photon and mode matching, and the dashed line gives
the prediction for experimental mode matching ¢ = 0.96 and single photon without additional parasite photons (¢ = 1). The dashed and dotted

line shows the minimum N,

the data are sorted according to the a phase reference coherent
with the input. For each input, we calculated the average value
of the quadrature (Xy) and the variance Vj relative to each
phase 6; this gives us a direct measurement of the gain and of
the noise.

In Fig. 5(a), we show the amplitude of the oscillations of
(Xp) in vacuum units. We observe good agreement with the
values expected from the model, except for high values of ||« ||;
we can attribute this small discrepancy to imperfect splitting
ratio at the S-BS. This amplitude is then corrected for the
homodyne efficiency and divided for the input amplitude, as
inferred from the count rate: This gives us the measured values
of the effective gain g, reported in Fig. 5(b). The agreement
with our model is satisfactory; for small values ||| < 0.1 the
measured gain remains close to the set value g = 2. This occurs
despite the imperfections of the initial single-photon state and
of the detection: As far as the amplitude is concerned, the
reduction in purity of our resource does not affect the correct
functioning of the amplifier. More precisely, our model shows
that for small amplitudes only the mode-matching € between
the single-photon and the coherent state affects the effective
gain.

This lack of purity shows up more clearly in the analysis
of the noise, presented in Fig. 6, where we can see two main
effects. First, even with no input (¢ = 0), we observe that
excess noise is present, due to contributions from higher-
order emissions. Furthermore, this noise increases the non-
Gaussianity of the outputs. Higher-order photons create a
non-Gaussian background that is not re-Gaussified by the
amplifier; this would be possible only if photon subtraction
lead to the vacuum state. Purer states could be produced at the
detriment of the production rate by decreasing the pumping
power. The results we present constitute a trade-off between
these two competing requirements. In Fig. 6(a) we show the
raw data of the variance; for each input we show the minimal
values (6 = m/2), the maximal values (¢ = 0), and the average
over the 12 histograms. In Fig. 6(b) we show its reformulation

q> Which can be obtained by a deterministic device with gain ges.

as equivalent input noise [5] and compare it to predictions of
our model: For the experimental values of the imperfections,
the ideal case with perfect single-photon and mode matching,
and experimental imperfections without contributions from
higher-order emission.

Different from a coherent state, the outputs show a depen-
dence of the variance on the observed quadrature. While this is
not a signature of non-Gaussianity by itself, this derives from
the truncation to the single-photon term in the development
(6). Therefore, the limitation to small amplitudes |«| < 0.1
is necessary not only for a satisfactory gain, but also to reduce
distortions from a symmetric shape. We can attribute the
departures from our model to small drifts of the setup during
the data acquisition.

The noiseless character is better understood in terms of
noise equivalent power. For ordinary amplifiers this is always
nonnegative, as the SNR might at best be preserved. This
is not the case for phase-independent amplifiers where there
must be some excess noise, as discussed above. For large
values of ||« ||, our amplifier actually behaves like an attenuator.
The corresponding deterministic deamplification is modeled
as a beam splitter with transmittivity g: This deteriorates
Negs as it reduces the signal without changing the noise. The
corresponding curve is the dashed and dotted line shown in
Fig. 6(b). Our points lie quite consistently under the curve
when we observe amplification; in the case of deamplification,
the SNR is consistently worsened by the presence of excess
noise. More strikingly, we could measure negative values of
Neq, which would be impossible with any deterministic device.
We emphasize that this does not mean that the amplifier could
improve the SNR in a communication process. The key is in its
nondeterministic functioning: While an enhancement occurs
for the successful instances, there is no net gain if one averages
on both failures and successes. The success probability P is
measured as the ratio of the coincidence count rate Dy and D,
to the single count rate Dy: This normalizes the amplifier
success rate to the single-photon production. We can observe
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FIG. 7. (Color online) Experimental success probability. The
solid curve indicates the prediction of our model, while the points
represent the measured values. These are obtained as the ratio of
the coincidences Dy and D, and the single counts on Dy, i.e., the
ratio between the successful events and all single-photon events. The
dotted line gives the prediction for perfect single photon-and mode
matching, and the dashed line gives the prediction for experimental
mode matching and single photon without losses (§ = 2).

that in our device this increases with ||« ||, differently from the
ideal case, as shown in Fig. 7. This is caused by the fact that
we did not use conditioning on both outputs of the S-BS and
a lack of photon-resolving detection. This affects the behavior
of the device at high intensities. Our model shows that the
main action of photon losses, represented by the § parameter,
is to reduce the success rate, while imperfect mode matching
and higher-order emission increase the success probability by
adding false events. The efficiency of the APD also has a
significant role in the success rate; since the approximation of
low APD efficiency is used in both the experimental setup and
model, we do not change this parameter in the predictions.

V. CONCLUSIONS AND PERSPECTIVES

Our experiment provides a clear demonstration of an optical
noiseless amplifier working in a nondeterministical fashion.

The possibility opened by nondeterministic amplification
of coherent states has already started to inspire related works,
on both the theoretical and the experimental sides. Notably,
an indirect and ingenuous demonstration of the noiseless
amplification has been demonstrated by Xiang and coworkers
[21] by using photon counting and polarimetry. An alternative
proposal has been put forward by FiurdSek, with the aim of
coherent manipulation of light fields by photon addition and
subtraction; the demonstration of noiseless amplification as
a particular case of such a scheme is reported in Ref. [22].
Along the same lines, schemes can be built to improve
nondeterministically the SNR of a peculiar task, such as phase
estimation, as proposed by Marek and Filip [4], and realized
by Usuga and collaborators [23].

Possible applications of our device concern quantum key
distribution; a direct application could be interesting for
continuous variable protocols with either Gaussian [24] or
discrete phase modulations as proposed by our group [17].
Here we put forward considerations for the first case. Two
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FIG. 8. (Color online) Mutual information between two parties
in a Gaussian-modulation quantum key distribution protocol, as a
function of the thermal noise at Bob’s side. (Left) Mutual information
I, 5 postselected on the successful runs for an ideal noiseless amplifier
driven at g = 2. (Right) Results for the average mutual information
Irp = PI,5, where P is the success probability.

parties, Alice and Bob, share a set of coherent states with
a random modulation with Gaussian distribution around the
vacuum. We can consider the equivalent entanglement-based
protocol in which Alice and Bob share a two-mode squeezed
vacuum (EPR) state. In this case Alice can prepare coherent
states remotely at Bob’s location by heterodyne measurement
[25]. In this case the modulation size is measured by the
variance Vj of the reduced thermal state. In order to be fully
consistent, the probability must be such that the average mutual
information 74 at the output does not exceed the initial value
1 AB-

Iap = Plap < s, (16)

where I, is the mutual information of the state after the
amplifier.

Numerical results are shown in Fig. 8. We consider the
case g =2 with the perfect amplifier, working in either a
single- or double-stage configuration. If we consider only the
successful outputs, we notice an increase of the degree of
entanglement, thus of the mutual information between the two
parties. As expected, adding more modules results in a better
approximation of an amplified EPR state. When averaging on
both successes and failures, the initial information /45 acts
as a loose bound; in fact, /45 remains in both cases well
under the limit value. Moreover, it is evident how increasing
the number of stages does not help in recovering information,
due to the unfavourable scaling of the probability with the
number of stages with N. Similar results are obtained for
different values of gain. In summary, the amplifier is able to
produce better resources, but at a rate that does not violate
any information-theoretical principle. Its realization remains
then fully consistent with information theory, while leaving
open questions on its adoption for quantum cryptography. In
particular, the analysis of the security is currently in process.

As far as qubit protocols are concerned, the connection
to device-independent quantum key distribution has been
extensively discussed by Gisin and coworkers [26].
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APPENDIX

The two-mode Wigner function Wgps(x, p,x1, p1) has the
explicit expression

4802

0+ t2)802:|

1
Wsps(x, p.x1,p1) = —7———+v 12!
ses(x,p,x1,p1) i P { [ g

(202 4 07)?

|:(«/§tx +r(x; — Oleff))2 +(21p + rPl)z]}

 ex _x2 + 12[x — V28(x1 — ate)]? + 1202 [gx + V2(x — efr)]
P 02407

[ pr+ 13 p —V2gp1)* + 202 (gp + ﬂpl)}
xexp | — . (A1)

o2 4o}

From this formula, we obtain the coefficients for the output Wigner function:

1—26 + (1 +2g%2;) (6 — 1o

of[2g2ad; + (14 8)07 — 1]
(012 — 1)2 — & [4 — (5 + 2g2a§ﬂ~) 0,2 + 0,4]
ol [28%a2 + (1 +8) 07 — 1]

Co = _Eeff

Cy = &eft

L (1 —&eqr)(1 =6,

8
+ (1 —éetr) =, c3 =&
o? o[

8¢ (crt2 — 1)2

Zﬁgaeff [012 — 144 (2 — crtz)]
o} [2572013ff +(A+68)0? — 1]
Zﬁgaeff& (0,2 — 1)

28%a2: + (1 +8)07 — 1]’

c1 = &efr

cq = Eeft

These coefficients give the predictions for the characteristic
parameters of our device, in particular, the effective gain:

Utz(Cl + 2@0,2)

o = TR (a3)

and the variance

Vo = %’z(co + 26207 + 6¢40,") — 2—’4(01 + 2630,2)2 cos’ 6.
(A4)

The quantities involved in the model are accessible from the
experiment. The two parameters § = 0.78 and o = 1.078osn1.
describing the single-photon state as generated by our OPA
are obtained from the variance and the fourth-order moment
of the quadrature distribution of the single photon. For the
output states of the amplifier, no simple relations between
the momenta of the quadrature distributions and the relevant

of [2g%a2 + (1 +8) 07 — 1]

(A2)

parameters have been found, so we used in our model the
values of parameters coming from direct measurements.

The transmission of the A-BS is measured by using
an intense probe: It has been checked that the measured
value was compatible with the values §; and o, measured
in presence of this extra loss. The homodyne detection
efficiency can be estimated in n = 0.68 from measurements
on the same probe, including a measurement of the optical
loss on the path of the single photon (0.87), and of the
mode matching between the probe and the local oscillator
(0.90). The parameter &.is = 0.96 is difficult to access directly
in the experiment, so it has been left as a free parameter.
The detection efficiency of the APD napp = 0.55 has been
measured from the counts due to an intense beam, atten-
uated by well-calibrated neutral density filters. The overall
detection efficiency is u = 0.11, due to the optical loss in the
path.
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