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Tests such as Bell’s inequality and Hardy’s paradox show that joint probabilities and correlations

between distant particles in quantum mechanics are inconsistent with local realistic theories. Here we

experimentally demonstrate these concepts in the time domain, using a photonic entangling gate to

perform nondestructive measurements on a single photon at different times. We show that Hardy’s

paradox is much stronger in time and demonstrate the violation of a temporal Bell inequality independent

of the quantum state, including for fully mixed states.
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Quantum mechanics depicts a world with fuzzier con-
tours than our intuitive mind would suggest. In our com-
mon experience, we would naively picture a measurement
as a way of revealing some objective properties. This view
is disproved by several counterexamples, of which the
most common is provided by an entangled system: the
correlations between measurement outcomes cannot be
explained by a theory assuming that each subsystem has
values determined independently of a measurement itself.
Well-proven tests such as Hardy’s paradox [1] and Bell’s
inequality [2,3] capture these features of spatial
entanglement.

This inconsistency can be expressed in a different set-
ting; as pointed out by Leggett and Garg in their seminal
paper [4], one can consider correlations between measure-
ments on the same object occurring at different times.
Their aim was to find a particular instance where a realistic
view was untenable, which has subsequently been the
subject of numerous theoretical [5–8] investigations and
experimental demonstrations [9–13]. In a more general
context, temporal quantum phenomena, in particular,
‘‘entanglement in time,’’ have subsequently been studied
in [14–16].

Here, we report the first experimental investigations of
these concepts: that Hardy’s paradox is much stronger in
time [16], and that a temporal Bell inequality can be state
independent—it can be violated by all quantum states,
even fully mixed ones [14]. Our experiment highlights
surprising aspects of quantum foundations—such as all
quantum states are entangled in time. Furthermore, entan-
glement in time might inspire new protocols in quantum
information, communication, and control [14].

Consider a quantum system located at two points in
spacetime, A and B, where a quantum particle exists at
each point. Our classical view of such a system is based on
two assumptions: (i) realism, that the particle at each point
has definite properties prior to, and independent of

measurements, and (ii) nondisturbance, that results of
measurements at A are not influenced by measurements
at B, and vice versa. In the spatial case, Fig. 1(a), there are
separate particles at A and B, and special relativity ensures
that disturbances cannot propagate between them faster
than the speed of light. Thus tenet (ii)—now termed local-
ity—can be enforced by a spacelike separation. In the
temporal case, Fig. 1(b), a single particle is measured at
different times, tA and tB. Because these measurements lie
within each other’s light cone, locality in the traditional
sense cannot be enforced. We can however still define a
classical picture in this scenario: It is reasonable to assume
that, while signaling cannot be avoided, a measurement
can be performed such that it does not influence the out-
come of a measurement on the same system at a later (or
earlier) time. This hypothesis of measurement noninva-
siveness was originally introduced by Leggett and Garg
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FIG. 1 (color). Thought experiment for the violation of local
realistic theories. (a) Spatial scenario: A source S emits two
(entangled) qubits, which are sent to two remote observers A and
B. Each subsystem is subject to two measurements Ak and Bl,
where k and l denote the measurement settings at different sites.
The outcomes of individual measurements are labeled r and s.
(b) Temporal scenario for the violation of noninvasive, realistic
theories. A single system is subjected to two measurements Ak

and Bl, in this case occurring at different times tB > tA.
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[4], motivated by their interest in macroscopic systems. Its
applicability to microscopic objects has been discussed [9].

Replacing locality in time with noninvasiveness might
appear controversial when compared to an invasive theory
such as quantum mechanics. An alternative is to consider
perfect repeatability of a quantum measurement, which is
compatible with quantum mechanics and allows the con-
struction of hidden variable models identical to those orig-
inating from the assumption of noninvasiveness [15,16].

Despite the fact that two-body correlations in space and
time are mathematically equivalent [14], there are remark-
able differences between measurements on quantum sys-
tems in the two domains. The first can be found in the
temporal version [16] of Hardy’s paradox [1,17–22]. It
describes a paradoxical situation in which quantum me-
chanics allows a set of probabilities which are logically
inconsistent within a classical framework. Consider two
observers, Alice and Bob, sharing a single system on which
they conduct a joint sequential measurement with the
choices Ak and Bl, with k; l ¼ f0; 1g, at two different times,
Fig. 1(b). The measurements are dichotomic, with the
possible outcomes r; s ¼ f0; 1g. The probability of a result
r for Alice and s Bob is Pðr; sjl; kÞ.

Now consider the following set of outcome probabilities
for different measurement choices on this system:

Pð1; 1j1; 1Þ> 0; (1)

Pð1; 0j1; 0Þ ¼ 0; (2)

Pð0; 1j0; 1Þ ¼ 0; (3)

Pð1; 1j0; 0Þ ¼ 0: (4)

Equation (1) predicts the existence of events that give the
outcome r ¼ 1, s ¼ 1 for a joint measurement A1; B1. For
a system obeying realism and nondisturbance, these values
of r and s are defined before the measurement, and the
choice of operator Ak cannot possibly affect the outcome of
Bl, and vice versa. Thus, due to (2), had we instead chosen
B0, we would certainly have found a result s ¼ 1. In the
same way, according to Eq. (3), we would have observed
r ¼ 1 for the alternative choice A0. This however demands
the occasional occurrence of events with the outcome
r ¼ 1, s ¼ 1 for choices A0 and B0, which is clearly
inconsistent with (4) [1,16].

Quantum mechanics, of course, resolves the paradox
[16]. Consider a single two-level quantum system (qubit)
prepared in the state j0i. With the Pauli measurements
A0 ¼ B1 ¼ �Z, and A1 ¼ B0 ¼ X, where Z and X are
the Pauli operators corresponding to the measurement
along the z and, respectively, x directions on the Bloch
sphere, it satisfies the equations (1)–(4), with
Pð1; 1j1; 1Þ ¼ 0:25.

In principle, a single observation of a detection event
for the settings k; l ¼ 1 (1) would—in the absence of
detections for settings (2)—provide a compelling proof

that nature does not obey the classical worldview estab-
lished by the assumptions of realism and noninvasiveness
[15,16]. However, even in an ideal scenario, zero proba-
bilities can only ever be established to within an error
governed by the number of measurement runs. In practice,
we have to deal with imperfect states, measurements, and
detectors, which exacerbates this problem. We can instead,
following Mermin [23], place a bound on Pð1; 1j1; 1Þ,
given the measured values of the other probabilities:

H ¼ Pð1; 1j1; 1Þ � Pð1; 1j0; 0Þ � Pð1; 0j1; 0Þ
� Pð0; 1j0; 1Þ � 0: (5)

We test this inequality in a two-photon experiment; see
Fig. 2(a). A system qubit is encoded in the polarization of a
single photon; horizontal (H) and vertical (V) polarizations
determine the z axis of the Bloch sphere. We implement the
first, necessarily nondestructive, measurement using a
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FIG. 2 (color). Experimental scheme. (a) Temporal measure-
ments. The signal and meter qubit are encoded in orthogonal
polarization states of two single photons, which are created via
spontaneous parametric down-conversion in a nonlinear crystal,
pumped by a pulsed (76 MHz, 200 fs), frequency-doubled Ti:
sapphire laser at � ¼ 820 nm. States are prepared with polariz-
ing beam splitters (PBS), a quarter- (QWP) and a half-wave plate
(HWP). The signal photon passes a controlled-phase gate (cz),
where it acts as the control qubit, with the meter photon being
the target. Behind the gate, we analyze the meter photon polar-
ization and detect it with a single-photon avalanche photodiode
(APD), implementing the first measurement Ak. Two HWPs (one
incorporated into the preparation stage) set the basis for this
nondestructive measurement. The signal is stored in a 50 m long
fiber spool and, after Ak is concluded, measured projectively,
implementing Bl. A fiber polarization controller and a combi-
nation of wave plates compensate for polarization rotation in the
fiber. A coincidence logic analyzes detection events within a
time window of 4.4 ns. (b) The cz gate in detail, here shown in
dual-rail representation. We realize it with a single partially
polarizing beam splitter (PPBS), with transmittivities �H ¼
1=3 (�V ¼ 1) for the H (V) polarization [31–33]. Quantum
interference results in a relative � phase shift of the vertical
polarization components jVisjVim. The correct functioning is
heralded by a coincidence count between the two output arms of
the PPBS, which occurs with probability 1=9.
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nondeterministic, photonic controlled-phase (cz) gate,
Fig. 2(b). It acts on two polarization qubits, the signal
jc is, and the meter j�im. The state of the signal qubit
controls the meter, acting as the target qubit. An input state
jVisjDim, for example, undergoes the controlled rotation
jVisjDim ! jVisjAim while jHisjDim ! jHisjDim [24].
The polarization of the signal can then be inferred by its
action on the meter [9,25,26]. If the arbitrary state
jc isjDim is injected, we can measure Z on the signal just
by observing whether the meter has been rotated or not.
Arbitrary measurements can be chosen by rotating the
signal before the gate. This rotation must be undone at
the gate output, as shown in Fig. 2.

We experimentally measured Pð1; 1j1; 1Þ ¼ 0:2372�
0:0040, Pð1; 1j0; 0Þ ¼ 0:0181� 0:0008, Pð1; 0j1; 0Þ ¼
0:0190� 0:0013, Pð0;1j0;1Þ¼0:0070�0:0005, yielding

H exp ¼ 0:193� 0:004;

which violates inequality (5) by 45 standard deviations.
The key feature is that this temporal version of Hardy’s

proof is considerably stronger than its spatial analog,
where the left-hand side of (5) can be no greater than
�0:09 [23]; our results surpass this limit by more than
24 standard deviations. The violation of Hardy’s inequality
in time can be achieved by any pure quantum state, pro-
vided that the observables are chosen appropriately.

Surprisingly, and in stark contrast to its spatial analog,
such pure states are not required for the Clauser-Horne-
Shimony-Holt (CHSH) form of a temporal Bell inequality
[27]. Unlike Hardy’s paradox, the CHSH inequality con-
siders correlations between points A and B. The two results
will be correlated whenever r ¼ s and anticorrelated in the
other case. Hence, the correlation function for two observ-
ables Ak and Bl is

Ck;l ¼
X

r;s

ð�1ÞrþsPðr; sjk; lÞ: (6)

By invoking realism and noninvasiveness to establish a
bound on correlations one can then define the temporal
Bell inequality [14]:

S ¼ jC0;0 þ C1;0 þ C0;1 � C1;1j � 2; (7)

which has the same form as the CHSH inequality in the
spatial domain [27].

For a quantum state �, the expectation value of Ck;l is

given by

Ck;l ¼ Trð�1
2½Ak; Bl�þÞ; (8)

where ½Ak; Bl�þ is the anticommutator of the measurement
operators [16]. For a single qubit, a maximal violation of

inequality (7), SQM ¼ 2
ffiffiffi
2

p
, can be obtained by choosing

appropriate measurements on the Bloch sphere. We select
the same operators as in spatial CHSH experiments: A0 ¼
Z, A1 ¼ X, B0 ¼ ðZþ XÞ= ffiffiffi

2
p

, and B1 ¼ ðZ� XÞ= ffiffiffi
2

p
.

Remarkably, the correlators Ck;l, Eq. (8), and thus the

parameter S do not depend on the choice of the quantum
state �, but only on the measurement operators. If we

denote ~ak and ~bl the directions associated with Ak and

Bl, the correlation is simply given by [14] Ck;l ¼ ~ak � ~bl.
Note that this is not the case for the Leggett-Garg form of a
temporal Bell inequality [4–6] which has recently been
tested experimentally [9–11].
The experimental results are summarized in Fig. 3.

We tested the temporal Bell inequality, Eq. (7), for a total
of eight states; six (almost) pure input states,
fjHi; jVi; jDi; jAi; jLi; jRig; one mixed state �1 �
ð0:84jHihHj þ 0:16jVihVjÞ with purity P ¼ 0:74� 0:01,
and one fully mixed state �2 � 1=2ðjHihHj þ jVihVjÞwith
purity P ¼ 0:50� 0:01. The experimentally obtained S
parameter for these states was, on average,

Sexp ¼ 2:58� 0:03;

which violates inequality (7) by 19 standard deviations. It
is quite remarkable that we get a clear violation even with a
fully mixed state, for which one would—intuitively—not
expect any evident quantum signature.
The observed Bell value corresponds to a two-point

visibility of 0:91� 0:01. The less-than-maximal violation
of the temporal inequality is due to imperfect measure-
ment, which is mainly limited by less-than-ideal two-
photon interference in the gate. We can assess the mea-
surement performance by performing quantum process
tomography [28] on our gate. The experimental process
�exp associated with the measurement has a purity of

92:4%� 0:2% and a fidelity with an ideal cz process of
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FIG. 3 (color). Experimental violation of the state-independent
temporal Bell inequality (7). The classical limit is indicated by
CL and the maximal achievable quantum value by QM. The first
six bars correspond to pure signal states, the remaining two to
mixed inputs, as explained in the main text. The latter were
obtained by switching the signal state between states jDi and jAi
while measurements were performed. The relative integration
for jDi and jAi were chosen according to the target purity of 0.5
for �1 and 0.75 for �2. The mixed states were verified via single-
qubit tomography.
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93:7%� 0:1%. The error bounds are calculated from 10
Monte Carlo runs assuming Poissonian photon count sta-
tistics. The upper bound on the CHSH value (7), calculated
from �exp, is 2:54� 0:01 averaged over all input states

and, within error, in good agreement with the measured
value. For the Hardy inequality (5), the estimated bound is
0:184� 0:003—slightly below the respective experimen-
tal result, which is most likely due to temporal drift in the
optical setup.

The study of temporal quantum phenomena offers a new
perspective for quantum information. The authors of [14],
e.g., propose a temporal quantum communication com-
plexity protocol where temporal entanglement provides a
memory advantage over classical information. It is con-
ceivable that we can also find classically impossible, or
more efficient, quantum communication tasks based on the
strong quantum signature of temporal probabilities.

Our investigation also raises more fundamental ques-
tions. The first concerns the potential link between tempo-
ral quantum phenomena and contextuality [29], another
example of a state-independent inconsistency of the clas-
sical and quantum world [30]. Future efforts will inves-
tigate possible connections between contextuality and
invasiveness.

A different question is if, and to which degree, non-
invasiveness could be relaxed while still allowing violation
by quantum mechanics. Intriguingly, for the Leggett-Garg
inequality, the connection between the measurement
strength and the amount of violation is not straightforward:
the less invasive the measurement, the higher the violation
[6,9]. Ultimately, the fundamental differences of quantum
effects in the two domains may teach us more about the
structure of space and time and the abstract formalism of
quantum theory [14].
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[7] J. Kofler and Č. Brukner, Phys. Rev. Lett. 101, 090403
(2008).

[8] M. Barbieri, Phys. Rev. A 80, 034102 (2009).
[9] M. E. Goggin et al., Proc. Natl. Acad. Sci. U.S.A. 108,

1256 (2011).
[10] J. S. Xu, C. F. Li, X. B. Zou, and G. C. Guo,

arXiv:0907.0176.
[11] A. Palacios-Laloy et al., Nature Phys. 6, 442 (2010).
[12] J. Dressel, C. Broadbent, J. C. Howell, and A.N. Jordan,

Phys. Rev. Lett. 106, 040402 (2011).
[13] G. Waldherr, P. Neumann, S. F. Huelga, F. Jelezko, and J.

Wrachtrup, arXiv:1103.4949.
[14] C. Brukner, S. Taylor, S. Cheung, and V. Vedral, arXiv:

quant-ph/0402127.
[15] R. Lapiedra, Europhys. Lett. 75, 202 (2006).
[16] T. Fritz, New J. Phys. 12, 083055 (2010).
[17] D. Boschi, S. Branca, F. De Martini, and L. Hardy, Phys.

Rev. Lett. 79, 2755 (1997).
[18] A. G. White, D. F. V. James, P. H. Eberhard, and P. G.

Kwiat, Phys. Rev. Lett. 83, 3103 (1999).
[19] M. Barbieri, F. De Martini, G. Di Nepi, and P. Mataloni,

Phys. Lett. A 334, 23 (2005).
[20] W. T.M. Irvine, J. F. Hodelin, C. Simon, and D.

Bouwmeester, Phys. Rev. Lett. 95, 030401 (2005).
[21] J. S. Lundeen and A.M. Steinberg, Phys. Rev. Lett. 102,

020404 (2009).
[22] K. Yokota, T. Yamamoto, M. Koashi, and N. Imoto, New J.

Phys. 11, 033011 (2009).
[23] N. D. Mermin, Am. J. Phys. 62, 880 (1994).
[24] We define jDi ¼ ðjHi þ jViÞ= ffiffiffi

2
p

, jAi ¼ ðjHi � jViÞ= ffiffiffi
2

p
,

jLi ¼ ðjHi � ijViÞ= ffiffiffi
2

p
, jRi ¼ ðjHi þ ijViÞ= ffiffiffi

2
p Þ.

[25] G. J. Pryde, J. L. O’Brien, A. G. White, S. D. Bartlett, and
T. C. Ralph, Phys. Rev. Lett. 92, 190402 (2004).

[26] M. Barbieri, M. E. Goggin, M. P. Almeida, B. P. Lanyon,
and A.G. White, New J. Phys. 11, 093012 (2009).

[27] J. F. Clauser, M.A. Horne, A. Shimony, and R.A. Holt,
Phys. Rev. Lett. 23, 880 (1969).

[28] J. L. O’Brien et al., Phys. Rev. Lett. 93, 080502 (2004).
[29] S. Kochen and E. Specker, J. Math. Mech. 17, 59

(1967).
[30] G. Kirchmair et al., Nature (London) 460, 494 (2009).
[31] N. K. Langford et al., Phys. Rev. Lett. 95, 210504

(2005).
[32] N. Kiesel, C. Schmid, U. Weber, R. Ursin, and H.

Weinfurter, Phys. Rev. Lett. 95, 210505 (2005).
[33] R. Okamoto, H. F. Hofmann, S. Takeuchi, and K. Sasaki,

Phys. Rev. Lett. 95, 210506 (2005).

PRL 106, 200402 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending
20 MAY 2011

200402-4

http://dx.doi.org/10.1103/PhysRevLett.71.1665
http://dx.doi.org/10.1103/RevModPhys.38.447
http://dx.doi.org/10.1038/446866a
http://dx.doi.org/10.1103/PhysRevLett.54.857
http://dx.doi.org/10.1103/PhysRevLett.97.026805
http://dx.doi.org/10.1103/PhysRevLett.97.026805
http://dx.doi.org/10.1103/PhysRevLett.100.026804
http://dx.doi.org/10.1103/PhysRevLett.100.026804
http://dx.doi.org/10.1103/PhysRevLett.101.090403
http://dx.doi.org/10.1103/PhysRevLett.101.090403
http://dx.doi.org/10.1103/PhysRevA.80.034102
http://dx.doi.org/10.1073/pnas.1005774108
http://dx.doi.org/10.1073/pnas.1005774108
http://arXiv.org/abs/0907.0176
http://dx.doi.org/10.1038/nphys1641
http://dx.doi.org/10.1103/PhysRevLett.106.040402
http://arXiv.org/abs/1103.4949
http://arXiv.org/abs/quant-ph/0402127
http://arXiv.org/abs/quant-ph/0402127
http://dx.doi.org/10.1209/epl/i2005-10600-6
http://dx.doi.org/10.1088/1367-2630/12/8/083055
http://dx.doi.org/10.1103/PhysRevLett.79.2755
http://dx.doi.org/10.1103/PhysRevLett.79.2755
http://dx.doi.org/10.1103/PhysRevLett.83.3103
http://dx.doi.org/10.1016/j.physleta.2004.10.076
http://dx.doi.org/10.1103/PhysRevLett.95.030401
http://dx.doi.org/10.1103/PhysRevLett.102.020404
http://dx.doi.org/10.1103/PhysRevLett.102.020404
http://dx.doi.org/10.1088/1367-2630/11/3/033011
http://dx.doi.org/10.1088/1367-2630/11/3/033011
http://dx.doi.org/10.1119/1.17733
http://dx.doi.org/10.1103/PhysRevLett.92.190402
http://dx.doi.org/10.1088/1367-2630/11/9/093012
http://dx.doi.org/10.1103/PhysRevLett.23.880
http://dx.doi.org/10.1103/PhysRevLett.93.080502
http://dx.doi.org/10.1038/nature08172
http://dx.doi.org/10.1103/PhysRevLett.95.210504
http://dx.doi.org/10.1103/PhysRevLett.95.210504
http://dx.doi.org/10.1103/PhysRevLett.95.210505
http://dx.doi.org/10.1103/PhysRevLett.95.210506

