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We consider the Raman amplification problem for silicon waveguides in the regime in which both the pump and signal pulses are relatively

short but wide enough that their duration exceeds the phonon lifetime (about 3 ps in silicon). We use the coupled pump-signal equations for

numerical simulations that include all competing nonlinear effects such as self- and cross-phase modulations, two-photon and free-carrier

absorptions, and changes in the refractive index induced by the free carriers. However, numerical simulations do not provide much physical

insight. For this reason, we also develop an approximate analytic approach for solving the Raman amplification problem. We introduce the

concept of an effective Raman gain and show analytically how it depends on the pump bandwidth. As the pump spectrum broadens inside

the silicon waveguide, the effective Raman gain is reduced considerably. We obtain an analytical form of the nonlinear phase accumulated

during propagation inside a silicon waveguide and use it to calculate the total spectral broadening experienced by a pump pulse. Using

this result, we can predict changes in the effective Raman gain as a function of pump pulse energy. A comparison of our predictions with

the recent experimental data shows that our model is reasonable and captures the essential physics. [DOI: 10.2971/jeos.2011.11030]
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1 INTRODUCTION

Silicon-on-insulator (SOI) technology has attracted a great

deal of attention in recent years owing to its potential for on-

chip optical data processing [1, 2]. The field of silicon pho-

tonics is motivated mostly by the need for optical intercon-

nects [3, 4], amplifiers [5]–[8] and switches [9, 10]. Silicon is

a promising platform because it exhibits relatively large val-

ues of the important nonlinear parameters such as the Kerr

coefficient (n2) and the Raman gain coefficient. Furthermore,

the availability of high-quality SOI wafers from the microelec-

tronics industry, coupled with a mature fabrication process,

makes it possible to build ultracompact devices with tight

confinement of optical modes [5, 11]. These localized modes

enable nonlinear interaction at relatively low-power levels in-

side short nanowaveguides (typically 1 cm long). This is why

much effort has been put into investigating nonlinear effects

such as self- and cross-phase modulations (SPM and XPM) [5],

[12]–[14], two-photon and cross two-photon absorptions (TPA

and XPA), free-carrier absorption and refraction (FCA and

FCR) [15, 16], stimulated Raman scattering (SRS) [5, 6, 15, 17],

and four-wave mixing [18, 19]. SRS in particular has been ex-

tensively studied for providing optical amplification when a

silicon nanowire is pumped with a continuous-wave (CW) or

pulsed beam [5, 7, 8, 20, 21]. By 2005, Raman lasers operating

in the CW [22] and pulsed regimes had been demonstrated

[23].

In any theoretical model developed for understanding Raman

amplification of short optical pulses under pulsed pumping, it

is crucial to consider the interplay among all third-order non-

linearities to understand how they may impact the SRS pro-

cess. For example, TPA, XPA, and FCA reduce the intensity

of both pump and probe waves, leading to a reduced effec-

tive gain of the Raman amplifier [2, 11]. Since the phonon life-

time is close to 3 ps in crystalline silicon, one should be able to

amplify picosecond pulses efficiently if their repetition rate is

relatively low because the impact of FCA is strongly reduced

for pulses shorter than 10 ps [7, 21, 24, 25]. Indeed, Solli et al.

[26] have proposed the use of SPM- and FCR-induced spec-

tral broadening of pump pulses to create broadband Raman

amplifiers. In contrast, Kroeger et al. [5] have recently shown

experimentally that this broadening can be detrimental to SRS

because it causes saturation of the Raman gain. Their results

show that, when the spectral bandwidth of the pump pulse

becomes larger than the Raman-gain bandwidth (about 105

GHz), the Raman-gain coefficient is reduced considerably.

In this paper, we provide a theoretical basis for this experi-
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mental observation based on the coupled pump-signal equa-

tions developed for silicon waveguides [11]. Numerical sim-

ulations performed with the split-step Fourier method [27]

using parameters for the device used in the experiment [5]

show the reduction of the Raman gain observed experimen-

tally. To provide further insight, we also solve the coupled

pump-signal equations analytically with appropriate simpli-

fying assumptions. In particular, we investigate how the TPA,

SPM and FCR processes influence the reduction in the Raman

gain by studying analytically the spectral broadening of pump

pulses that they produce. The paper is organized as follows. In

Section 2, we consider all nonlinearities that may occur in a sil-

icon waveguide and present the coupled pump-signal equa-

tions used to solve the Raman amplification problem. Section

3 focuses on solving the coupled pump-signal equations ap-

proximately in the specific case in which the spectra of both

pump and signal pulses as well as the Raman gain spectrum

can be approximated with Gaussian functions. In Section 4,

we include the remaining nonlinear phase effects (SPM, XPM,

and FCR) and use the second-order moment to obtain an ex-

pression for the effective Raman gain coefficient in the pres-

ence of spectral broadening of pump pulses. We compare our

predictions with the experimental measurements in Section 5

and draw some general conclusions.

2 The complete numerical model

We consider the experimental situation in which the pump

and signal pulses with carrier frequencies ωp and ωs, respec-

tively, are launched into a silicon waveguide. These pulses

interact through SRS that transfers energy from the pump to

the signal pulse. At the same time, both pulses are affected by

linear losses, nonlinear losses (TPA and XPA), and nonlinear

phase shifts (SPM, and XPM). Moreover, free carriers gener-

ated through TPA and XPA also affect the two pulses through

FCA and FCR. All of these processes have been included in

Ref. [11] to derive a set of two coupled pump-signal equations

that form our starting point.

2.1 Coupled pump–signal equations

We use Maxwell’s equations with the total electric field in the

form

E(x, y, z, t) = êRe{Fs(x, y)As(z, t) exp[i(ksz − ωst)]

+ Fp(x, y)Ap(z, t) exp[i(kpz − ωpt)]},
(1)

where As and Ap are the slowly varying envelopes of the sig-

nal and pump fields (of intensity |As|2 and |Ap|2 respectively)

with mode profiles Fs and Fp, respectively, and ê is the polar-

ization unit vector. The use of this form with the appropriate

forms of the induced polarization inside the silicon waveg-

uide leads to the following set of two coupled equations [11]:

∂As

∂z
= R(z, t)Ap(z, t)−

(αl

2
+ f 2

s σc N f c(z, t)
)

As(z, t)

+ iks f 2
s [2 f 2

p n2(1 + irs)|Ap(z, t)|2

+ kc N f c(z, t)]As(z, t),

(2)

∂Ap

∂z
= − R∗(z, t)As(z, t)−

(αl

2
+ f 2

p σc N f c(z, t)
)

× Ap(z, t) + ikp f 2
p [ f 2

p n2(1 + irp)|Ap(z, t)|2

+ kc N f c(z, t)]Ap(z, t),

(3)

where Raman amplification is included through

R(z, t) = i f 2
p f 2

s gR
ΓR

ΩR

∫ t

−∞

(
hR(t − t′) exp[−iΩps(t − t′)]

× As(z, t′)A∗
p(z, t′)

)
dt′

(4)

with Ωps = ωp − ωs. Here gR is the Raman gain coefficient

(units m/W) and hR(t) is the Raman response function whose

Fourier transform is given by [11]

H̃R(Ω) =
Ω

2
R

Ω2
R − Ω2 − 2iΓRΩ

. (5)

The parameters ΩR and ΓR characterize the Raman gain spec-

trum and represent the Raman shift (ΩR/2π ≈ 15.6 THz) and

the gain bandwidth (ΓR/π ≈ 105 GHz) related inversely to

the phonon lifetime of about 3 ps in silicon at room tempera-

ture.

Equations (2)–(4) are identical to those appearing in Ref. [11]

except that we have neglected the dispersion term because

its contribution is relatively small (β2 ≈ −1 ps2/m) for the

silicon ridge waveguide that we wish to study [5]. We have

also explicitly added the local-field factors fp and fs defined

as f 2
m = ngm/n̄m (m = p, s) [5], [28]–[31], where n̄m and

ngm represent the effective mode index and group index at

the pump or signal frequencies. km (m = p, s) is the pump

or signal wave vector in air. Other parameters appearing in

these equations represent various physical phenomena: αl ac-

counts for linear waveguide losses, n2 is the Kerr parameter,

rm = βTPA/(2kmn2) (m = p, s) is a dimensionless parameter

indicating the relative importance of the TPA parameter βTPA

compared to the Kerr effect, σc accounts for FCA, and kc repre-

sents the free-carrier induced index changes (FCR). The pres-

ence of a factor 2 in front of f 2
p n2(1+ irs) in Eq. (2) is because of

the cross-Kerr and cross-TPA (XPA) effects. Here, we neglect

the dispersion of the Kerr and TPA coefficient between pump

and signal, such that βXPA = 2βTPA and n2X = 2n2, where n2X

is the cross-Kerr coefficient.

Later, we consider the simplest model of Raman amplification

in which all nonlinear effects except SRS are ignored. In this

case, the coupled pump–signal equations reduce to the fol-

lowing two coupled equations:

∂As

∂z
= R(z, t)Ap(z, t)− αl

2
As(z, t), (6)

∂Ap

∂z
= −R∗(z, t)As(z, t)− αl

2
Ap(z, t). (7)

2.2 Rate equation for the density of free
carr iers

The coupled pump–signal equations (2) and (3) contain the

density N f c of free carriers that are generated through TPA,
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and we cannot solve them without adding a rate equation for

N f c. The primary TPA process is the one in which both pho-

tons come from the pump pulse (governed by βTPA). In gen-

eral, however, one should also include cross absorption (XPA),

a process where one signal photon is absorbed together with

a pump photon. If dispersion of the TPA coefficient is small

between the pump and signal wavelengths, βXPA = 2βTPA.

We neglect the influence of the XPA process in generating

free-carriers by assuming that the signal intensity |As(z, t)|2
is much weaker than the pump intensity |Ap(z, t)|2 at all dis-

tances within the silicon waveguide. However, its influence

on the absorption of the signal intensity is not negligeable and

must be conserved in Eq. (2). With this assumption, the free-

carrier density N f c satisfies the following rate equation:

∂N f c

∂t
=

f 4
p βTPA

2h̄ωp
|Ap(z, t)|4 −

N f c(z, t)

τf c
, (8)

where τf c is the free-carrier recombination time. In bulk sili-

con τf c is quite large (10 ns or so). In the case of a nanowaveg-

uide, this recombination time is reduced to close to 1 ns

because of enhanced surface recombination. However, it re-

mains much larger compared to the pump and signal pulse

durations we are dealing with (10 ps or less). For this reason,

the second term may be omitted compared to the first one over

the pulse duration.

Free carriers generated by TPA change both the real and imag-

inary part of the effective refractive index associated with the

waveguide mode. These changes are governed by the Drude–

Lorentz equation which links the complex refractive index

to the electron and hole concentrations [32]. The imaginary

part leads to free-carrier absorption (FCA) that we consider

to be negligeable in this paper. This assumption is reason-

able if the repetition rate νR of pulses satisfies the condition

νRτf c ≪ 1), and the peak intensity remains relatively low

(Ip < 3GW/cm2) for pulses of duration around 10 ps [33]. The

influence of free carriers on the real part of the complex re-

fractive index leads to FCR. The index change is proportional

in this case to the free-carrier density and is equal to kc N f c,

where kc is the FCR coefficient.

2.3 Numerical solution with the spl it-step
Fourier method

In most cases, Eqs. (2), (3) and (8) cannot be solved analyt-

ically, and a numerical method must be used to model the

propagation and Raman amplification of optical pulses inside

a silicon waveguide. We use the well-known split-step Fourier

method for this purpose [27]. It makes use of the Fourier rep-

resentation on an appropriate temporal grid to obtain a set of

ordinary differential equations. We split the coupled pump-

signal equations into a linear part that is solved in the Fourier

domain and a nonlinear part that is solved in the time domain

(TPA, Kerr effect and FCR). The Raman term is solved alter-

natively in the Fourier domain and the time domain because

it contains a convolution product. Because these equations are

solved alternatively, this method makes the assumption that

each part acts independently. However, by choosing a step

size along z that is sufficiently small, accurate numerical re-

sults can be obtained.

In the following section, we use an approximate analytical

method to obtain the effective Raman gain and show that it

is reduced from its actual value because of the spectral broad-

ening of pump pulses resulting from SPM and FCR [5]. Nu-

merical simulations provide us data that we compare to our

analytical results to show that our simple model is reason-

able. Values of various parameters used in our analytical and

numerical calculations are specified in Table 1, along with ref-

erences where these values can be found.

3 Analyt ical study of Raman
amplif icat ion of picosecond pulses

3.1 Effect ive Raman gain

In this section we introduce the concept of an effective Raman

gain by focusing only on the Raman term. This requires a so-

lution of Eqs. (6) and (7) with αl = 0. These equations are still

difficult to solve. Assuming that |As(z, t)|2 ≪ |Ap(z, t)|2 re-

mains valid for all z, we make the undepleted pump approxi-

mation and neglect the R∗(z, t) term in the pump equation so

that Ap(z, t) = Ap(0, t). The signal equation can be solved in

the Fourier domain where it takes the form

∂Ãs

∂z
=

i

(2π)2
f 2
p f 2

s gR
ΓR

ΩR
Ãp(z, ω)

⊗ [H̃R(ω − Ωps){Ã∗
p(z, ω)⊗ Ãs(z, ω)}],

(9)

where ⊗ represents the convolution operator defined such

that f ⊗ g(x) =
∫

∞

−∞
f (y)g(x − y)dy and we use the conven-

tion f̃ (ω) =
∫

∞

−∞
f (t)e−iωtdt for the Fourier transform.

Next, we assume that both the pump and signal pulses have

Gaussian profiles in the time and frequency domains and that

these profiles remain Gaussian as the pulses propagate inside

the waveguide. We express the optical field Aj(z, t) and its

Fourier transform Ãj(z, ω) as follows:

Aj(z, t) = Aj(z, 0) exp(−t2/2T2
j ), (10)

Ãj(z, ω) = Ãj(z, 0) exp(−ω2/2Ω
2
j ), (11)

where j = s, p. Tj and Ωj represent the intensity half-widths

at 1/e points related to each other as Ωj = 1/Tj.

Third, we ignore the effect of the real part of the Raman re-

sponse responsible for the slow-light effects through Raman

dispersion and assume that the imaginary part of H̃R(Ω), re-

lated to the Raman gain spectrum known to have a Lorentzian

shape, can be approximated with a Gaussian function. We find

that the following form approximates the Lorentzian shape

reasonably well, close to the gain peak (Ω = ΩR) as it corre-

sponds to a fit based on the least-squares method:

Im
[

H̃R(Ω)
]
≈ ΩR

2ΓR
exp

[
− (Ω − ΩR)

2

2Γ2
R

]
. (12)

Figure 1 compares the Gaussian approximation to the actual

Lorentzian shape of the Raman gain spectrum.

With these assumptions and simplifications, we can calculate

the Raman term in Eq. (9) in an analytic form. Taking the in-
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Parameter Name Symbol Value Reference

Waveguide length L 1 cm [5]

Linear losses αl 100 m−1 [5]

TPA parameter βTPA 0.8 cm/GW [5]

Kerr coefficient n2 6 ×10−18 m2/W [33]

Raman gain coefficient gR 8.9 cm/GW [5]

Raman linewidth ΓR π×105 GHz [11]

Raman resonance ΩR 2π×15.6 THz [11]

Carrier lifetime τf c 10 ns [34]

FCR coefficient kc −1.35 × 10−27 m3 [33]

Signal wavelength λs 1.55 µm [5]

Pump wavelength λp 1.434 µm [5]

Local field factor for signal beam fs 1.21 [5]

Local field factor for pump beam fp 1.21 [5]

TABLE 1 Values of device and material parameters used in calculations
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FIG. 1 Comparison of the approximated Gaussian shape to the actual Lorentzian shape

of the Raman response spectrum obtained using Im[H̃R(Ω)]

verse Fourier transform, we obtain

∂As

∂z
=

1

2
f 2
p f 2

s geff
R |Ap(z, 0)|2 As(z, 0) exp

(
−Ω

2
efft

2/2
)

, (13)

where the effective Raman gain geff
R and the effective amplifier

bandwidth Ωeff are defined as

geff
R =

gR√
1 + (Ω2

p + Ω2
s )/Γ2

R

,

Ω
2
eff =

Γ
2
R(Ω

2
s + Ω

2
p)

Γ2
R + (Ω2

s + Ω2
p)

+ Ω
2
p.

(14)

Ωeff represents the effective bandwidth (Beff) over which the

signal pulse can be amplified through SRS in silicon. Table 2

shows that the definition of Ωeff is consistent in several limit-

ing cases with what one would expect intuitively.

To ensure that the formula for geff
R is applicable in practice in

spite of our approximations, we compare it to numerical simu-

lations considering the case in which picosecond signal pulses

are amplified using pump pulses with nearly the same spec-

tral bandwidths (Ωp = Ωs = Ω0). In the following, we are

mainly interested in studying how broadening of the pump

spectrum affects the effective Raman gain near the signal-

pulse peak. We thus set t = 0 in Eq. (13) and assume that

the peak pump intensity, Ip = |Ap(z, 0)|2, does not change

with z. The signal intensity Is = |As|2 then evolves along the

amplifier as

dIs

dz
= f 2

p f 2
s geff

R Ip Is, geff
R =

gR√
1 + 2Ω2

0/Γ2
R

. (15)

Note that geff
R = gR in the CW limit corresponding to Ω0 = 0

and that it decreases as the SRS regime becomes more tran-

sient. Integration of Eq. (15) provides the following solution

for the amplification factor:

G =
Is(z)

Is(0)
= exp

(
f 2
p f 2

s geff
R Ip

)
. (16)

We plot in Figure 2 the amplification factor G as a function

of the input pump intensity for a 1-cm-long silicon waveg-

uide. The symbols represent numerical data that we obtain by

solving the full equation (9) using the Raman response func-

tion H̃R(Ω) given by equation (5). Different sets correspond

to different pump and signal pulse durations. The solid lines

are plots of G using the analytical expression with geff
R given

in Eq. (15). The numerical data follows the linear variation in

this semi-logarithmic plot at low pump intensities. The slope

of each straight line diminishes as the duration of pump pulse

decreases, which is consistent with our theoretical prediction

and fits well our model. As the intensity increases, the simu-

lations deviate from the analytical model because of the sim-

plifying assumptions that we have made in deriving it (no-

tably that the pulses stay Gaussian and keep their initial band-

widths). However, we are able to account for a decrease in

effective Raman gain due to the spectral broadening of the

pump. As the pulse duration becomes larger (50 ps), the evo-

lution of G corresponds to the CW regime, as one may expect.

Note that the expression of G fits the numerical data better

in the extreme cases of very long and very short pulses. This

can be understood as follows. In the case of short pulses (tran-

sient regime), Ω0 ≫ ΓR and H̃R(ωR) can be approximated

with a delta function. In the case of long pulses (CW regime),

Ω0 ≪ ΓR and the spectra of both the pump and signal pulses

are much narrower (close to a delta function) than the Raman

11030- 4



Journal of the European Optical Society - Rapid Publications 6, 11030 (2011) A. Baron et al.

Pump Regime Signal Regime Beff geff
R SRS Regime

Ωp = 0 Ωs = 0 Ωeff = 0 gR CW pump and signal

Ωp = 0 Ωs ≫ ΓR Ωeff = ΓR 0 Transient Signal, CW pump

Ωp = 0 Ωs ≪ ΓR Ωeff = Ωs gR signal Pulse, CW pump

Ωp ≫ ΓR Ωs = 0 Ωeff = Ωp 0 Transient Pump, CW signal

Ωp ≪ ΓR Ωs = 0 Ωeff = Ωp gR Pulsed pump, CW signal

TABLE 2 Limiting cases for the effective gain amplifier bandwidth

FIG. 2 (a) Amplification factor as a function of peak intensity Ip(0) for several pump pulse durations. Symbols show the numerical data obtained by solving Eq. (9). Solid lines

correspond to the analytical formula (16). (b) Reduction in the Raman gain, geff
R /gR, as a function of Ω0/ΓR calculated using Eq. (15) with gR = 8.9 cm/GW. Symbols are

obtained using numerical data in part (a).

gain spectrum. In those regimes, the exact shape of the Raman

spectrum (gaussian or lorentzian) is non-critical and has little

influence.

3.2 Inf luence of TPA on SRS

In this subsection we study how TPA further reduces the am-

plification factor in a silicon Raman amplifier. For this pur-

pose, we neglect the free-carrier terms in Eqs. (2) and (3), in-

clude SRS in terms of geff
R given in Eq. (15), and neglect pump

depletion due to SRS. Using Im = |Am|2 (m = p, s), the pump

and signal intensities are then found to satisfy

∂Is

∂z
= f 2

p f 2
s (geff

R − βXPA)Ip Is − αl Is, (17)

∂Ip

∂z
= − f 4

p βTPA I2
p − αl Ip. (18)

The pump equation (18) can be solved easily in terms of the

input pump intensity Ip(0, t) to obtain

Ip(z, t) =
Ip(0, t)e−αl z

1 + αTPALeff(z)
, (19)

where Leff(z) = (1 − e−αl z)/αl is the effective length and we

have introduced an effective TPA-loss parameter as

αTPA = f 4
p βTPA Ip(0, 0). (20)

In practice, this last term is not constant and depends on the

time profile of Ip(0, t), but we replace it with its maximum

value at the pulse center, which is needed because we make

the assumption that the shape of the pump remains Gaussian.

This replacement is valid for low TPA regimes and overesti-

mates its influences for higher TPA regimes.

Knowing the evolution of the pump intensity along the

waveguide length, we use Eq. (19) in Eq. (17) and solve it

analytically. The solution is used to obtain the on-off gain

Gon−off defined as the ratio of output signal power with the

pump on and off. On the decibel scale, this gain is given by

GdB
on−off = 10 log10

[
Is(L)

Is(0)e−αl L

]

=
f 2
s

f 2
p

(geff
R − βXPA)

βTPA

(
1 + αTPALeff

)
dB

.

(21)

The solid lines in Figure 3 show the on-off gain as a function

of (1 + αTPALeff)dB for several pulse durations in the range

of 1–50 ps. The numerical results are shown again as symbols.

Compared to the results in Figure 2, we observe that the slopes

of the solid lines are reduced because of the TPA process. We

also note that the analytical curves provide a satisfactory fit

of the numerical data for low values of (1 + αTPALeff)dB. We

point out that the expression of Gon−off depends on the local

field factors fs and fp as a ratio. Although αTPA contains a fac-

tor f 4
p , its influence on the on-off gain is logarithmic. One way

to enhance the amplification process consists of localizing the

signal wave much more than the the pump wave to maximize

the ratio f 2
s / f 2

p . It is interesting to note, that in the absence of

TPA [see Eq. (16)], localizing both the pump and the signal is

advantageous to Raman amplification.

4 Spectral broadening of the pump
pulse and its inf luence on SRS

In the preceding section we obtained an analytical solution

describing how the peak intensities of the signal and pump
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FIG. 3 On-Off gain Gon−off, plotted as a function of (1+αTPA Leff)dB for different

pulse durations. Markers represent the numerical data obtained by solving equations

(17) and (18), taking into account TPA, XPA, linear absorption and SRS. Solid lines

correspond to the analytical formula.

pulses evolve as they propagate through a Raman ampli-

fier while experiencing Raman gain through SRS and losses

through TPA (and other linear mechanisms). The next step

is to consider how the SPM and FCR phenomena affect the

phase of the pump pulse and modify the amplification pro-

cess. Spectral broadening of the pump pulse induced by SPM

and FCR is expected to decrease further the effective Raman

gain once the pump’s spectral bandwidth becomes compara-

ble to or exceeds the bandwidth of the Raman gain spectrum.

4.1 Nonlinear phase equation

Using Ap =
√

Ip exp(iφp) in the pump equation (3), we can

obtain two equations, one giving the evolution of intensity Ip

(solved in Section 3), and the other giving the evolution of the

pump phase φp. This phase equation is given by

∂φp

∂z
= kp f 2

p

[
f 2
p n2 Ip(z, t) + kc N f c(z, t)

]
, (22)

where Ip(z, t) is given in Eq. (19) and N f c(z, t) is obtained by

integrating Eq. (8). If we neglect the recombination time as-

suming pump pulses shorter than 10 ps, N f c(z, t) is given by

N f c(z, t) =
f 4
p βTPA

2h̄ωp
I2
p(z, 0)

√
π

2

T0

2

[
1 + erf

(√
2t

T0

)]
. (23)

Using this, Eq. (22) can be integrated with respect to z and pro-

vides the total accumulated phase during propagation over

the amplifier length L in the form

φp(L, t) = (ρ1 + ρ2)φ f c(t)− ρ2(αTPA/αl)φK(t), (24)

where the Kerr and FCR contributions have been separated

using the definitions

φK(t) = kp f 4
p n2 Ip(0, t)Leff, (25)

φ f c(t) = kp f 2
p kc N f c(0, t)Leff, (26)
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FIG. 4 (a) Nonlinear phase of the pump pulse plotted as a function of time at the

ouput of a 1-cm long waveguide. The two curves compare the analytical solution

with the numerical data obtained using Eqs. (3) (without considering pump depletion

through SRS) with 5-ps pump pulses with a peak intensity of 3 GW/cm2. (b) Normalized

frequency chirp, ∆ω(t)/Ω0, plotted as a function of distance. The top and bottom

plots show the numerical and analytical results, respectively.

and we have introduced two new parameters as

ρ1 =
1 + αl/αTPA

1 + αTPALeff
, (27)

ρ2 =
αl

α2
TPALeff

[
αl L + ln

(
1 − αl Leff

1 + αTPALeff

)]
. (28)

Figure 4a compares the analytically calculated phase to the

numerically simulated phase using the same device parame-

ters. The agreement is relatively good in spite of several sim-

plifying approximations we have made. The Kerr part, φK(t),

follows the intensity profile of the pump pulse. However, free

carriers produce a phase shift φ f c(t) that builds up as an er-

ror function. Furthermore, given that the signs of the nonlin-

ear Kerr index n2 and the FCR coefficient kc are opposite, the

nonlinear phase increases over the leading part of the pulse

during which free carriers are created but soon after it begins

to decrease and becomes negative near the trailing edge of the

pulse.

From Eq. (24), we can calculate the frequency chirp or the in-
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FIG. 5 Numerically simulated output pump spectrum for a 1-cm-long silicon waveguide

when input pump intensity is 3 GW/cm2.

stantaneous frequency shift ∆ω(t) by differentiating φp(L, t)

with respect to time. Figure 4b shows how this chirp builds up

along the amplifier length using a surface plot in which dif-

ferent colors show different values of ∆ω(t)/Ω0. This figure

shows the classical behavior that the leading edge of the pulse

is red-shifted whereas its trailing edge is blue-shifted. The fre-

quency chirp due to the Kerr effect, as governed by pulse in-

tensity derivative, is negative on the leading edge of the pulse

and positive on the trailing edge, whereas the FCR chirp gov-

erned directly by the pulse intensity is always positive. As a

result, they have the opposite signs near the leading edge but

have the same sign near the trailing edge. This means that a

greater part of the pulse exhibits a blue-shift. Such a chirp be-

havior is consistent with the numerically simulated spectrum

of the pulse shown in Figure 5 where the blue-shifted peak

has larger amplitude than the red-shifted one.

4.2 Characterizat ion of the spectral
broadening

In this subsection we estimate the spectral broadening of the

pump pulse using the concept of the root-mean-square (rms)

bandwidth and study how this width changes with the pump

pulse energy. To do so, we use a method first used in 1985 for

studying SPM-induced spectral broadening in optical fibers

[35] and extend it by including the FCR contribution as well.

The rms spectral width ∆ωσ is found by computing the vari-

ance as

(∆ωσ)
2 =

〈
ω2
〉
− 〈ω〉2

=

∫
ω2|Ãp(ω)|2dω∫
|Ãp(ω)|2dω

−
[ ∫

ω|Ãp(ω)|2dω∫
|Ãp(ω)|2dω

]2

.
(29)

Although Ãp(ω) cannot be calculated in closed form, we

know the complex amplitude of the pump pulse in the time

domain:

Ap(t) =
√

Ip(L, 0) exp

[
− t2

2T2
0

+ iφp(L, t)

]
. (30)

We thus use the following moment formula relating the nth-

order moment in the Fourier domain to the nth derivative in
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FIG. 6 The rms spectral width ∆ωσ plotted as a function of peak intensity of input

pump pulses of different pulse durations. The dashed curves show the output

spectrum widths obtained numerically using Eqs. (3) (without considering pump

depletion through SRS) whereas solid lines correspond to Eq. (33).

the time domain [35]:

∫
ωn f̃ (ω)dω = 2π(−i)n f (n)(0). (31)

Using Eq. (31) and the Wiener-Khintchin theorem, we can ex-

press ∆ωσ in terms of Ap(t) as

(∆ωσ)
2 =

∫
|A′

p(τ)|2dτ∫
|Ap(τ)|2dτ

+

[ ∫
A∗

p(τ)A′
p(τ)dτ∫

|Ap(τ)|2dτ

]2

, (32)

where a prime denotes the first derivative of the function. All

integrals can be calculated in a closed form using Eqs. (24),

(30), and (32). The final result is given by

(∆ωσ)
2 = Ω

2
0

[
1

2
+

8

π
(

1√
5
− 1

3
)(ρ1 + ρ2)

2φ2
f c(0)

+
2

3
√

3
ρ2

3φ2
K(0)

]
,

(33)

where ρ3 = (αTPA/αl)ρ2.

Solid lines in Figure 6 show ∆ωσ as a function of the peak in-

tensity of the input pump pulse using the analytical result in

Eq. (33). The dashed lines show the results obtained numeri-

cally for different pulse durations in the range of 1–50 ps. We

can see that the agreement between the two methods is rea-

sonable and improves for longer pulse durations. Differences

between the two curves, especially for shorter pulse durations

results from the considerable deformation undergone by the

larger spectra for large values of the pump intensity as is evi-

dent in Figure 5.
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in [5] (open circles) and the theoretical values given by Eq. (33) for pulse durations

between 7 and 10 ps (solid lines).

5 Inf luence of pump-spectrum
broadening on effect ive Raman
gain

In this section we compare the predictions of our approxi-

mate analytical model with the recent experimental results of

Kroeger et al. [5] showing the saturation of the Raman gain

with increasing pump pulse energies. Besides the observed

pump-spectrum broadening and saturation of the Raman am-

plification, the measurements and data analysis method are

reported in [5] and enabled the determination of the in-

jected pump intensities. A comparison between our theoreti-

cal model and these experimental data is made in this section.

5.1 Spectral width of the SPM-broadened
pump pulses

From the output pump-spectra measured for injected pump

intensities varying from 0.2 up to 2.6 GW/cm2 [5], we calcu-

lated the experimental rms spectral width ∆ωσ using the ex-

pression of Eq. (29). They are plotted in figure 7 with open cir-

cles as a function of the peak intensity. On the same graph,

we plot with solid lines the theoretical values given by Eq.

(33) for pulse durations varying from 7 to 10 ps correspond-

ing to the range of the experimental pulse duration. Indeed,

from the measured pump spectrum and assuming that the in-

put pump pulses are unchirped, we estimate an experimen-

tal value of T0 = 7 ps for the pump pulse (corresponding to

the 15 ps full width of the pulse considered in Ref. [5]). The

comparison shows that our analytical expression for the rms

spectral width is in good agreement with the experimental

observations considering that the numerical simulations that

are slightly below the analytical curves (Fig. 6), should corre-

spond better to the experimental data for a given pulse dura-

tion.

5.2 Reduction of the effect ive Raman gain

From Eq. (33), we obtain the effective 1/e half-bandwidth for

the SPM-broadened pump spectrum using Ω =
√

2∆ωσ and
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FIG. 8 Effective Raman gain geff
R plotted for several pulse durations as a function of

pump pulse energy at the input of the waveguide. The solid lines show the analytical

result using Eq. (15) and the circles correspond to the experimental data in Ref. [5].

use this value in Eq. (14) to obtain the effective Raman gain

geff
R as a function of pump pulse energy. Noting that the effects

of XPM are relatively small for the signal pulse, whose band-

width is mostly set by the Raman gain spectrum that does not

undergo any broadening, we make the approximation that

Ωs ≈ 0 in Eq. (14), because geff
R is mostly influenced by the

broadening of the pump bandwidth. The results are shown

by solid lines in Figure 8 for several values of the pump pulse

duration T0. The measured experimental data of Ref. [5], taken

for pump pulses with T0 = 7 ps, are shown by circles in this

figure. In both cases, the effective Raman gain decreases as the

pump energy increases. According to our theoretical model,

this decrease is due to SPM-induced spectral broadening of

the pump pulses. Physically speaking, when the broadening

becomes large enough that the pump bandwidth begins to ex-

ceed the Raman gain bandwidth ΓR, only a portion of pump

energy can be used for SRS. The convolution present in Eq.

(9) takes into account this feature mathematically and it pro-

duces a reduced effective gain. We also see, as was pointed

out in section 3, that the gain is further reduced for shorter

pump pulses. We note from Figure 8 that the best agreement

with the experimental data is obtained for a theoretical pulse

duration of T0 = 8 ps, in agreement with our estimation of the

experimental pulse duration of 7 ps.

The important point to note is that our analytical model can

predict the experimental behavior remarkably well in spite of

several simplifying approximations made during our analy-

sis.

5.3 Inf luence of the l ight- local izat ion
effect

Besides the prediction of the reduction of the effective Raman

gain, our analytical model can predict the performance of a

Raman amplifier based on a slow-mode waveguide for which,

both the pump and Stokes signals are localized. We have al-

ready seen that, even if light localization of both pump and

Stokes signals is favorable in a pure Raman media, this point

must be revised in presence of two-photon absorption. Con-
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sidering Eq. (21), it seems that in presence of TPA, it is advan-

tageous to localize the Stokes signal more than the pump. This

tendency will be reinforced if spectral broadening is taken into

account. To show this, we have calculated the On-Off Gain

in different localization situations and plotted in figure 9 the

values as a function of (1 + αTPALeff)dB. We chose two values

for the local field factor: 1.21 corresponding to our waveguide

and 1.5 corresponding to a W1 photonic crystal waveguide

with a reduced group velocity around c/8 [30].

We first consider a situation of an identical localization effect

for pump and signal in order to avoid any temporal walk-

off between pulses. When fp = fs = 1.5 a maximum gain

of 23 dB, similar to the maximum gain obtained with

fp = fs = 1.21, is reached for a lower input pump intensity.

Beyond this value, i.e. for (1 + αTPALeff) > 5 dB, a stronger

saturation of the on-off Raman gain occurs for fp = fs = 1.5

because the spectral broadening is more enhanced than in the

case fp = fs = 1.21.

In a situation where fp 6= fs, one has to mention the in-

evitable reduction of the on-off Raman gain through the tem-

poral walk-off effect, which is not described by our model. In

the following discussion, considering one pulse duration and

two local field factors, one has to consider a maximum effec-

tive length Le f f that minimizes the temporal walk-off between

pump and signal pulses. By doing so, we wish to emphasize

on the effect of the spectral broadening on the gain amplifica-

tion. We can see that the two situations fp = 1.21, fs = 1.5

(green curve in Fig. 9) and fp = 1.5, fs = 1.21 (magenta curve

in Fig. 9) nominally identical in a pure Raman media (or at low

pump power when two photon absorption is negligible) very

rapidly diverge when the pump power increases with a differ-

ence in the maximum accessible gain of 20 dB. It is clear from

these curves that when the pump is more localized ( fp > fs),

the spectral broadening will be enhanced and saturation of the

gain will appear sooner (for (1 + αTPALeff) ≈ 3 dB), because

more free-carriers are generated (contrary to the case when

fs > fp). This prevents high amplification gain.

Even though it is non-exhaustive, this first result clearly

shows that light localization completely reorganizes the hi-

erarchy between the different nonlinearities and that careful

analysis is necessary to optimize a device in the slow-mode

regime. Analytical models, such as the one developed here,

are essential tools to make such a study as they give easy ac-

cess to the influence of the different parameters on the quan-

tities that need to be optimized.

6 Conclusions

In this paper we have solved the Raman amplification prob-

lem for silicon waveguides in the regime in which both the

pump and signal pulses are relatively short (∼10 ps) but still

wide enough that their duration exceeds the phonon lifetime

(about 3 ps). We used a well-known model based on the cou-

pled pump-signal amplitude equations for numerical simula-

tions because such a model includes all competing nonlinear

effects such as the Kerr effect, TPA, FCA, and FCR that take

place simultaneously. However, numerical simulations do not
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FIG. 9 Calculated on-off Raman gain Gon−off given by Eq. (21) as a function of (1 +

αTPA Leff)dB for different localization situations and taking into account the theoretical

SPM-broadening of the pump pulse. The local field factors for pump and signal are

set equal to 1.21 or 1.5, corresponding to a group velocity equal to c/5 and c/8,

respectively.

provide much physical insight. For this reason, we also de-

veloped an approximate analytic approach for solving the Ra-

man amplification problem. We introduced the concept of an

effective Raman gain coefficient and showed analytically how

this effective Raman gain depends on the pump bandwidth.

Since the pump spectrum broadens inside the silicon waveg-

uide owing to a combination of the Kerr effect and FCR, these

two phenomena affect the Raman amplification process con-

siderably. We were able to obtain an analytical form of the

nonlinear phase accumulated during propagation inside a sil-

icon waveguide, which enabled us to calculate the total spec-

tral broadening experienced by a pump pulse as it propagates

through a silicon nanowaveguide in the nonlinear regime. Us-

ing this result, we were able to predict changes in the effective

Raman gain as a function of the pump pulse energy and com-

pare the results to the recent experimental data. This compar-

ison shows that our model is reasonable and captures all es-

sential physics.

It should be noted that our analysis includes the local-field fac-

tors that take into account the enhancement of the pump and

signal fields in silicon nanowaveguides. This enhancement

can be controlled by reducing the group index (for example in

slow-light devices) or by strong confinement (e.g., using mi-

crocavities). This feature widens the scope of our analysis be-

cause it provides insight into the study of slow-mode or high-

localization Raman devices. For instance, strong localization

of the pump and signal beams will prove to be detrimental to

Raman amplification because of a simultaneous enhancement

of the spectral broadening of pump pulses. This point is of cru-

cial importance for designing silicon-based Raman amplifiers

and lasers.

We should stress one more important point. Although we

have focused on a specific Raman amplification problem in

silicon waveguides, our analytical approach is quite general

and can be used to study the transient Raman amplification

of pulses in a variety of media, including molecular gases,

optical fibers, and other semiconductor materials. The main

conclusion of our paper is that spectral broadening of pump

pulses reduces the extent of Raman-induced transfer of pump
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pulse energy to signal pulses in all Raman-active media in

which the Kerr effect occurs simultaneously with SRS.
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