High-power diode-pumped cryogenically cooled Yb:CaF2 laser with extremely low quantum defect
Sandrine Ricaud, Dimitris N. Papadopoulos, Alain Pellegrina, François Balembois, Patrick Georges, Antoine Courjaud, Patrice Camy, Jean-Louis Doualan, Richard Moncorgé, Frédéric Druon

To cite this version:
Sandrine Ricaud, Dimitris N. Papadopoulos, Alain Pellegrina, François Balembois, Patrick Georges, et al.. High-power diode-pumped cryogenically cooled Yb:CaF2 laser with extremely low quantum defect. Optics Letters, 2011, 36 (9), pp.1602-1605. hal-00588873

HAL Id: hal-00588873
https://hal-iogs.archives-ouvertes.fr/hal-00588873
Submitted on 26 Apr 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
High-power diode-pumped cryogenically-cooled Yb:CaF\textsubscript{2} laser with extremely low quantum defect

S. Ricaud1,4*, D. N. Papadopoulos2, A. Pellegrina2, F. Balembois1, P. Georges1, A. Courjaud1, P. Camy3, J. L. Doualan3, R. Moncorgé3, F. Druon1,

1. Laboratoire Charles Fabry de l’Institut d’Optique, UMR 8501 CNRS, Université Paris Sud, 91127 Palaiseau, France
2. Institut de la Lumière Extrême, CNRS, Ecole Polytechnique, ENSTA ParisTech Institut d’Optique, Université Paris Sud, Palaiseau Cedex, France
3. Centre de recherche sur les Ions, les Matériaux et la Photonique (CIMAP), UMR 6252 CEA-CNRS-ENSICAen, Université de Caen, 14050 Caen, France
4. Amplitude Systèmes, 6 allée du doyen Georges Brus, 33600 Pessac, France

*Corresponding author: sandrine.ricaud@institutoptique.fr

Received Month X, XXXX; revised Month X, XXXX; accepted Month X, XXXX; posted Month X, XXXX (Doc. ID XXXXX); published Month X, XXXX

Doped fluoride crystals have been known and identified as attractive laser media since the very beginning of the lasers [1]. In the field of ultrahigh-power laser with high repetition rate, very interesting laser development at cryogenic temperature has been done with Yb:YLF[2,3] and Yb:CaF\textsubscript{2} [4,5]. In the case of Yb:CaF\textsubscript{2}, crystallographic and luminescence properties were already known a long time ago [6]. However, the characteristics of these materials have not been fully exploited, especially at high dopant concentration [7-10]: a broad emission band, a long emission lifetime of 2.3 ms, with moreover a good thermal load [5,17,18]. Moreover, as this quasi-two-level laser diode-pumped laser operation and to a minimal thermal load [5,17,19]. Consequently, in addition to the broad-band vibronic laser performance ever obtained at such low quantum defects on intense laser lines.

OCIS Codes: 140.3615, 140.3380, 140.3480, 140.3580

In this letter we present another typical property of Yb:CaF\textsubscript{2}, which allows for efficient laser emission in a “quasi-two-level” laser scheme without any ultra wavelength-selective or narrow-linewidth intracavity element. This could represent a breakthrough for ultra-high-power lasers since it could lead both to efficient diode-pumped laser operation and to a minimal thermal load [5,17-19]. Moreover, as this quasi-two-level laser system operates at cryogenic temperature, it brings another positive advantage for high power laser devices, which consists in improving the thermal properties of the laser element such as its thermal conductivity.

Yb3+ has a simple electronic-level structure based on only two manifolds (\textit{F}_{\text{i/2}} and \textit{F}_{\text{3/2}}) which splits into different crystal-field Stark sublevels whose number and energy separation depend on the symmetry and the strength of the local crystal-field environment. Due to charge compensation and minimum-energy arrangements of the ions in this system [6], the case of heavily doped Yb:CaF\textsubscript{2} is very particular. Indeed, the luminescent centers, responsible for the laser properties of the material, give rise to a typical relatively weak crystal-field and reduce crystal-field splittings of the Yb3+ energy levels (see in Fig. 1a).

Consequently, in addition to the broad-band vibronic laser scheme, which extends from about 1000 to 1060 nm, and to the zero-phonon lines (corresponding to the so-called “zero-line” around 981 nm), there is another set of crystal down to Liquid Nitrogen (LN\textsubscript{2}) temperature, as presented in the letter.

Thus, laser operation at short-wavelength and “ultra-low quantum-defect” is possible by cooling the laser crystal down to Liquid Nitrogen (LN\textsubscript{2}) temperature, as presented in the letter.

The experiments were performed with a 2.2%-Yb-doped, 5-mm-long fluorite crystal. The experimental setup is displayed in Fig. 2. In order to pump the crystal longitudinally and to allow simultaneously an extremely short wavelength separation between pump and laser, a

Fig. 1a Spectroscopic lines of Yb:CaF\textsubscript{2} at 77 K, (b) Experimental measurements of pump and laser wavelengths for pumping at 981 nm (blue curve) or 986 nm (red curve); and gain cross section of the Yb:CaF\textsubscript{2} at 77 K and for \(\beta=0.1\) (purple curve).
broadband HR mirror of 2-mm-diameter glued on a 25-
mm-diameter AR plate is implemented. This pump-beam-
occulating mirror uses the advantage of the large diameter pump beam (collimated fiber-coupled laser diode with NA = 0.22) compared to the laser beam inside the Yb:CaF$_2$
laser resonator, forming as a so-called modal multiplexer.
The corresponding losses observed on the pump beam do
not exceed 4%. Moreover, the laser is free from any
spectral selection and operates very efficiently at its
maximum spectral gain without additional losses.

Fig. 2: Experimental setup.

According to the emission and absorption spectra of Yb:CaF$_2$
registered at low temperature [5], the laser should have
naturally operated, without extra wavelength selector, at 992 nm for an inversion population (β) higher
than 10%. However, it is not the case, since laser
operation remains fixed at 1034 nm, even for an average
inversion population higher than 40%. This is probably
due to uncertainty on the temperature elevation in the
crystal. In order to favor the short wavelengths emission
with a minimum of losses, we insert in the cavity (Fig. 2) a
wavelength selector consisting of two high-pass dichroic
mirrors highly reflective between 980 and 1000 nm with
losses per bounce <0.1% at 992 nm, <1% at 997 nm and a
high transmission (>95%) around 1030 nm. Consequently,
the impact of this selector is acceptable and allows
efficient laser at low wavelengths. In these conditions,
laser operation occurs around between 992 nm and 997
nm.

Figure 3a displays the output power obtained for
different output couplers. Thereby, we determine the
differential gain of the crystal at varying population
inversion levels, estimated using the following equation:

$$\left(1 - T_{\text{oc}} - L\right) \exp\left(\beta\sigma_{\text{em}} + (1 - \beta\sigma_{\text{abs}})N/\tau\right) = 1$$ Eq. 1

where N is the Yb-dopant concentration, $\sigma_{\text{em}}, \sigma_{\text{abs}}$
are the emission and absorption cross sections at the laser
wavelength (λ_{L}), t is the length of the crystal, T_{oc} is the
output coupler transmission and L the losses (λ_{L}).

At low inversion (β<0.05, e.g. T_{oc}=5%), only 997 nm is
observed, whereas at intermediate levels (0.05<β<0.08)
the gain is flat between 983-997 nm, e.g. for a 10% output
coupler (β=0.065), the laser operates simultaneously at
997.1, 994.2 and 993.0 nm. At higher inversion levels
(β>0.08) the laser operates around 992 nm: for an output
coupler of 15% (β=0.09) or higher the laser wavelength
lies between 982.7 and 982.9 nm.

The best CW laser performance at 992 nm has been
obtained with the 15% OC (β=0.11) with a laser emission
of 33 W for 93 W absorbed pump power (under laser
operation). The laser efficiency is then 35 % (Fig. 3b). The
measured small signal gain is found to be equal to 2.7.

The laser and pump emission wavelengths were
measured simultaneously. Figure 1b reports these pump
and laser wavelengths at the maximum output power. On
the same graph the gain cross section is also plotted for
the value β=0.1 corresponding to the optimal power. The
predominance of the gain at 992.0 nm clearly appears,
corroborating the experimental results. The mean
emission wavelength is 992.7 nm and the mean pump
wavelength is 980.7 nm, which corresponds to a very low
laser quantum defect ($\eta_{QD,\text{laser}}$=1.2%) compared to the
fluorescence quantum defect ($\eta_{QD,\text{fluor}}$=3.1%). These results
clearly indicate the strong potential of Yb:CaF$_2$ used at
cryogenic temperature for high power laser developments
where efficiency and heat load are an issue.

Fig. 3a : Experimental and theoretical emission wavelengths and
laser power obtained for different output couplers. 3b: Corresponding laser power (at optimum) vs absorbed pump power
at 981 nm obtained with a 15 % OC and associated beam
profiles at low and high powers.

It is interesting to note that for broadband amplification
(992-997 nm), the optimal operation should be obtained
at low inversion levels.

Exploiting such small quantum defect configuration
might be challenging and it is worth considering a
number of points. It is important to identify that thermal
loads in ytterbium-doped laser materials come from three
types of non-radiative relaxations: the laser quantum
defect ($\eta_{QD,\text{laser}}$=1.2%) between pump and laser photons,
the fluorescence quantum defect ($\eta_{QD,\text{fluor}}$=3.1%) between
the pump and fluorescence photons and non-radiative
desexcitations from 2F$_{5/2}$ to 2F$_{7/2}$ levels, evaluated in our
case at 0.7 % of the absorbed pump photons [12]. Then, 1.2%×35% (35%=laser efficiency) of these absorbed
pump photons heats the crystal by laser quantum defect
and 3.1%×64% by fluorescence quantum defect.
Consequently, for a total absorbed pump power of 93W,
this leads respectively to 0.65 W, 0.39 W and 1.85 W (total
of 2.9 W).

This clearly indicates that in a small quantum defect
crystal the thermal loads due to the fluorescence quantum
defect cannot be neglected. Therefore, the laser efficiency
directly impacts on the thermal loads. In our experiment,
the efficiency is limited by the losses providing from the
not fully-ideally-coupled cavities of the uncoated facet of
the crystal and/or to residual pollution due to our non-
perfect cryostat vacuum.

The second issue to be considered, especially at high
pump power, is the thermal conductivity of the laser
material. From this point of view, Yb:CaF$_2$ is particularly
interesting since its thermal conductivity at LN$_2$
temperature rises up to 68 W/m/K for an undoped
This means that the thermal loads can be efficiently evacuated and that the thermal lensing effects should be greatly reduced. This is clearly what we noticed in our experiments since no thermal lensing effect was observed even at full pump power (Fig. 3b).

A last point which can be noticed by examining the gain cross section for $\beta=0.1$ reported in the figure 1 is the absorption line at 986 nm in order to decrease further the laser quantum defect. As plotted in the figure 4, the theoretical absorption of our crystal at 986 nm (for a single pump pass) is only 30% at maximum (and without saturation) and becomes null for $\beta=0.21$ (or equivalently for a laser at 992 nm and with $T_e=39\%$). On the other hand, we have to remember that there is also a constraint for β to emit at 992 nm. As a matter of fact, the optimal inversion population was found around 0.09 which corresponds in our case to an output coupler of 15%. The experiment was performed and we obtained a laser output power of 4 W for an absorbed pump power of 35 W (efficiency of 11%). The laser wavelength (Fig. 1b and Fig. 4) was 992.9 nm, leading to a low quantum defect of 0.7%.

In conclusion, we have demonstrated, simultaneously for the first time, a low quantum defect, highly efficient and high-power laser operation of an Yb:CaF$_2$ laser crystal at cryogenic temperature. This represents an important step towards practical lasers based on Yb:CaF$_2$ operating at very high power levels. As a matter of fact, by using the simple figure of merit given by the ratio (thermal conductivity)/(quantum defect), we find record values of 5700 W/m/K for pumping around 981 nm and 9700 W/m/K around 986 nm.[14] Moreover, Yb:CaF$_2$ really appears as a favorable material for such a kind of low quantum-defect laser operation (more than any other material) because of the existence of this sharp emission peak around 992 nm with a substantially high emission cross section. Such a peak does not exist in a system like Yb:CALGO [15], Yb:KGdLu(WO$_4$)$_2$ [17], materials which also gave rise to a very low quantum defect laser operation, but with a much lower laser efficiency. Such a peak exists in the case of Yb:YLF [18]. However, the lowest quantum defect which could be (theoretically) obtained would be around 2% and the one achieved so far, by pumping around 960nm (which is not a common diode wavelength) was around 3.5%. Yb:CaF$_2$ then has this rare property of having clear peaks very close to the zero phonon line, which is very auspicious to efficient ultra-low quantum-defect diode pumped laser. Moreover concerning absorption improvement, this can be done using pump-recycling such as in thin disks.

The authors gratefully acknowledge financial support from the Program “Femtocrbile” of Agence Nationale de la Recherche and the contract ILE 07-CPER 017-01.

Complete references:

