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Abstract: We present an explicit form of the surface plasmon propa-

gator. Its form has the structure of a vectorial Huygens-Fresnel principle.

The propagator appears to be a powerful tool to deal with diffraction,

interference and focusing of surface plasmons. In contrast with the scalar

approximation used so far, the vectorial propagator accounts for near-field

and polarization effects. We illustrate the potential of the propagator by

studying diffraction of surface plasmons by a slit and focusing of surface

plasmons by a Fresnel lens.

OCIS codes: (240.6680) Surface plasmons; (070.7345) Fourier optics and signal processing: 
Wave propagation; (260.3910) Metal optics
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1. Introduction

Recent advances in nanofabrication and the desire to miniaturize photonic circuits have renewed

the interest in plasmonics [1, 2]. The unique dispersive properties of surface plasmons lead to

particularities in propagation, interference and diffraction as compared with light. Despite a

strong analogy between surface plasmons and light, a general framework to deal with surface

plasmon propagation is still missing. We will show that the basic principles of Fourier optics

developed for light propagation in a vacuum can be extended to surface plasmons. This will

provide an adequate framework for dealing with surface-plasmons optical systems.

The dispersion relation for a surface plasmon propagating along a planar metal surface z = 0

bounded by a dielectric can be written in the form [3]:

k2
SP = k2

x + k2
y =

ω2

c2

ε1ε2(ω)

ε1 + ε2(ω)
, (1)

where ε1 is the dielectric constant of the environment, ε2(ω) is the frequency-dependent di-

electric function of the metal, and c is the speed of light. In the long-wavelength regime the

dispersion of surface plasmons slightly deviates from the light line k = ω
√

ε1/c, while in the

short wavelength regime the surface plasmon dispersion is strongly modified and tends to an

asymptotic non-retarded solution. In the case of the Drude model, it is given by ωp/
√

ε +1,

where ωp is the bulk plasma frequency [3]. Thus, one can expect significant deviations between

light and surface-plasmon diffraction in the short wavelength regime.

As for photons, focusing of surface plasmons is the result of constructive and destructive

interference. It is expected that surface plasmons can produce highly localized spots as their

wavelength can be much shorter than the wavelength of light in surrounding media. On the

other hand, these surface plasmons are expected to decay very rapidly in space, preventing

them to produce an image at a large distance. Focusing of surface plasmons with different

types of lenses has been studied by many groups [4, 5, 6, 7, 8, 9, 10, 11, 12]. Furthermore, the

focusing of surface phonon polaritons - surface waves formed by the strong coupling of light

and optical phonons in polar crystals - has been reported in [13]. The lens configuration can

strongly influence the intensity of focal spot as well as the quality of the resolution. Thus, it is
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of interest to analyse the properties of Fresnel lens [11] that is expected to be one of the most

effective surface plasmon focusing device.

Until now, the problem of diffraction and focusing of surface plasmons has been modeled

theoretically either using numerical models [11] or scalar approximations [4, 14, 15]. Although

the scalar approximation reveals the physics behind the phenomena observed in experiments

and provides a qualitative agreement with the measured images [4, 11, 14, 15], it fails to ac-

count for polarization effects. The polarization is important when anaysing images [16, 17, 18].

Indeed, an experimental observation of surface plasmons based on far-field scattering is mostly

related to the longitudinal (in-plane) component whereas an aperture-less near-field microscope

image yields an image related to the transverse component of the electric field [17, 19].

In this paper we derive the exact form of the vectorial propagator of the surface-plasmon field.

This provides a rigorous foundation for surface-plasmon Fourier optics. Using this propagator,

one can analyse the potential and limitations of surface-plasmon imaging. To illustrate the use

of the propagator, we discuss diffraction of a surface-plasmon field by a slit and we compare the

results with the scalar approximation. This comparison shows a further limitation of the scalar

approximation. It proves to be reliable only for distances larger than a wavelength whereas the

exact propagator is valid at any distance. We also discuss imaging using a Fresnel lens. Finally,

we examine the resolution limit, the focal shift, and the effect of losses.

2. Huygens-Fresnel principle for surface plasmons

We consider the propagation of a monochromatic surface plasmon field along a planar surface

z = 0 in the direction of postive x. The time dependence exp(−iωt) is omitted for brevity. Our

starting point is a general representation of the surface plasmon field on a flat interface derived

in [20]:

ESP(x,y) =
∫

dky

2π
ESP(ky)e

i

√

k2
SP−k2

y x+ikyy
. (2)

We have omitted the z-dependence of the field given by exp(i
√

ε1ω2/c2 − k2
SP z) in the upper

medium and by exp(−i

√

ε2ω2/c2 − k2
SP z) in the metal. Indeed, the decay along the z-axis

depends on the frequency but not on ky. This expansion is analogous to the angular plane wave

representation of fields in a vacuum. It is valid for x > 0 in a source free region. We note that

the three components of the electric field in the dielectric can be expressed in terms of the

z-component: (Ex(ky) =
√

k2
SP − k2

y
kz

k2
SP

ESP
z (ky), Ey(ky) = ky

kz

k2
SP

ESP
z (ky), ESP

z (ky)), where kz =
√

ε1ω2/c2 − k2
SP is the z-component of the wavevector in dielectric environment. We observe

that the integral in Eq.(2) is the Fourier transform of the product of two functions of ky. For

example, for the z-component, they are ESP
z (ky) and exp(i

√

k2
SP − k2

yx). It can thus be written as

a convolution product in direct space. Making use of the integral representation of the Hankel

function we obtain the helpful relation

∫

dky e
i

√

k2
SP−k2

y x+ikyy
= −iπ

∂

∂x
H

(1)
0 (kSPρ)

where ρ =
√

x2 + y2. Equation (2) can be cast in the form

ESP(x,y) =
∫

dy′ ESP
z (x = 0,y′)K(x,y− y′), (3)
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where

K(x,y− y′) =

⎡

⎣

Kx

Ky

Kz

⎤

⎦ = −1

2

⎡

⎢

⎢

⎢

⎢

⎣

kz

k2
SP

∂ 2

∂x2 H
(1)
0 (kSPρ)

kz

k2
SP

∂ 2

∂x∂y
H

(1)
0 (kSPρ)

i ∂
∂x

H
(1)
0 (kSPρ)

⎤

⎥

⎥

⎥

⎥

⎦

, (4)

is the vectorial surface plasmon propagator and ρ =
√

x2 +(y− y′)2. Equation (3) can be

viewed as a vectorial Huygens-Fresnel principle for surface plasmons. Indeed, the surface plas-

mon field at (x,y) appears to result from the interferences of surface plasmons emitted by

secondary sources located at (x = 0,y′) with an amplitude ESP
z (x = 0,y′). It should be noted

that Eq. (3) yields the complex amplitude of surface plasmon field from which the phase of the

surface plasmon field can be easily extracted. Thus the Huygens-Fresnel principle derived for

surface plasmons can be considered as a simple and elegant tool for study such effect as Gouy

phase shift [21] avoiding time consuming numerical simulations.

In order to see more clearly the link with Huygens-Fresnel principle, we use the asymptotic

form of the Hankel function, valid for distances larger than the wavelength. We obtain:

ESP
z (x,y) =

= − i√
λSP

∫

dy′ cosθ ESP
z (x = 0,y′)eikSPρ√

ρ
eiπ/4, (5)

where λSP = 2π/kSP is the surface plasmon wavelength and θ = arccos(x/ρ). Here, the prop-

agator is a damped cylindrical wave eikSPρ/
√

ρ instead of the spherical wave eikr/r in the case

of light propagation in a 3D vacuum. We recover in this asymptotic regime a surface plasmon

form that has been conjectured previously [4, 22]. However, let us emphasize two differences

between the scalar approximation and the propagator given by Eq. (3). Firstly, Eq. (3) is valid

for any distance and includes near-field terms. Secondly, Eq. (3) and Eq. (4) shows that the x

and y components of the electric field can be derived from the z-component. More specifically,

the parallel components of the field are given by Ex =
kz

k2
SP

∂Ez

∂x
, Ey =

kz

k2
SP

∂Ez

∂y
. In the next

section we compare Eq. (5) and Eq.(3).

3. Diffraction of surface plasmons by a slit

To illustrate the potential of the exact form of the propagator, we first discuss the diffraction

of a surface plasmon by a slit of width w = 6λsp. We consider that a homogeneous surface

plasmon propagates along the glass/gold interface in the x-direction. We describe the dielectric

function of gold ε2(ω) using experimental data [23]. To calculate the diffraction pattern of the

surface plasmon diffracted by a slit, we use Eq. (3) and the so-called Kirchhoff or physical

optics approximation. This approximation assumes that the field in the aperture (|y| < w/2) is

set equal to the incident field and vanishes outside the aperture (|y| > w/2).

Figure 1 shows the intensity distribution of surface plasmon field normalized by the inten-

sity of the z-component of the incident surface plasmon field. The diffraction pattern closely

resembles the intensity patterns of light diffracted by a slit. Following the intensity versus x

along the line y = 0 in Figs. 1(a) and (c), one observes that the intensity oscillates exhibiting

the wave nature of the surface plasmon. The diffraction patterns for the x and z components

are very similar and their amplitudes are comparable in this example. When changing the fre-

quency, the relative amplitude changes. Moreover, it is seen in Fig. 1(b) that the intensity of the

y component of the surface plasmon field is 100 times less than that of the z-component. This

component is only due to diffraction. It can be increased by reducing the slit width. Finally, a
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Fig. 1. Diffraction pattern of a slit with width w = 6λsp illuminated from the left by a homo-

geneous surface plasmon at normal incidence. λsp = 400 nm. The intensity is normalized

by the intensity of the z-component of the incident surface plasmon field at x=0. Black is

zero intensity. Yellow indicates the maximum intensity and corresponds to 0.25 in (a) 0.01

in (b), and 1.2 in (c).

comparison between Figs. 1(a), (b) and (c) shows that the diffracted surface plasmon field has

different intensity distributions for each component so that it can hardly be treated as a scalar

field [4, 14].

We have compared the asymptotic solution Eq. (5) proposed earlier [4, 22] with the general

Huygens-Fresnel principle Eq. (3) derived in this paper. Figure 2 shows the intensity of the

z-component of the surface-plasmon field normalized to the intensity of the z-component of the

incident surface plasmon field calculated through the center of a slit (y = 0). We have found

that the asymptotic solution Eq. (5) (black curve in Fig. 2) and the general solution Eq. (3)

(red curve in Fig. 2) coincide in the radiation zone (ρ > λSP). For a distance ρ ≈ λSP/10, the

intensity obtained using Eq. (3) is half as much again the intensity obtained when using the

asymptotic form of the Hankel function. This is of practical importance. Indeed, due to the

ohmic damping of surface plasmons, many applications are in the intermediate regime between

the near field and radiation zones.

0.0 0.5 1.0 1.5 2.0

0.4

0.6

0.8

1.0

x/�sp

Fig. 2. The intensity of z-component of surface plasmon field normalized to the intensity of

the z-component of the incident surface plasmon field calculated at y = 0 using the general

Huygens-Fresnel principle Eq. (3) (black curve) and the asymptotic solution Eq. (5) (red

curve). The others parameters are the same as on Fig. 1.

4. Focusing of surface plasmons by a Fresnel lens

As a second example of application of the propagator, we consider the design of a Fres-

nel lens for surface plasmons. The lens consists in a series of apertures centered at y j =
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√

(| j|λSP + f )2 − f 2, j = −n, ...,n, where f is the focal distance as shown in Fig. 3(a). The

width of each slit is chosen in such a way that the optical path difference of surface plasmons

coming from opposite edges of the same slit is equal to λSP/6. This is a tradeoff between a

large width to ensure a large transmission and a small width to ensure a good coherence. In

Figs. 3(b-e) we show the surface plasmon intensity distribution, I = |ESP
x |2 + |ESP

y |2 + |ESP
z |2,

normalized to the intensity of the z-component of the incident surface plasmon field for several

surface plasmon wavelengths. When illuminating by a homogeneous surface plasmon at nor-

mal incidence, the fields diffracted by the slits interfere constructively at the focal point [see

Figs. 3(b-d)]. The number of slits N = 2n+1 is chosen to provide the maximum possible inten-

sity at the focal point. Due to ohmic losses for surface plasmons, a further increase in N does

not change the intensity distribution because the contribution from remote slits is negligible

due to the finite surface plasmon propagation length. As one can see in Fig. 4(a), increasing

the number of slits does not increase the intensity beyond a cut-off number that depends on the

wavelength.

1 3 5

6

4

2

0

-2

-4

-6

3

1 3 5

x/λsp

y
/λ

sp

1 3 5 1 3 5

x/λsp
x/λsp x/λsp

x/λsp

1 3 5

2

0

-2

1 3 5

2

0

-2

x/λsp

(a) (b) (c) (d) (e) (f)

(g)

Fig. 3. (a) Schematically the metal surface and the diffraction of surface plasmons by a Fres-

nel lens. (b-e) The intensity of the diffracted surface plasmon field I = |ESP
x |2 + |ESP

y |2 +

|ESP
z |2 normalized to the intensity of the z-component of the incident surface plasmon

field. The homogeneous surface plasmon propagating along the glass/gold interface with

the wavelength (b) λsp = 400 nm, (c) 375 nm (d) 350 nm (e) 325 nm impinges the lens

from the left. The Fresnel lens has the focal distance f = 3λsp and composed from non-

periodical array of slits. The number of slits is N = 2n + 1, n = 13. The inset in figure (b)

shows a detail of focal spot. (f) the diffraction of surface plasmon λsp = 325 nm by a single

slit of the width w = 2λsp. (g) the same as (e) with no losses. The color scale is different

for each pattern and indicates as black the zero intensity and yellow the maximum intensity

(b) 3.21, (c) 2.22, (d) 1.31, (e) 1.07, (f) 1.11 (g) 5.53.

We now address the issue of resolution using surface plasmons. It has been argued in previous

studies that the resolution is limited when using surface plasmons on lossy metals [5, 24]. In

our simulations, we observe that the size of the image focal spot in Figs.3 (b) and (c) is smaller

than the vacuum wavelength. However, it is limited to roughly half of the surface plasmon

wavelength. This result agrees with the analysis of ref. [20] where it is stated that there is a

maximum wavevector kSP given by the turning point of the surface plasmon dispersion with

backbending. This limit implies that there is also a limit to the maximum intensity that can

be achieved by focusing a surface plasmon. In Fig. 4(a) we show that the field intensity at

the focus of the Fresnel lens saturates when the number of slits increases. This is due to the

the attenuation of surface plasmons emitted by slits several decay lengths away. Figure 4(b)

shows that for a given size of a lens, there is an optimal focal distance, at which the maximum
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Fig. 4. (a) Normalized intensity of surface plasmon field diffracted by a Fresnel lens made

of an array of N = 2n + 1 slits with a focal distance f = 3λsp versus n. (b) Normalized

intensity of the surface plasmon field diffracted by a Fresnel lens made of a nonperiodical

array of N = 2n+1 slits, n = 13, as a function of the focal distance f . The calculation has

been performed for the different surface plasmon wavelengths: λsp = 435 nm (black circles

(a), black curve (b)), 400 nm (red squares (a), red curve (b)) 375 nm (blue triangles (a) and

blue curve (b)). The lines in figure (a) are for eyes guidance.

intensity is achieved. Thus, from Fig. 4 one can deduce that there is a set of parameters at which

the Fresnel lens operates most effectively.

A potential interest of surface plasmon is to produce high resolution in the proximity of the

asymptote of the dispersion relation where small surface plasmon wavelengths can be achieved.

However, as one can see in Fig. 3(e), the short wavelength surface plasmons do not exhibit any

focusing. This is due to the increased dissipation of the surface plasmons. In the short surface

plasmon wavelength regime, the Fresnel lens cannot operate as a focusing device and is nothing

but a nonperiodic array of slits through which the surface plasmon diffracts. The secondary

surface plasmons launched from the slits do not exhibit any interference because the decay

length is smaller than the wavelength. It is interesting to compare the diffraction of a surface

plasmon by a single slit in Fig. 3(f) and by a Fresnel lens in Fig. 3(e). It is seen that the intensity

close to the central aperture is not modified by the other slits. Obviously, one could restore the

focus by omitting the losses in the metal as seen in Fig. 3(g). In summary, the resolution is

limited by half of a surface plasmon wavelength but the smallest wavelengths decay too rapidly

to allow focusing. There is a tradeoff between these effects.

The tradeoff between interference and damping is responsible for a focal shift effect that

we discuss in this paragraph. As can be seen in the inset of Fig. 3(b), the point of maximum

intensity of the surface plasmon field does not coincide with the geometrical focus f . It is

shifted by ≈ λsp/10 towards the lens aperture. A similar effect has been discussed for light

focusing by a number of authors [25, 26]. It can be explained in the framework of Huygens-

Fresnel principle in terms of a competition between two opposite trends. On the one hand, the

intensity should be maximum when the contributions from all the secondary sources on the

aperture interfere constructively. This happens exactly at the geometrical focus by Fresnel lens

construction. On the other hand, each surface plasmon decays as e−Imkspρ/
√

ρ [see Eq. (5)]

so that if the observation point moves towards the lens aperture, the amplitude increases. The

tradeoff between these two effects produces a maximum of intensity which is shifted from

the geometrical focus towards the lens aperture. This focal shift is much more pronounced for

surface plasmons than for free space light since the amplitude of the spherical wave eikr/r,

which is the propagator for the light, has a weaker 1/r decay. We have verified (not shown) that

the shift is larger for the surface plasmons with large damping at shorter wavelengths.
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5. Conclusion

We have obtained an exact form of the propagator for surface plasmons. In contrast with the

scalar approximation used previously, it has the form of a generalized Huygens-Fresnel prin-

ciple for surface plasmons that includes near-field and polarization effects. In this framework,

we have studied surface plasmon propagation, diffraction by a slit, and focusing by a Fresnel

lens. The exact propagator provides a rigorous framework to develop Fourier optics for surface

plasmons.
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