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Molecular dynamics (MD) is a numerical simulation technique based on classical mechanics. It has
been taken for granted that its use is limited to a large temperature regime where classical statistics is
valid. To overcome this limitation, the authors introduce in a universal way a quantum thermal bath that
accounts for quantum statistics while using standard MD. The efficiency of the new technique is
illustrated by reproducing several experimental data at low temperatures in a regime where quantum

statistical effects cannot be neglected.
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Since the first work of Fermi, Pasta, and Ulam in 1955
[1], molecular dynamics (MD) simulation has frequently
been used to investigate and predict the properties of
condensed matter. For a crystal, these calculations are valid
in the classical limit, i.e., for temperatures higher than the
Debye temperature. For example, in the case of a harmonic
interatomic potential, the calculated heat capacity is con-
stant at all temperatures and equals the limit value of
Dulong and Petit (1819) [2]. However, it is well known
that the experimental heat capacity decreases when the
temperature decreases and vanishes at 0 K. In addition,
because of the quantum fluctuations according to the
Heisenberg uncertainty principle, the energy of the system
at 0 K called “‘zero-point energy” is larger than the poten-
tial energy minimum. These properties are a direct conse-
quence of the quantization of the energy of the vibration
modes. These effects cannot be accounted for by using
standard MD because it is based on classical statistics.

Since Planck’s pioneering work, we have known that
there is a profound connection between the quantization of
the energy and its spectral density at thermal equilibrium.
Hence, from this we get the idea of inserting in a classical
treatment, random sources with a power spectral density
that accounts for energy quantization. Rytov [3] has shown
that introducing the power spectral density of current
densities derived from the quantum fluctuation-dissipation
theorem allows us to recover the blackbody radiation field.
Using this approach, Lifshitz [4] has computed a pure
quantum effect: the Casimir force between two metallic
plates. Inspired by these works, we introduce here a gen-
eral and straightforward procedure to simulate a thermal
bath that allows us to include energy quantization effects
into standard MD calculations.

Our approach differs from previous efforts. In the quan-
tum molecular dynamics technique introduced by Car and
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Parrinello in 1985 [5], the interatomic forces are calculated
quantum mechanically but the nuclei dynamics is de-
scribed using standard MD. In order to include statistical
quantum features into MD, several approximations have
been proposed in the literature. The MD temperature can
be rescaled to an effective one [6] in order to recover the
mean quantum vibrational energy. However, this method
does not reproduce the correct energy spectrum. The
Wigner-Kirkwood approximation [7,8], based on an ex-
pansion of the free energy in powers of Planck constant,
can be used to correct the standard MD results but has a
limited range of validity. Cao and Voth introduced the
centroid molecular dynamics method [9] based on the
Feynman path centroid density [10]. This technique has
been widely used to study quantum correlations in liquids
[11]. Very recently an approach based on a generalised
Langevin equation of motion has been proposed by Wang
[12] to derive the conduction heat transfer through a one-
dimensional linear chain of atoms between two heat baths
that accounts for quantum Bose-Einstein statistics. A re-
cent review [13] summarizes the state of the art and the
need for the development of a technique that could include
quantum statistical effects in MD.

In this work, we present a technique that accounts for
quantum statistics by introducing a quantum thermal bath
(QTB). The method is valid at any temperature and for any
interatomic potential as well as for ab initio schemes. The
basic idea of the QTB is to use a Langevin-type approach.
We introduce both a dissipative force and a Gaussian
random force having the power spectral density given by
the quantum fluctuation-dissipation theorem [14]. When
following this approach, a difficulty arises. The power
spectral density depends on the dissipation. For linear
problems, the imaginary part of the response function of
the system is usually well known and the power spectral
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density can be computed easily. When dealing with atomic
vibrations, such information is not so well known and
depends significantly on the temperature. To avoid this
difficulty, we include a dissipative force that only serves
the purpose of thermalizing the system. If we choose the
dissipative force weak enough so that the broadening of the
energy spectrum is negligible, the physical output of the
model will not be affected by the dissipative force. The
equation of motion of the ith atom of mass m; obeys the
Langevin-like equation

MmiFiq = fia T Riq — Mi¥VFiq, ()

where r;, and f;, are the a (1, 2 or 3) components of the
position and the force exerted by all the other atoms. The
QTB is characterized by a Gaussian random force, R;,, and
an effective frictional coefficient, y. The stochastic force
spectrum is not a white noise. Its power spectral density is
related to y by the quantum mechanical fluctuation-
dissipation theorem [14]

IRijB(w) =2m;y6;;6,50(|lw|, T), )

where
0(w, T) = thw + holexp(ho/kgT) — 117!, (3)
0;; and 8,5 are the Kronecker symbol and kjp is the

Boltzmann constant. It is important to emphasize that the
zero-point energy contribution is taken into account
through the term %hw in 6(w, T). The correlation function
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FIG. 1. QTB-MD simulation of a one-dimensional harmonic

oscillator (HD molecule). The vibrational energies computed
with the QTB and standard MD are compared to the expected
energies given by 8(w, T); (w = 6.84 X 10" rads™! [17]). It is
seen that the QTB-MD allows to recover the quantum behavior
at low temperature.

must satisfy the Wiener-Khinchin theorem

+o00 d
RiaORp(t + 1) = [ I g (@) expl-iwr] 52
C))

The random force R,,(¢) is computed using the numerical
technique [15] designed to generate Gaussian random
rough surfaces with prescribed correlation function. Note
that the different random forces are uncorrelated and that
the total random force does not necessarily vanish for a
finite number of atoms. In order to avoid the induced
collective motion of the system, R;, is replaced by R;, —
m; 3 Rjo/ XY m;. Finally, the coupled equations of
motion are solved using standard MD algorithms [16]. The
typical time to reach thermal equilibrium is about some
y~
We first apply the method to a simple system: the HD
diatomic molecule using the harmonic approximation [17].
Figure 1 shows that the QTB allows to recover the mean
energy 6(w, T) of a quantum oscillator, whereas the stan-
dard MD predicts that the energy goes to zero at low
temperature. In the case of this simple system, simulation
results are independent of the effective frictional coeffi-
cient y, provided that y67r << 1 and the number of MD
steps is large enough, where 6t is the integration time step.
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FIG. 2. Influence of the effective frictional coefficient y. We
study the infrared absorption spectrum of a MgO bulk at T =
10 K. Results were obtained by using a box of 64 atoms. The
inset displays the imaginary part of the dielectric constant, &,”,
derived from the Fourier transform of the polarization correla-
tion. The figure shows the FWHM (full width at half maximum)
of the peak.
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We now apply the technique to study a MgO crystal
using the interatomic potential proposed by Matsui [18].
We first examine whether the numerical parameter y in-
fluences the physical results. Figure 2 shows the influence
of y on the simulated linewidth of the infrared absorption
spectrum. It is clear that in this case, using a y value up to
0.3 THz does not affect the results. More generally, y must
be chosen lower than the linewidths of the spectral density.
Figure 3 compares QTB-MD and experimental measure-
ments [19] of the lattice parameter and the heat capacity at
temperatures lower than the Debye one. The main result is
that the QTB-MD allows to recover the experimental data
at low temperatures whereas standard MD fails. It is im-
portant to note that the Wigner-Kirkwood quantum correc-
tion made by Matsui [18] in the case of MgO leads to the
expected behavior of the heat capacity and the lattice
parameter as a function of temperature but only above
500 K. On the contrary, it is clear that the QTB takes
into account the quantum effects at all temperatures.

Finally, we apply the technique to study “He at normal
pressure and in the temperature range 2.17-4.23 K. In these
conditions, pure “He is a nonsuperfluid liquid. The crys-
talline state is observed for pressures higher than =25 bar
[20]. In Fig. 4, we compare the radial distribution function
obtained using QTB and standard MD simulations with a
Lennard-Jones (LJ) potential [21], at normal pressure and
2.5 K. It is seen that the standard MD method leads to a
stable solid state whereas the QTB-MD simulation predicts
a liquid phase in agreement with experiments. The key
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ingredient here is that QTB-MD accounts for the zero-
point energy which is a pure quantum effect. To go be-
yond this qualitative result, we computed the self-diffusion
coefficient from the time-dependent mean-square displace-
ment and the Einstein formula. We found 1.9 = 0.1 X
107* cm?/s at 4 K with a density of about 19.5 atom
nm 3. This value is in good agreement with the experi-
mental one estimated in the same conditions: 1.5 * 0.2 X
107* cm?/s [22]. Using the same LJ potential and a
Feynman-Hibbs approach which includes quantum correc-
tions, a much higher value of 6.3 X 10™* cm?/s was found
[26]. The path integral centroid molecular dynamics based
on another empirical potential leads to a much lower value
(0.506 = 0.004 X 107* cm?/s) [27]. The QTB method
appears to be a simple and reliable technique to study
liquids at low temperatures.

To summarize, a simple technique to generate a quantum
thermal bath has been introduced. The method is easy to
include in any standard MD simulation code and is inde-
pendent of the system under study. It can be implemented
using either phenomenological potentials or a first-
principle description. It has been shown that thermal ex-
pansion and heat capacity of a solid can be successfully
predicted at low temperatures. By accounting for the en-
ergy of quantum fluctuations, the technique allows to
recover the liquid behavior of “He above the A point. All
these examples are beyond the reach of standard MD. We
think that the QTB method will significantly extend the
domain of application of MD. For example, combining the
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FIG. 3. QTB-MD simulation of a MgO crystal. (a) Temperature dependence of the lattice parameter, a. The a, value is obtained by
extrapolating, to 0 K, the linear behavior observed at high temperature. The QTB-MD reproduces the experimental data at low
temperatures. (b) Temperature dependence of the heat capacity per molecule, Cy,. The QTB values (obtained by differentiation of the
mean energy) agree with the experimental data and the results derived using the harmonic density of vibrational states (DOS). The
standard MD simulation gives reliable values only at temperatures higher than the Debye one (940 K) [19].
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FIG. 4. QTB-MD simulation of the nonsuperfiuid liquid “He at
T = 2.5 K. The feature of the radial distribution function, g(r),
allows to determine the phase of the simulated system: solid or
liquid. g(r) is calculated using both the QTB and standard MD.
Results were obtained by using a box of 256 atoms. The QTB-
MD predicts the experimentally observed liquid phase whereas
the standard MD leads to a solid one.

QTB method and the Car-Parrinello approach [5] will
provide a new powerful technique including quantum ef-
fects for both electrons and nuclei.

J.J. Greffet is indebted to J.J. Sdenz with whom the
initial idea of this work was generated.
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