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As shown in a recent letter [Nature 452, 728 (2008)] with a microscopic model, the phenomenon of the extraor-
dinary optical transmission (EOT) is intrinsically due to two distinct surface waves: the surface plasmon po-
lariton and the quasi-cylindrical wave (quasi-CW) that efficiently funnel light into the hole aperture at reso-
nance. Here we present a comprehensive microscopic model of the EOT that takes into account the two surface
waves. The model preserves the desirable physical insight of the previous approach, but since it additionally
takes into account the quasi-CWs, it provides highly accurate predictions over a much broader spectral range,
from visible to microwave radiation. The net outcome is a complete understanding of many aspects of the EOT
and especially of the role of the metal conductivity that has largely puzzled the initial interpretations. We be-
lieve that the main conclusions of the present analysis may be applied to many Wood-type surface resonances
on metallic surfaces. © 2010 Optical Society of America

OCIS codes: 050.1950, 050.6624, 240.6680.
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. INTRODUCTION
oble-metal surfaces patterned with sub-wavelength

sub-�) structures play a central role in the emerging field
f plasmonics and metamaterials [1–3]. Although the rep-
esentation of a multiple-scattering progression of surface
lasmon polariton (SPP) waves, initially launched by
ome indentations and successively scattered by neigh-
oring indentations, is widely accepted and conceptually
ttractive to comprehend the physics of the surface
4–13], it is scarcely used in the earlier stages of the de-
ign. One often prefers to perform fully vectorial calcula-
ions [14–16], which when feasible, provide important in-
ormation like the spatial and temporal field
istributions. However, because the numerical approach
s by essence different from our physical representation, it
s often difficult to recover the initial SPP-progression pic-
ure from the calculated data. Thus, even for basic
etallo-dielectric geometries such as gratings, one usu-

lly ignores how much SPPs are excited on the flat parts
f the nano-structured surface in between the indenta-
ions and how these SPPs participate into the optical re-
ponse [17]. Feedback from the numerical solution to the
ntuitive picture is missing.

The extraordinary optical transmission (EOT) through
sub-� two-dimensional (2D) hole array drilled in a

oble-metal membrane [18] is an emblematic phenom-
non in plasmonics. Since ten years, this phenomenon has
nabled many theoretical and experimental works
1,18–29] to understand the physical origin of the funnel-
ng and squeezing effects at resonance and to exploit
hem for various applications [1,22–28]. By rigorously
olving Maxwell’s equations, fully vectorial brute-force
1084-7529/10/122542-9/$15.00 © 2
alculations [14–16] can reproduce all the salient features
f the EOT with high accuracy. However, they only pro-
ide an indirect physical insight into the phenomenon,
nd consequently they weakly guide our intuition in find-
ng design recipes for further engineering plasmonic de-
ices. Recently, these deficiencies have been partly over-
ome by the introduction of a SPP model [20] that
rovides a microscopic analysis of the EOT. In contrast
ith classical grating approaches that emphasize collec-

ive properties of the fully periodic system [19,30–32], the
odel relies on the individual SPPs that are launched in

etween the holes and that are scattered by the nearby
oles to build up the resonant funneling. In essence, this
odel is similar to the initial model developed by Fano,
hen he revisited Rayleigh’s arguments to explain Wood’s
nomalies [33] of reflection gratings, by suggesting that a
urface mode with a parallel momentum greater than the
ree space momentum be involved in the energy transport
etween adjacent grooves to build up a resonance [34]. Al-
hough the SPP model [20] well explains and predicts
any salient features of the EOT, it provides qualitative

redictions that cannot be used with confidence for an ac-
urate analysis. The reason originates from the fact that
he SPP model, originally introduced to identify the ac-
ual role of SPPs in the EOT, intentionally assumes that
nly SPPs are responsible for the surface electromagnetic
nteraction between the holes of the array, therefore ne-
lecting (like in Fano’s interpretation) the contribution of
eld components other than the SPP. This supplementary
eld component has been identified and analyzed in re-
ent works [21,35–38]; because its field is approximately
nversely proportional to the square root of the distance x
010 Optical Society of America
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rom the line scatterer (at least for x�10� [21,36]), it will
e consistently called a quasi-cylindrical wave (quasi-CW)
ereafter. It has been shown that the SPP and quasi-CW
re equally excited at visible frequencies, and that the
PP is weakly excited and the quasi-CW dominates at

ar-infrared and longer wavelengths [20,21,36].
In this work, we propose what we believe to be a new
icroscopic model (Section 3), which takes into account

oth the SPPs and the quasi-CWs. The new model is
ased on a recently established new formalism [39] (sum-
arized in Section 2 for the sake of completeness), in
hich the two surface waves, the SPP and the quasi-CW,
re simultaneously excited with a fixed relative propor-
ion and thus act as a whole entity that we call a hybrid
ave (HW). The HW model drastically enlarges the spec-

ral range of validity of the microscopic SPP model and
mproves our understanding of the EOT (Section 4). Con-
lusions are summarized in Section 5.

. HYBRID WAVES
n the SPP model [20], the quasi-CWs are neglected and
he SPP scattering events at every individual one-
imensional (1D) hole chain are coherently gathered to
uild up the transmission through the 2D hole array. The
PP model well predicts all the salient features of the
OT, such as the resonance wavelength and the presence
f an antiresonance; however it only approximately pre-
icts the magnitude of the transmission peak in the vis-
ble and near-infrared bands, and is largely inaccurate at
ar-infrared and longer wavelengths, due to the weak ex-
itation of SPPs that are expelled from the metal into the
ielectric region.
Introducing the scattering of quasi-CWs into the SPP
odel is expected to overcome the deficiency of the classi-

al SPP model and to provide a comprehensive overview
f the EOT over a broad spectral range. The difficulty lies
n the more complex essence of the quasi-CW, compared
ith the SPP. The SPP is a normal mode and can be

reated conveniently by the well-established normal-mode
heory (like using the mode scattering coefficients and the
elated reciprocity) [40,41], while the quasi-CW is not a
ormal mode.
This difficulty has been recently overcome, thanks to a

ew HW formalism [39] that allows us to handle the scat-
ering of the quasi-CW in a way formally identical to the
lassical way we handle the SPP scattering. It is not the
im of this section to present the HW formalism in detail
ince this has been done in [39]. We rather intend to sum-
arize its main aspects so that a potential reader may

asily understand how it is used in the next section to de-
ive analytical expressions for the EOT.

The HW formalism, which takes into account multiple
cattering effects such as cross-conversions from SPPs to
uasi-CWs and vice versa [42], derives from the finding
hat for any 2D (invariant along a single y-direction)
ub-� object on a noble-metal surface under any illumina-
ion of transverse-magnetic (TM) polarization (magnetic
ector along the y-direction), the scattered field is always
he same, except for a proportionality factor; it is the HW.
ndeed, this finding only holds for sub-� objects, provided
hat the transverse size of the object is small enough com-
ared to the wavelength. A detailed justification of this
roperty can be found in [39]. The HW is thus defined as
he radiation of a TM-polarized magnetic line source on
he metal surface (at the position of the object). For the
W that is excited by a line source at x=z=0 and that
ropagates in the positive x-direction, its magnetic field

HW
+ �x ,z� on the metal surface �z=0� is [21,36]

HHW
+ �x,0� = HSP

+ �x,0� + HCW
+ �x,0� = exp�ikSPx�

+ �2�
kSP

2

k0
2

��d�m

�m − �d
�−1

�Im + Id�, �1�

f x�0 and is zero if x�0, where

Im = exp�− i�/4�
�d

�m − �d
�

0

+� exp�ik0x��m + it��t

�1 − ��m + it�k0
2/kSP

2 ���m + it
dt,

nd Id can be obtained from Im with �d and �m exchanged,
d and �m being the relative permittivities of the dielectric
nd metallic materials (the �m values for gold are taken
rom the tabulated data in [43] for the following calcula-
ions), and kSP=k0��d�m / ��d+�m��1/2 being the in-plane
PP propagation constant. Im+Id can be calculated by nu-
erical integration and asymptotically admits a

ylindrical-wave behavior of x−1/2 exp�ik0�d
1/2x� in the vi-

inity of the object �x� 	�m	�� [36]. For the HW that propa-
ates in the negative x-direction, its magnetic field is
iven by HHW

− �x ,0�=HHW
+ �−x ,0� due to the symmetry. The

W expression of Eq. (1) originates from the Green-
unction calculation of the radiation of a Dirac line-source
n a metallic interface. The solution encompasses two
ontributions: a SPP field (formally identified as a pole
ontribution), HSP

+ �x ,0�=exp�ikSPx�, and the quasi-CW
eld (formally given by a contour integral in the complex
lane); see details in [21,36]. Equation (1) shows that the
elative proportion of the two contributions is fixed and
nly depends on �d and �m. On this basis, as shown in
39], it is possible to attach scattering coefficients to the
W, although generally scattering coefficients can be de-
ned only for normal modes [40,41]. Actually, these coef-
cients are simple since they can be formally identified to
PP scattering coefficients [39].

. MICROSCOPIC HYBRID-WAVE MODEL
ereafter, we consider a gold membrane in air pierced by
fully periodic 2D hole array (period a) illuminated by a

lane wave of TM polarization (magnetic vector along
-axis) as shown in Fig. 1(d). Under the assumption that
he field transmission through the perforated membrane
s mainly mediated by the fundamental Bloch mode of the
ole array, the zeroth-order transmission coefficient tF�kx�
an be expressed as a classical Fabry–Perot equation
19,32,20],

tF�kx� =
tA
2 �kx�exp�ik0nd�

1 − rA
2 �kx�exp�i2k0nd�

, �2�

here tA�kx�, rA�kx�, and n are, respectively, the transmis-
ion coefficient, the reflection coefficient, and the complex
ffective index of the fundamental Bloch mode [see Fig.
(d)], with k being the x-component of the wave vector of
x
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he incident plane wave, and d is the membrane thick-
ess. Before deriving analytical expressions for tA�kx� and
A�kx� in Subsections 3.B and 3.C, we now consider the el-
mentary scattering coefficients associated with the scat-
ering of HWs by a 1D hole chain.

. HW Scattering Coefficients
he main contribution of the HW model is to derive ana-

ytical expressions for tA�kx� and rA�kx�. For that purpose,
ike in [20], the 2D hole array is treated as a periodic en-
emble of infinite-depth 1D hole chains [Figs. 1(a)–1(c)],
ith a sub-� period a in the y-direction. By virtue of the
nalogy between SPP and HW scattering coefficients [39],
e can define the HW transmission and reflection coeffi-

ients, �−1 and 	 [Fig. 1(a)], and the HW excitation coef-
cients, 
�kx� and �, under illumination of the chain by an

ncident plane wave [Fig. 1(c)] and by the fundamental
hain Bloch mode [Fig. 1(b)]. All these HW scattering co-
fficients can be related to the corresponding SPP ones
39]: thus 	 and � can be seen as the reflection and trans-
ission coefficients of the SPP, and 
�kx� and � are also

he SPP scattering coefficients from an incident plane
ave and from the fundamental chain mode to launched
PPs. Thus, due to the reciprocity theorem [41], 
�kx� and
are also the scattering coefficients from an incident SPP

r HW to a scattered plane wave or to the fundamental
hain mode [Fig. 1(a)]. To build up the HW model, we
eed also to define a reflection coefficient r of the funda-
ental chain mode [Fig. 1(b)] and a transmission coeffi-

ient t�kx� from the incident fundamental chain mode to
he scattered plane wave with a parallel momentum kx
Fig. 1(b)] and reciprocally [Fig. 1(c)].

All these SPP scattering coefficients, 	, �, �, 
�kx�, r,
nd t�kx�, have been calculated in [20] using an aperiodic-
ourier modal method (a-FMM) [44]. The a-FMM is a

ully vectorial frequency-domain modal method, which is
generalization of the well-developed rigorous coupled

ave analysis (RCWA) [16] by including perfectly
atched layers to handle the outgoing wave conditions in

periodic structures.

. Nonperiodic Array of 1D Hole Chains
o derive the master equations of the HW model, let us
tart with a very general case in which a finite set of iden-
ical 1D hole chains are arrayed nonperiodically in the
-direction and are illuminated by a TM-polarized plane

ig. 1. (Color online) Elementary HW scattering events (a)–(c)
ients at a 1D hole chain under illumination (a) by a HW, (b) by
ave. This defines six scattering coefficients, 	, �, �, 
�kx�, r, and

r scattered plane waves. (d) Modal scattering coefficients used
urface in the chain and in free space denote HWs, fundamental
ent and scattered waves are in red and in green, respectively.
ave at oblique incidence (Fig. 2). According to the main
ssumption of the HW formalism (Section 2), a set of el-
mentary HWs are launched by every hole chain of the ar-
ay illuminated by the incident plane wave [Fig. 1(c)], and
hese HWs further excite new HWs by scattering on the
eighboring chains [Fig. 1(a)]. Thus the total near field at
he metal surface �z=0� can be written as a superposition
f 2N HWs that originate from the N chains,

Hy�x,z� = 

n=1

N

�PnHHW
+ �x − xn,z� + QnHHW

− �x − xn,z��, �3�

here we use Pn and Qn to, respectively, denote the un-
nown coefficients of the right-going and the left-going
Ws that originate from the nth chain located at x=xn

n=1,2, . . . ,N�. Referring to the HW scattering coeffi-
ients defined in Fig. 1, a set of coupled-HW equations at
he nth chain can be written as

Pn = Wn
�kx� + �� − 1�

m=0

n−1

PmHHW
+ �xn − xm,0�

+ 	 

m=n+1

N+1

QmHHW
− �xn − xm,0�, �4a�

lding up the EOT phenomenon (d). (a)–(c) HW scattering coeffi-
ndamental mode of the chain, and (c) by a TM-polarized plane

with kx being the x-component of the wave vector of the incident
classical Fabry–Perot equation of the EOT. The arrows on the

modes, and plane waves, respectively. The arrows denoting inci-

ig. 2. (Color online) Coupled-wave coefficients of a nonperiodic
rray of 1D hole chains illuminated by a TM-polarized plane
ave at oblique incidence. The notation of arrows follows that in
ig. 1. Pn, Qn, and cn denote the coefficients of the right-going
W, the left-going HW, and the down-going fundamental chain
ode that originate from the nth chain at x=x �n=1,2, . . . ,N�.
for bui
the fu
t�kx�,
in the
chain
n
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Qn = Wn
�− kx� + 	

m=0

n−1

PmHHW
+ �xn − xm,0� + ��

− 1� 

m=n+1

N+1

QmHHW
− �xn − xm,0�, �4b�

here Wn=exp�ikxxn� is the phase shift of the incident
lane wave at the nth chain, with kx being the
-component of the wave vector of the incident plane
ave, and HHW

± �x ,0� is given by Eq. (1). Equations (4) are
ntuitive. For Eq. (4a), the three terms represent the ex-
itation of right-going HWs at the nth chain by the inci-
ent plane wave [Fig. 1(c)], by all the right-going HWs
hat impinge from the left side of the nth chain �m�n�
Fig. 1(a)], or by all the left-going HWs that impinge from
he right side of the nth chain �m�n�. Equation (4b) rep-
esents the excitation of left-going HWs at the nth chain
nd can be similarly understood. Combined with the
oundary conditions P0=QN+1=0, implying that no HW is
ent from the two outer sides of the chain array, Eqs. (4)
orm a set of 2N linear equations with 2N unknowns, the
n and Qn. This linear system is easily solved for Pn and
n through a matrix inversion for instance. Then the ex-

itation coefficient cn of the down-going fundamental
ode in the nth chain is determined by

cn = Wnt�− kx� + �

m=0

n−1

PmHHW
+ �xn − xm� + � 


m=n+1

N+1

QmHHW
− �xn

− xm�, �5�

sum of three terms that are easily understood.
To implement the model, we first calculate the SPP el-

mentary scattering coefficients 	, �, �, 
�kx�, and t�kx� de-
ned in Fig. 1 for an individual hole chain. Then we solve
qs. (4) and use Eq. (5) to determine wave coefficients Pn,
n, and cn, from which we can reproduce both near- and

ar-field properties. The computational load for imple-
enting the model mainly consists of the fully vectorial

-FMM computation of the SPP elementary scattering co-
fficients, since in comparison, the computation load re-
uired for solving Eqs. (4) through a matrix inversion is
egligible. Note that for fully vectorial numerical ap-
roaches that treat the aperiodic chain array as a whole
I
o
e
m

ntity, they are extremely demanding in computational
ources and become unavailable in fact when the number
f chains exceeds a few tens, while the computation
mount associated with the model always remains at an
ccessible level since only the elementary unit structure
the individual hole chain) needs to be treated with fully
ectorial methods when calculating the SPP scattering co-
fficients.

. Periodic 2D Hole Array
or an infinite periodic array of 1D hole chains (fully pe-
iodic 2D hole array that supports EOT), we have N→�,
n=na, and Wn=wn, with w=exp�ikxa� being the phase
hift of the incident plane wave accumulated in a single
eriod a. In addition, according to the Floquet theorem,
e have

Pn = wPn−1, Qn = wQn−1, cn = wcn−1. �6�

ewriting Eqs. (6) as Pn=wnP0, Qn=wnQ0, cn=wnc0 and
nserting them into Eqs. (4) and (5), we can obtain ana-
ytical expressions for the unknowns (no need to numeri-
ally invert a matrix for fully periodic systems). Now Eqs.
4) and (5) become

P0 = 
�kx� + �� − 1��HHW
+ P0 + 	�HHW

− Q0, �7a�

Q0 = 
�− kx� + 	�HHW
+ P0 + �� − 1��HHW

− Q0, �7b�

c0 = t�− kx� + ��HHW
+ P0 + ��HHW

− Q0, �7c�

here �HHW
± =
n=1

� wnHHW
+ �na ,0� represents two infinite

ummations of the HW fields originating at multiples of
he period with a phase shift w. �HHW

± can be rewritten as
HHW

± =�HSP
± +�HCW

± , with �HSP
± =1/ �w±1u−1−1� repre-

enting the SPP contribution [u=exp�ikSPa� being the
hase shift of the SPP experienced in one period], and
ith �HCW

± =
n=1
� wnHCW

+ �na ,0� representing a quasi-CW
ontribution. The convergence of the infinite summation
HCW

± is ensured by the asymptotic damping for a large x:
HCW

+ �x ,0�	 scales as x−3/2 in the far zone x� 	�m	� [36–38].
he numerical evaluation of �HCW

± can benefit from the
nalytical expression of Eq. (1). Because the exponential
actor in the integrand of Im is almost zero, Im is much
maller than Id and can be neglected. Then performing
he infinite sum over the quasi-CW, Eq. (1) becomes
H�,CW
± ��2�

kSP
2

k0
2

��d�m

�m − �d
�−1

exp�− i�/4�
�m

�d − �m
�

0

+� �t/�exp�ia�±kx − k0��d + it�� − 1

�1 − ��d + it�k0
2/kSP

2 ���d + it
dt,
hich can be easily calculated through numerical integra-
ion. Solving P0 and Q0 analytically from Eqs. (7a) and
7b), we can get

P0 =

�kx���1/�HHW

− + 1� − ��/�HHW
+ + 
�− kx�	/�HHW

+

��1/�HHW
+ + 1� − ����1/�HHW

− + 1� − �� − 	2
,

�8a�
Q0 =

�− kx���1/�HHW

+ + 1� − ��/�HHW
− + 
�kx�	/�HHW

−

��1/�HHW
+ + 1� − ����1/�HHW

− + 1� − �� − 	2
.

�8b�

nserting the expressions of P0 and Q0 into Eq. (7c), we
btain c0, which is nothing else but the transmission co-
fficient tA�kx� from the incident plane wave to the funda-
ental Bloch mode of the periodic 2D hole array, since the
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atter is composed of a coherent superposition of the fun-
amental Bloch modes in all chains. The final result for
A�kx� is
tA�kx� = t�− kx� + �

�kx���1/�HHW

− + 1� − �� − 	�� + 
�− kx���1/�HHW
+ + 1� − �� − 	��

��1/�HHW
+ + 1� − ����1/�HHW

− + 1� − �� − 	2
. �9a�

trictly following the same procedure, we easily derive an analytical expression of the reflection coefficient rA�kx� of the
undamental hole-array Bloch mode. The result is just the right side of Eq. (9a) with 
�kx� and 
�−kx� replaced by � and
ith t�kx� replaced by r,

rA�kx� = r + �2
��1/�HHW

− + 1� − �� − 	�� + ��1/�HHW
+ + 1� − �� − 	��

��1/�HHW
+ + 1� − ����1/�HHW

− + 1� − �� − 	2
. �9b�
h
l
t
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w
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quations (9) retain all the features of the SPP model [20]
nd contain it as a special case without any quasi-CW
�HCW

± =0�. Under normal illumination �kx=0�, Eqs. (9)
ake a simpler form,

tA�kx = 0� = t +
2�


�1/�HHW + 1� − �	 + ��
, �10a�

rA�kx = 0� = r +
2�2

�1/�HHW + 1� − �	 + ��
, �10b�

here t= t�kx=0�, 
=
�kx=0�, and �HHW

n=1

� HHW
+ �na ,0�=�HSP+�HCW, with �HSP=1/ �u−1−1�

nd �HCW=
n=1
� HCW

+ �na ,0�.

. Perfect Conductor Case
t very low (terahertz to microwave) frequencies for
hich metals act as perfect conductors, the implementa-

ion of the HW model deserves special attention, since
ow SPPs cannot be excited efficiently and only quasi-
Ws contribute [20,21,17,45]. As metals approach perfect
onductors ��m→��, we can observe that 	→0, �→1, �

0, 
�kx�→0, and �HHW
± →�. Then we find that the sec-

nd fraction terms in the model equations (9) become an
ndefinite form of type “0/0.” Now the problem arises on
t
r
c

ow to calculate the limit of such indefinite forms. The so-
ution relies on theoretical knowledge of scaling laws for
he scattering coefficients as �m increases. It has been
hown that [36,46]

	 = �m
−1/2	�PC�, � − 1 = �m

−1/2���PC� − 1�,

� = �m
−1/4��PC�, 
�kx� = �m

−1/4
�PC��kx�, �11a�

here the quantities with a superscript “PC” tend to con-
tants as �m→�, and this notation is consistently used in
he following. Since the field scattered by a hole chain for
n incident fundamental chain mode or plane wave ap-
roaches constant as metals approach perfect conductors,
e have

r = r�PC�, t�kx� = t�PC��kx�. �11b�

oreover, since Im→0, Id→const, and kSP→k0 as �m→�
see Eq. (1)], we get

�HCW
± = �m

1/2�HCW
±�PC�, �HSP

± = �HSP
±�PC�. �11c�

quations (11c) confirm the anticipated fact [20,21,36]
hat the contribution of SPPs, relatively to that of quasi-
Ws, vanishes as �m→�. Inserting Eqs. (11) into the
odel equations (9) and letting �m→�, we can obtain for

erfect conductors
tA�kx� = t�PC��− kx� + ��PC�

�PC��kx���1/�HCW

−�PC� + 1� − ���PC� − 	�PC��� + 
�PC��− kx���1/�HCW
+�PC� + 1� − ���PC� − 	�PC���

��1/�HCW
+�PC� + 1� − ��PC����1/�HCW

−�PC� + 1� − ��PC�� − �	�PC��2
, �12a�

rA�kx� = r�PC� + ���PC��2
��1/�HCW

−�PC� + 1� − ���PC� − 	�PC��� + ��1/�HCW
+�PC� + 1� − ���PC� − 	�PC���

��1/�HCW
+�PC� + 1� − ��PC����1/�HCW

−�PC� + 1� − ��PC�� − �	�PC��2
. �12b�
quations (12) represent a pure quasi-CW model of EOT
or perfect conductors, in which the contribution of SPPs
anishes as expected. The form of Eqs. (12) is identical to
hat of Eqs. (9) except that the scattering coefficients cor-
espond to a perfectly conducting case. Under normal in-
idence, Eqs. (12) reduce to
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tA�kx = 0� = t�PC� +
2��PC�
�PC�

�1/�HCW
�PC� + 1� − �	�PC� + ��PC��

,

�13a�

rA�kx = 0� = r�PC� +
2���PC��2

�1/�HCW
�PC� + 1� − �	�PC� + ��PC��

,

�13b�

here t�PC�= t�PC��kx=0�, 
�PC�=
�PC��kx=0�, and �HCW
�PC�

�HCW
±�PC��kx=0�.

Theoretically, the calculation of the normalized scatter-
ng coefficients 	�PC�, ��PC�, ��PC�, 
�PC��kx�, r�PC�, and t�PC�

�kx� can be made very accurate by considering very
arge values of �m. However, in practice, dealing with very
arge �m’s is not an easy task in general [47]. In particu-
ar, since the “SPP” mode spreads far away in the dielec-
ric region at long wavelengths (the mode is no longer
ell confined on the interface), the calculation of their

cattering coefficients is problematical with the a-FMM.
n addition, near the resonance wavelength, tA�kx� and
A�kx� become extremely sensitive to the values of these
cattering coefficients (especially to the values of 	�PC� and
�PC� that appear in the denominator); thus a very high
recision is required for the calculation. Due to these dif-

ig. 3. (Color online) Comparison between the RCWA data and
nfrared band. All the data are obtained for a gold membrane in
0.94 �m, the hole side length is D=0.266 �m, and the membran

he RCWA (left), the SPP model (middle), and the HW model (r
iffraction order propagates parallel to the metal surface. (b),(c
ngles �=0° (red) and 5° (green), obtained with the RCWA (dotte
hows the transmittance in a logarithmic scale and evidences th
culties, we rather prefer fitting the fully vectorial data of
OT spectra obtained for infinite conductivity with the
odel equations to determine the scattering coefficients.
e use the fully vectorial method in [48] to compute the

pectra. As will be shown in Figs. 4(c) and 4(d) below, the
redictions of the model show perfect agreement with the
ully vectorial data.

. PREDICTIONS OF THE MICROSCOPIC
YBRID-WAVE MODEL
. Comparison between Fully Vectorial Data and Model
redictions
o evidence the validity and the high precision of the HW
odel, we have compared the model predictions with fully

ectorial RCWA [16,49] computational data and with the
redictions of the pure-SPP model [20]. Figure 3 shows
he comparison for different incident angles and for the
ear-infrared band. All the data are obtained for a gold
embrane in air perforated by a fully periodic 2D hole ar-

ay. Figure 3(a) shows the zeroth-order transmittance T
	tF�kx�	2 for various incident angles � and wavelengths �

note that kx=2��−1 sin �). Figures 2(b) and 2(c) show the
eroth-order transmittance and reflectance spectra for
wo incident angles: �=0° and 5°. The deviation between
he RCWA data and the HW-model predictions is almost
mperceptible.

odel predictions for different incident angles � and for the near-
rforated by a periodic 2D array of square holes; the period is a
ness is d=0.2 �m. (a) Zeroth-order transmittance obtained with

The dotted-white lines represent the air light lines, at which a
h-order transmittance and reflectance spectra for two incident
SPP model (dashed), and the HW model (solid). The inset in (b)

ence of a deep transmission minimum.
the m
air pe

e thick
ight).
) Zerot
d), the
e exist
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Additional comparisons performed at visible, thermal-
nfrared, and low frequencies for which metals act as per-
ect conductors are shown in Fig. 4. Again the HW model
xhibits perfect agreement with the fully vectorial data at
ll frequencies that are below the gold plasma frequency
n the blue; in comparison the SPP model becomes less
nd less precise at long wavelengths. This can be ex-
lained by the fact that the excitation of SPPs becomes
eaker at longer wavelengths and even vanishes for per-

ect conductors, while the excitation of quasi-CWs re-
ains almost constant at all these frequencies [21,36].

. Phase-Matching Condition
ompared with the pure-SPP model [20], the new model

hat incorporates both SPPs and quasi-CWs provides a
icher and more quantitative insight into the EOT. For
mall holes that support only evanescent modes, the en-
anced transmission is attributed to the very large values
f tA and rA [19,32,20], which originate from the zero of
he denominator in the model equations (9) or (10). It has
een shown that for small holes that scatter little energy,
�0, ��1, and arg��+	��arg��� is a very small positive

ig. 4. (Color online) Comparison between the fully vectorial dat
re obtained for a gold membrane in air perforated by a periodi
embrane thickness is d /a=0.21, with a being the grating period
al incidence, which are obtained with the RCWA (dotted), the

isible (red, a=0.68 �m), the near-infrared (green, a=0.94 �m),
uctor results under normal and oblique incidence ��=5°�, which
pectra for very low frequencies. The fully vectorial data are sho
he inset in (c) shows T in a logarithmic scale.
umber [20]. So the denominator in Eqs. (10) under nor-
al incidence can be made very close to zero, provided

hat �HHW has a large modulus and satisfies a phase-
atching condition,

arg�1/�HHW + 1� = arg�� + 	� � arg���mod 2�. �14�

quation (14) contains the phase-matching condition
iven by the SPP model as a special case consisting of ne-
lecting the quasi-CWs ��HCW=0�. Since the in-plane
ropagation constants of the quasi-CW and of the SPP are
oth quite close to the free-space propagation constant
0=2� /� [36], very large value of 	�HHW	 is anticipated
or ��a, for which the HW fields scattered by all indi-
idual chains add up constructively. This analysis is con-
rmed in Fig. 5. The peak wavelength of the transmit-
ance 	tA	2 is exactly predicted by the phase-matching
ondition (14), while the peak wavelength predicted by
he SPP model is blueshifted. The enhanced agreement
an be explained by the slightly lower phase and modulus
f 1/�HHW+1 compared with 1/�HSP+1=exp�−ikSPa�,
ear the resonance wavelength. Note that if the SPP

he model predictions for various wavelength ranges. All the data
rray of square holes; the hole side length is D /a=0.28, and the
) Zeroth-order transmittance and reflectance spectra under nor-
odel (dashed), and the HW model (solid) and are shown in the
e thermal-infrared (blue, a=2.92 �m) bands. (c),(d) Perfect con-
the zeroth-order transmittance T (red) and reflectance R (green)
th dotted curves and the HW-model predictions with dot marks.
a and t
c 2D a
. (a),(b
SPP m
and th
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ode matches the incident light through the reciprocal
rating momentum, i.e., if � /a=Re�kSP� /k0�1.01 at nor-
al incidence, the transmittance exhibits a deep dip that

s predicted by both models [inset in Fig. 5(b)]; there
/�HHW+1�1/�HSP+1 as shown in Fig. 5(a). The model

s also valid for oblique incidence [see Eqs. (9)]. The reso-
ance occurs for �±kx−k0�a�0 mod 2� [corresponding to
he two white-dotted light lines in Fig. 3(a)] and is exactly
ocated by the phase-matching conditions of
rg�1/�HHW

± +1��arg���mod 2� [corresponding to the
wo transmission branches in Fig. 3(a)].

Although out of the main stream of the present paper,
t is worth mentioning that the HW model is again quan-
itative for arrays of large holes, annular holes [50] or
lits [28], which support a single propagative aperture
ode. This is because the Fabry–Perot equation (2) re-
ains valid when the aperture supports a single propaga-

ive mode [28,50]. However, in such cases, the physics of
he enhanced transmission is quite different, since now
he crucial scattering process shown in Fig. 1(a) is no
onger energy conservative: except for very narrow aper-
ures, 	�	 is considerably smaller than 1 because a non-
egligible fraction of the incident SPP energy is carried
way by the propagative aperture mode.

. CONCLUSION
e have presented a comprehensive model of the extraor-

inary optical transmission (EOT) through periodic sub-�

ig. 5. (Color online) Phase-matching condition under normal
ncidence. (a) The phase (upper) and the modulus (lower) of �
	 (dotted-red lines), 1/�HSP+1=exp�−ikSPa� (dashed-green

ines), and 1/�HHW+1 (solid-blue lines). (b) Transmittance 	tA	2
btained with the RCWA (dotted-red lines), the pure SPP model
dashed-green lines), and the HW model (solid-blue lines). The
nset shows 	tA	2 in a logarithmic scale. The phase-matching con-
ition, which corresponds to the two intersections in (a) for pre-
icting the peak wavelength of 	tA	2, is labeled by the left and
ight dashed-dotted vertical lines for the SPP model and for the
W model, respectively.
etallic hole arrays. The model relies on a new formalism
39], which assumes that the field scattered by sub-� ob-
ects on metallic surfaces is always composed (for a given
requency) of a fixed proportion of a surface plasmon po-
ariton (SPP) and of a quasi-cylindrical wave (quasi-CW)
Eq. (1)]. The total field is called a hybrid wave (HW).
hanks to a formal analogy with the classical scattering
oefficients of SPPs, we have defined scattering coeffi-
ients [Figs. 1(a)–1(c)] for this wave, which is not a nor-
al mode. By writing down coupled-wave equations for

he set of HWs generated at every aperture, we have ob-
ained analytical expressions [Eqs. (9)–(13)] for the EOT
Fig. 1(d)]. Compared with the pure-SPP model proposed
n [20], the HW model provides much more accurate pre-
ictions over a much broader spectral range, from the vis-
ble to the far-infrared and microwave regions of the spec-
rum (Figs. 3 and 4). This arises from the fact that the
resent model additionally takes into account the quasi-
Ws that dominate SPPs at far-infrared and longer wave-

engths [21,36]. The model clarifies the exact roles of the
PP and of the quasi-CW in forming the EOT phenom-
non [Fig. 5 and Eq. (14)] and clarifies the impact of the
requency-dependent metal conductivity in the EOT
18,51,52], an issue that has largely puzzled initial inter-
retations [53,54,30]. We believe that the model is valid
n general for explaining many Wood-type anomalies
33,34] on metallic surfaces, and that it can facilitate the
esign of various surface-resonance-based devices
1,22–28,51,52] operating from visible to microwave fre-
uencies.
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