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Cedex, France

3 Institute of Condensed Matter Theory and Solid State Optics, Friedrich-Schiller-Universität
Jena, Max Wien Platz 1, 07743, Jena, Germany

∗joerg.petschulat@uni-jena.de

Abstract: We introduce a technique to decompose the scattered near field
of two-dimensional arbitrary metaatoms into its multipole contributions.
To this end we expand the scattered field upon plane wave illumination
into cylindrical harmonics as known from Mie’s theory. By relating these
cylindrical harmonics to the field radiated by Cartesian multipoles, the
contribution of the lowest order electric and magnetic multipoles can be
identified. Revealing these multipoles is essential for the design of metama-
terials because they largely determine the character of light propagation. In
particular, having this information at hand it is straightforward to distinguish
between effects that result either from the arrangement of the metaatoms or
from their particular design.
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1. Introduction

Metamaterials may be understood as a kind of artificial matter that allows to control the mould
of light predominantly by the geometry of their building blocks rather by their intrinsic mate-
rial properties. Fascination arose since these building blocks, commonly called the metaatoms,
can be designed to allow for propagation effects inaccessible in natural materials. To simply
describe the optical action of metamaterials, effective properties are in most cases assigned that
are retrieved from the optical response of an ensemble of metaatoms instead from these indi-
vidual atoms themselves. For this purpose, single layer [1–3] or bulk metamaterials [4, 5] are
usually treated as black boxes to which effective properties are assigned with the only purpose
to reproduce scattering data like reflection and transmission coefficients. These data do not
provide sufficient insights into the physics of metamaterials since their rational design usually
aims at evoking a certain multipolar scattering response [6–8]. Although metamaterials cover a
wide range of structures at present, media with a magnetic response [9, 10] at optical frequen-
cies are particularly appealing since they do not exist in nature. The pertinent metaatoms shall
then possess a strong magnetic dipole moment. To achieve this, the metaatoms are typically
ring-shaped [11], resulting in a ring-like current distribution at resonance. Hence, the optical
response contains a strong magnetic dipole field contribution leading to an appreciable disper-
sion in the effective permeability. Such understanding of metamaterials is very versatile as it
provides the possibility to optimize metaatoms for different spectral domains [12].

The advantage of understanding the optical response in terms of multipole scattering is fur-
thermore proven by various theoretical works [6–8, 13–15]. It was shown that the optical re-
sponse of single metamaterial layers as well as of bulk metamaterials can be described by
assuming induced multipole moment densities up to the second order. From the multipolar
contributions of the field scattered by the metaatoms it is even possible to directly assign effec-
tive material parameters. Even the effects of disorder can be studied and understood in terms
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of a multipole analysis as shown theoretically and experimentally [16]. Hence, a detailed quan-
titative theoretical study of the optical response of the single metaatom is appropriate and in
most cases sufficient to deduce the optical response of an ensemble of these entities. Although
important, such a contribution is currently missing. Whereas first attempts are reported in liter-
ature [14] the analysis was usually restricted to the far-field scattering response. Then, either by
optimizing the magnitude of the different multipolar contributions to match a certain angular
scattering response or by probing for the scattering strength in certain directions where some
multipole moments do not radiate, the multipolar response can be revealed. Nevertheless, it
remains an open question how unique the assignments based on the far fields are.

In this contribution we develop a rigorous method to analyze the scattered near-field of in-
dividual metaatoms that permits disclosing their multipolar scattering contributions. The key
ingredient is an expansion of the scattered field of the metaatoms upon plane wave illumina-
tion into cylindrical harmonics, i.e., we are restricting the current analysis to two-dimensional
metaatoms. By relating these cylindrical harmonics to the field of Cartesian multipoles, it is
possible to calculate their spectrally resolved amplitudes. With this method at hand we will
subsequently investigate the multipole contributions to the scattered field of two prominent and
frequently studied metaatoms providing artificial magnetism; namely the split-ring resonator
(SRR) and the cut-wire pair (CW). It is shown that the scattering response contains contribu-
tions of electric and magnetic dipoles, but also of an electric quadrupole. It resonates simul-
taneously with the magnetic dipole and its contribution is much stronger for the CW when
compared to the SRR.

Although we are focussing here only on the analysis of two specific metaatoms, the present
technique is general and can be applied to various other metaatoms as well. Perspectively it will
permit to design metaatoms with specific predefined multipolar contributions to the scattered
field and represent a tool to distinguish between properties emerging from the periodic arrange-
ment of metaatoms or from the specific metaatom scattering response. This will be of particular
importance for the prediction of effective properties of self-organized, bottom-up metamaterials
which might not allow for a perfectly periodic metaatom arrangement.

2. Multipole expansion of the two-dimensional scattered field

In order to reveal the multipolar character of the field scattered by an arbitrary shaped metaatom,
we will develop a method to expand its scattered field into multipole fields. Since we focus here
on two-dimensional structures, cylindrical harmonics are an appropriate system of eigenfunc-
tions. As soon as we have the corresponding expansion at hand, we will show the equivalence
between these eigenfunctions and the Cartesian multipole fields for cylindrical sources. Hence,
this expansion will allow for a direct calculation of the desired multipole coefficients.
We will start by briefly deriving the mathematical background to decompose the scattered field
of a single metaatom into multipole fields. As known from Mie’s theory [17] the translational
invariance in z-direction allows to separate the general vectorial scattering problem into the
two scalar cases of TE- and TM-polarization. For light propagating in a linear, homogenous,
isotropic, local medium the tangential fields satisfy the scalar wave equation [18]

∇2
x,yFz(x,y)+ k(ω)2Fz(x,y) = 0 (1)

with k(ω)2 = ω2/c2. In Eq. (1) Fz(x,y) denotes the tangential component of either the mag-
netic field for TM polarization (magnetic component out-of-plane) or the electric field for TE
polarization (electric field component out-of-plane).

Casting Eq. (1) into polar coordinates with x = Rcos(φ), y = Rsin(φ), R =
√

x2 + y2 we
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Fig. 1. (Color online) The modulus of the magnetic field distribution (TM polarization)
described by the eigenfunctions according to Eq. (5) for the first three expansion orders.
We have plotted the eigenfunctions accounting for the cos(mφ) angular distributions only.
The results for the sin(mφ) terms would result in a rotation by an angle of π/2m. By
comparison with the field distributions of point multipoles, which are shown in the gray-
scaled insets, it can already be anticipated that the eigenfunctions ψ can be identified with
multipole fields. Here m = 0 (a) corresponds to a magnetic dipole, m = 1 (b) is related to
the electric dipole, while the electric quadrupole is associated with m = 2 (c).

obtain [Fz = Fz(R,φ)]

1
R

∂
∂R

(
R

∂
∂R

Fz

)
+

1
R2

(
R

∂ 2

∂φ 2 Fz

)
+ k2Fz = 0. (2)

The general solutions to this equation are radially dependent Bessel functions with an az-
imuthally varying phase

Fz =
∞

∑
m=−∞

Zm(kR)eimφ . (3)

Equation (3) corresponds to the linearly independent solutions of Eq. (2) which consist of com-
binations of Bessel functions of the first [Jm(kR)] and the second kind [Ym(kR)] denoted as
Zm multiplied by an angular function. Finally the scattered field from any cylindrical object
centered at the origin and subject to the Sommerfeld radiation condition at infinity reads as

Fz,s =
∞

∑
m=−∞

amimH(1)
m (kR)eimφ , (4)

where H(1)
m (kR) = Jm(kR)+ iYm(kR) are Hankel functions of the first kind and am are the ex-

pansion coefficients, termed Mie scattering coefficients of the respective expansion order m.
Note that any field outside a virtual cylinder that entirely contains the scattering object can be
expressed by Eq. (4) since these eigensolutions form an orthogonal and complete set of eigen-
functions. By expanding the field scattered by an arbitrary particle in this base we can determine
the contribution of the respective expansion order m to the total scattered field.

The individual scattering order m always consists of two parts, namely the contributions from
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m and −m in Eq. (4). Hence the scattered field (Fz,s) summarizing these orders can be rewritten

Fz,s =
∞

∑
m=0

[
a+

mψ+
m (R,φ ,k)+a−mψ−

m (R,φ ,k)
]
,

ψ+
m (R,φ ,k) = imH(1)

m (kR)cos(mφ),

ψ−
m (R,φ ,k) = im+1H(1)

m (kR)sin(mφ),
a±m = (am ±a−m), (5)

where we used [H(1)
m = H(1)

−m]. Now Eq. (5) can be considered as an usual series expansion
with respect to eigenfunctions of increasing order. These eigenfunctions ψ±

m (R,φ ,k) are simply
products of a radially and an azimuthally varying function. Regarding the azimuthal terms it
can be seen from Eq. (5) that they split into two contributions that are π/2m phase-shifted
indicated by the superscripts ±, respectively. This is related to the fact that each expansion order
is composed of two physically identical but azimuthally rotated contributions of order m. For
realistic metaatoms the fundamental azimuthal part can be selected regarding the symmetries
of the nanostructure; in general both linear independent contributions have to be considered for
the respective order m.

In order to decompose the scattered field of an arbitrary metaatom into the derived set of
eigenfunctions [Eqs.(5)] the Mie coefficients am are required. As usual they are obtained by
evaluating the overlap integral between the eigenfunction ψ±

m (R,φ ,k) and the respective field
component Fz(R,φ) of the individual scattering object

a±m =

∫ 2π
0 dφ

∫ R2
R1

dRRFz(R,φ)ψ±†
m (R,φ ,k)

∫ 2π
0 dφ

∫ R2
R1

dRR|ψ±
m (R,φ ,k)|2 . (6)

With Eq. (6) it is possible to rigorously determine a±m based on the field overlap calculated on an
annulus with the two radii R2 and R1. Here the orthogonality of the eigenfunctions ψ±

m (R,φ ,k)
was exploited, i.e. replacing Fz(R,φ) by any eigenfunction of the order l such that Fz(R,φ) =
ψl(R,φ ,k) yields

∫ 2π
0 dφ

∫ R2
R1

dRRψ±
l (R,φ ,k)ψ±†

m (R,φ ,k)
∫ 2π

0 dφ
∫ R2

R1
dRR|ψm(R,φ ,k)|2

=

∫ R2
R1

dRRH(1)
l (R,k)H(1)

m (R,k)
∫ 2π

0 dφ
∫ R2

R1
dRR|ψm(R,φ ,k)|2

∫ 2π

0
dφ [sin(lφ)sin(mφ)+ cos(lφ)cos(mφ)] ,

=

∫ R2
R1

dRRH(1)
l (R,k)H(1)

m (R,k)
∫ R2

R1
dRR|H(1)

m (kR)|2
δml = δml . (7)

By exploiting the orthogonality of the azimuthally varying part of ψ±
m (R,φ ,k), it suffices to

evaluate the overlap integral for a fixed value of R rather than an annulus to obtain a±m [18].
However, it turned out that for numerically (or potentially experimentally) determined scattered
fields of realistic metaatoms, the annulus integration is more stable and it was hence retained.
This is not a numerical inaccuracy but it is rather attributed to the discrete mesh where the
numerical data is available. This mesh is not aligned with a cylinder surrounding the object and
an appropriate interpolation is required. Although a sufficiently fine grid improves the stability
this issue can be circumvented if the annulus integration is performed.
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Fig. 2. (Color online) The illumination conditions, the orientation, and the definition of
the geometrical parameters of the CW (a) and the SRR metaatom (b). The calculated Mie
coefficients, related to the magnetic dipole (MD), the electric dipole (ED) and the electric
quadrupole (EQ) for the CW (c) and the SRR (d) metaatom. Finally, the scattered magnetic
fields for the magnetic (e) and the electric resonance (f) of the CW and the SRR (g,h)
are shown, respectively. The gray-scaled insets show the exact multipole magnetic field
distributions as in Fig. 1 to underline the similarities to the exact scattering field patterns.

Although, it suffices to know the amplitudes a±m to fully describe the scattering response, they
do not provide the physical insight as provided by Cartesian multipole moments. Therefore,
they need to be unambiguously related. Since we have restricted ourselves to a two-dimensional
configuration, we have to relate the scattered field of a line source exhibiting any of the relevant
electric or magnetic multipole moments to the respective cylindrical eigenfunctions. Starting
with the well-known expressions for electrodynamic point multipoles in Cartesian coordinates
[18, 19] we derive below how they are related to ψm(R,φ ,k). This is performed for the three
lowest orders by integrating the point multipoles in Cartesian coordinates along the z-direction
to disclose the radiation pattern of a line source exhibiting such point multipoles.

The vector potential of monochromatic electromagnetic fields originating from localized os-
cillating currents for the two lowest orders of a multipole expansion reads as

A(r) =
μ0

4π
eikr

r

∫
d3r′j(r′)+

μ0

4π
eikr

r

(
1
r
− ik

)∫
d3r′j(r′)(n · r′). (8)

The first term in Eq. (8) accounts for the electric dipole moment where r is the length of the
three dimensional radius vector (r =

√
x2 + y2 + z2) and n = r/r is the normal vector. The

second term consists of the electric quadrupole and the magnetic dipole contributions, both
representing second-order moments in the multipole expansion. After some algebra the electric
dipole term can be written as [18]

Aed(r) = −iω
μ0

4π
eikr

r
p(r), (9)

with p(r) =
∫

d3r′r′ρ(r′) being the electric dipole moment. For electric dipole moments local-
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ized in the (x,y) plane the z component of the magnetic field can be calculated as

B(r) = ∇×A(r),

Bed,z(r) = −iω
μ0

4π
eikr

r

[
py

(
iky− y

r2

)
− px

(
ikx− x

r2

)]
. (10)

Since we are interested in the two-dimensional representation of the fields we integrate Eq. (10)
along the z axis (see appendix for details)

B2D
ed,z(x,y) = ω

μ0k
4

[cos(φ)px − sin(φ)py]H
(1)
1 (kR),

= H(1)
1 (kR)

[
a+

1 cos(φ)−a−1 sin(φ)
]
,

a±1 ≡ ωμ0

4
px,y. (11)

As can be easily verified, this electric dipole field coincides with the field in Eq. (5) for m = 1.
Hence, the eigenfunction of the order m = 1 represents the electric dipole contribution. Like-
wise one can show that the magnetic dipole and the electric quadrupole contribution correspond
to m = 0 and m = 2, respectively. A detailed derivation for the multipoles can be found in the ap-
pendix. Based on these results we can conclude that simply by calculating the Mie coefficients
a±m we have the multipole coefficients of the scattered field at hand.

In Fig. 1 the magnetic field patterns for m = 0,1,2 are shown. Obviously they correspond
to the known field distributions for the magnetic dipole (m = 0), the electric dipole (m = 1)
and the electric quadrupole (m = 2) as is clear by comparison with the field patterns of point
multipoles (see insets in Fig. 1).

Having finished the analytical treatment, we are going to apply the results to exemplarily
reveal the multipole scattering contributions for two prominent metaatoms in the following.

3. Multipole scattering of Metaatoms

For the application of the technique developed above, we selected the CW and the SRR ge-
ometry. We emphasize that this is not a necessary restriction because arbitrary structures can
be investigated too with the developed formalism. We selected these two structures since sev-
eral modified, more complex metamaterials are composed out of these basic plasmonic enti-
ties [4, 5, 12, 20]. The investigated metaatoms for both scenarios are shown in Fig. 2(a,b). The
CW structure has a wire distance of h = 60 nm, a wire thickness of t = 20 nm and a width
of b = 100 nm. To evaluate the overlap integral the annulus radii were set to R1 = 70 nm and
R2 = 80 nm. In order to observe the localized eigenmodes at similar spectral positions we used
the same dimensions for the SRR with an additional connection (d = 20 nm) of both wires [Fig.
2(b)]. As a material for both metaatoms we selected gold [21] embedded in vacuum. The struc-
tures were illuminated according to the conditions as shown in Fig. 2(a,b) with monochromatic
plane waves.

In order to calculate the electromagnetic near fields we applied the finite element method
[22]. By calculating the scattering patterns for both structures and performing the field overlap
calculations according to Eq. (8) for the first three orders one obtains the Mie coefficients as
shown in Fig. 2(c,d). For both metaatoms the observed low energy resonance peaks occur for
both second order multipole contributions (electric quadrupole and magnetic dipole) at the
same frequency (wavenumber), while the high frequency resonances are associated with the
electric dipole modes. Thus, the usual argument that the electric dipole contribution of the two
currents, oscillating π out-of-phase in the wires perpendicular to the propagation direction,
annihilate and hence the next higher order multipole moments prevail, is confirmed by these
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results. Furthermore, the quantitative contribution of each multipole moment is clearly revealed.
For the CW structure [Fig. 2(c)] the electric quadrupole contribution is much stronger than that
for the SRR. This is due to the different symmetry of both metaatoms. The shortcut of both
wires essentially prevents the excitation of a quadrupole moment. Hence, the SRR’s optical
response is mainly governed by the electric and the magnetic dipole moment.

This argumentation is supported by considering the near fields at resonance. Comparing the
pure multipole fields (Fig. 1) with the scattered fields of the two metaatoms [Fig. 2(e-h)] it
becomes obvious that the magnetic field of the high frequency resonance (electric resonance)
is very similar to that of an electric dipole. The scattered magnetic fields for the low frequency
resonance (magnetic resonance) for the CW structure shows a combination of centro-symmetric
magnetic dipole fields between the wires and the electric quadrupole fields around. This is
indicated by the fourfold patterns in the iso-surface lines in Fig. 2(e) outside the CW geometry.
Differing from these patterns the SRR exhibits near field features that manly attributed to the
magnetic dipole radiation pattern [Fig. 2(g)]. In addition a weak background contribution of an
electric dipole tilted by 45◦ can be observed in Fig. 2(g), caused by the superposition of weak
SRR electric dipole moments in x and y directions [e.g. see Fig. 2(d)].

Note that with the knowledge of the scattering response of the isolated metaatoms other
physical observables become easily accessible. Most notably various other important metama-
terial properties, i.e. the effective cross sections [23] or the isolated polarizabilities [24] that
can be obtained by this Mie theory based formalism straightforwardly, can be analytically cal-
culated [25].

Finally, the dependence of the multipole coefficients on the choice of the origin is investi-
gated. From electrostatics it is known that the first non-vanishing multipole moment does not
depend on the choice of the origin. For optical fields this is not valid anymore. However, for the
scattering response of very small nanoparticles where the quasi-static approximation is valid,
this dependency is expected to be negligible for reasonably chosen origins. Exemplarily the
multipole expansion is performed for the scattered field of a SRR with smaller dimensions
(h = 70 nm, b = 70 nm, t = 25 nm, d = 20 nm) to prove the quasi-statically expected behavior
for three different origins. The corresponding results are shown in Fig. 3. Clearly the electric
dipole moments are almost constant for different origins, whereas the magnetic dipole as well
as the electric quadrupole moments may appreciably deviate, in particular for the second res-
onance. Of course, the multipole moments will strongly deviate from the results shown here
if the origin is placed far outside the metaatoms, but then any multipole expansion becomes
meaningless, too. Physically, the origin should be chosen such that all higher order multipoles
beyond the second order are strongly suppressed.

Nevertheless from these results we can conclude that for reasonably chosen origins, i.e.
placed close to the center of mass as suggested [14] the multipolar character of the scattered
field can be revealed consistently. For calculating effective material parameters on the other
hand this origin dependence has to be kept in mind [19].

4. Summary

In summary, we presented a novel technique based on Mie theory to retrieve the contributions
of various multipole excitations to the near-field scattering pattern of metaatoms. For the sake
simplicity we restricted ourselves to two-dimensional metaatoms. Since Mie theory has been
originally developed for three-dimensional objects (spheres) the approach can be also extended
towards three-dimensional metaatoms. With the presented formalism we revealed the quantita-
tive contributions of multipole moments to the plasmonic eigenmodes of the cut-wire and the
split-ring resonator structures. As previously phenomenologically interpreted, due to the simi-
larities of the multipole moments and the electron dynamics, we could rigorously confirm the
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Fig. 3. (Color online) (a) The SRR geometry together with the three positions represent-
ing the selected origins for the multipole expansion. ”A” is associated with the center of
symmetry of the corresponding CW structure, while ”B” and ”C” represent additional po-
sitions out of the metaatoms center. The calculated Mie coefficients for the magnetic dipole
(MD)(b),the electric dipole (ED) (c) and the electric quadrupole (EQ) (d). For completeness
both electric dipole moments along the x (a+

1 ) and the y axis (a−1 ) are shown.

excitation of up to second order multipoles as the dominant scattering contributions. We antic-
ipate that such a multipole expansion of the scattered field is a genuine approach to optimize
isolated metaatoms with regard to a predefined scattering response, e.g. optical magnetism in
terms of magnetic dipole contributions. It will be very helpful to identify the effect of period-
icity or its absence, in case of metamaterials fabricated with self-organization techniques, with
respect to the effective MM properties. Beyond possible applications in the field of metamate-
rials, the presented approach may also provide guidelines in the design of optical nanoantennas
to achieve a desired radiation characteristics to be matched to an, in principle, arbitrary source.

A. Appendix: The connection between 3D and 2D radiated multipole fields

A.1. Electric dipole

We start our considerations with the vector potential for the first two expansion orders Eq. (8)

A(r) =
μ0

4π
eikr

r

∫
d3r′j(r′)+

μ0

4π
eikr

r

(
1
r
− ik

)∫
d3r′j(r′)(n · r′). (12)

At first we consider the first order term on the right hand side of Eq. (12) which represents
the electric dipole contribution. Applying the continuity equation and requiring that the current
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density vanishes at infinity, we arrive at the well-known vector potential of an electric dipole

Aed(r) = −iω
μ0

4π
eikr

r
p(r). (13)

According to Maxwell’s equations we obtain the z-component of the magnetic field by applying
the curl operator to the potential [Eq. (13)]

Bed,z(r) =
∂
∂x

Ay(r)− ∂
∂y

Ax(r),

= −iω
μ0

4π

(
py

∂
∂x

− px
∂
∂y

)
eikr

r
. (14)

In order to obtain the associated two-dimensional fields we integrate the three-dimensional
fields along the z axis. This is equivalent to the transition from point multipoles to line multi-
poles, similar to the transition from the three-dimensional to the two-dimensions Green’s func-
tion. [26]

B2D
ed,z(x,y) =

∫ ∞

−∞
dzBed,z,

= −iω
μ0

4π

(
py

∂
∂x

− px
∂
∂y

)∫ ∞

−∞
dz

eikr

r
. (15)

The integral can be carried out with the help of Eq. 8.421 in [27]

∫ ∞

−∞
dz

eik
√

R2+z2

√
R2 + z2

= iπH(1)
0 (kR). (16)

Now the recursion formula for Hankel’s functions of the first kind can be applied to calculate
the remaining derivatives

∂
∂ z

H(1)
n (z) =

n
z

H(1)
n (z)−H(1)

n+1(z),

∂
∂Xl

H(1)
0 (kR) = −H(1)

1 (kR)
Xlk
R

, Xl ∈ {x,y}, (17)

which allows to calculate the required magnetic fields as

B2D
ed,z(R,φ) = ω

μ0k
4

[cos(φ)px − sin(φ)py]H
(1)
1 (kR). (18)

According to Eq. (5) the associated magnetic field for m = 1 is given by

Fz,s = a+
1 ψ+

1 (R,φ ,k)+a−1 ψ−
1 (R,φ ,k),

=
[
a+

1 cos(φ)−a−1 sin(φ)
]
H(1)

1 (kR). (19)

It becomes obvious that the coefficients a±1 represent two electric dipoles rotated by π/2, since
a comparison of the coefficient between Eq. (18) and Eq. (19) yields

a+
1 = ω

μ0k
4

px, a−1 = ω
μ0k
4

py. (20)
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Fig. 4. (Color online) The exact field patterns for the z component of the magnetic field
for the magnetic dipole (a), the electric dipole (b), and the electric quadrupole (c) for car-
rier dynamics in the (x,y) plane. The two-dimensional field distributions below the three-
dimensional ones show the three-dimensional fields for the respective multipole moment
integrated along the z axis. The moduli of these two-dimensional fields correspond to the
insets in Fig. 1(a-c) and precisely agree with ψm(r,φ), m ∈ {1,2,3}, respectively as shown
in the derivation below.

A.2. Magnetic dipole

The second order expansion term in Eq. (12) can be split into two contributions where one
is associated with the vector potential of the electric quadrupole and the other one with the
magnetic dipole. Hence, both quantities represent second-order moments

A(r) =
μ0

4π
eikr

r

(
1
r
− ik

)∫
d3r′j(r′)(n · r′)

= Amd(r)+Aeq(r),

Aeq(r) =
μ0

4π
eikr

r

(
1
r
− ik

)∫ ∞

−∞
d3r′

1
2

[
(n · r′)j(r′)+(n · j(r′))r′]

︸ ︷︷ ︸
∝Q

,

Amd(r) =
μ0

4π
eikr

r

(
1
r
− ik

)[
1
2

∫ ∞

−∞
d3r′r′ × j(r′)

]

︸ ︷︷ ︸
≡m

×n

=
μ0

4π
eikr

r

(
1
r
− ik

)
m×n. (21)

Currents in the (x,y) plane only induce a magnetic dipole moment m pointing into z direction

Amd(r) =
μ0

4π
eikr

r2

(
1
r
− ik

)
(−yex + xey)mz. (22)

Using the identity

∂
∂Xj

eikr

r
= −Xj

eikr

r2

(
1
r
− ik

)
, Xj ∈ {x,y}, (23)

Eq. (22) can be simplified yielding

Amd(r) =
μ0mz

4π

(
ex

∂
∂y

− ey
∂
∂x

)
eikr

r
. (24)
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In order to get the magnetic field Eq. (14) can be applied which has to be integrated along the z
axis as for the electric dipole before

Bmd,z(r) = −μ0mz

4π

(
∂ 2

∂x2 +
∂ 2

∂y2

)
eikr

r
. (25)

Equation (25) can be easily integrated applying again Eq. (16)

B2D
md,z(x,y) = i

μ0μ(ω)mz

4
k2

[
2

kR
H(1)

1 (kR)−H(1)
2 (kR)

]
, (26)

which can be simplified using the theorem 8.473, 3 in [27]

H(1,2)
0 (z) =

2
z

H(1,2)
1 (z)−H(1,2)

2 (z), (27)

resulting in the expected radially dependent expression for the scattered magnetic field

B2D
md,z(R,φ) = i

μ0mzk2

4
H(1)

0 (kR). (28)

For comparison Eq. (5) with m = 0 yields

Fx,s = a0H(1)
0 (kR). (29)

Comparing Eq. (28) and Eq. (29) we see that the coefficient a0 again is directly proportional to
the magnetic dipole moment, similar to the electric dipole moment before [Eq. (20)]. Here the
second term connected to a rotated magnetic dipole by π/2 vanishes, as expected for the radial
symmetric radiation pattern of a magnetic dipole.

Electric quadrupole

The second term connected to the electric quadrupole moment in the vector potential of Eq.
(21) can be simplified using Gauss’ law and the continuity equation to [18]

Aeq(r) = −iω
μ0

8π
eikr

r

(
1
r
− ik

)∫ ∞

−∞
d3r′r′(n · r′)ρ(r′). (30)

In the following we restrict the carrier dynamics to the (x,y) plane that might be expressed by

ρ(r′) =
N

∑
α=1

qα δ [x′ − xα(t)]δ [y′ − yα(t)]δ (z′). (31)

We now rewrite the integral kernel of Eq. (30)

∫ ∞

−∞
d3r′r′(n · r′)ρ(r′) =

3

∑
j=1

e j

3

∑
l=1

∫ ∞

−∞
d3r′X ′

jnlX
′
l ρ(r′) ≡ Q̂ jl(n)e j. (32)

Here we have used Q̂(n)

Q̂(n) =
N

∑
α=1

qα

⎛

⎝
x2

αnx xαyαny 0
yαxαnx y2

αny 0
0 0 0

⎞

⎠ ≡
⎛

⎝
Qxxnx Qxyny 0
Qxynx Qyyny 0

0 0 0

⎞

⎠ , (33)
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where the Qi j are the primitive symmetric quadrupole tensor entries [19]. Substituting Eq. (33),
(32) into Eq. (30) and applying Eq. (23) we obtain the vector potential

Aeq(r) = iω
μ0

8π

[
ex

(
Qxx

∂
∂x

+Qxy
∂
∂y

)
+ ey

(
Qyx

∂
∂x

+Qyy
∂
∂y

)]
eikr

r
. (34)

This equation can again be used to calculate the respective magnetic field [Eq. (14)]

Beq,z(r) = iω
μ0

8π

[
Qyx

(
∂ 2

∂x2 − ∂ 2

∂y2

)
+Qyy

∂ 2

∂x∂y
−Qxx

∂
∂y∂x

]
eikr

r
. (35)

In a final step Eq. (25) can be integrated by applying Eq. (16)

B2D
eq,z(x,y) = −ω

μ0

8

[
Qxy

(
∂ 2

∂x2 − ∂ 2

∂y2

)
+(Qyy −Qxx)

∂ 2

∂x∂y

]
H(1)

0 (kR), (36)

which can be simplified using the recursion formula Eq. (17) for the second derivatives

B2D
eq,z(R,φ) = −ω

μ0k2

8

{
Qxy[cos2(φ)− sin2(φ)]+(Qyy −Qxx)cos(φ)sin(φ)

}
H(1)

2 (kR).

(37)

Finally we end up with the magnetic field

B2D
eq,z(R,φ) = −ω

μ0k2

16
[Qxy cos(2φ)+(Qyy −Qxx)sin(2φ)]H(1)

2 (kR). (38)

The evaluation of Eq. (5) for m = 2 yields

Fz,s = −[
a+

2 cos(2φ)+ ia−2 sin(2φ)
]
H(1)

2 (kR). (39)

Again the coefficients a±2 are proportional to the electric quadrupole moment expressions under
consideration.
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