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Surface plasmon polaritons locally excited on the
ridges of metallic gratings
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With the perspective to achieve an in-depth understanding of metallic periodic surfaces, we study the surface
plasmon polaritons that are locally excited on the ridges (between the indentations) of metallic lamellar grat-
ings composed of slits or grooves. An approximate model and fully vectorial computational results show that
the normalized excitation rate is rather small for slit arrays (�10 at maximum) and is surprisingly weakly
dependent on the metal permittivity. Additionally, the analysis is supported by an intuitive microscopic model
that shines new light on the role of surface plasmons in the transmission and resonance anomalies of periodic
metallic surfaces. © 2010 Optical Society of America
OCIS codes: 050.0050, 290.0290, 240.6680, 310.6860.

n
[
s
g
s
n
t
s
i

s
r
c
c
b
t
1
t
r
r
r
i
t
a
l
i
w
i
t
t
i
a
t
t

m
p

. INTRODUCTION
ith the recent advances in nanotechnology and in rela-

ion with the observation of the extraordinary optical
ransmission through arrays of tiny holes [1], the past de-
ade has seen a renewed interest in exploiting the optical
esponse of metallic materials with sub-� openings. Ini-
ial motivations were the trapping of light in small vol-
mes [2], various applications of the extraordinary optical
ransmission [3,4], and waveguiding with lateral mode
izes well below the diffraction limit for ultra-compact
urface-plasmon-polariton (SPP) photonic circuits [5,6].
his has initiated the creation of a variety of new and
ompact optical devices to manipulate SPPs.

Our current recipes to design these devices are based
n the scattering of individual SPPs, which are assumed
o be first generated by some illuminated apertures, then
o propagate on the metal surface and to interact with
earby indentations before being recovered as freely
ropagating light or detected. However, the situation is
ot so simple; SPPs are only partly responsible for the
lectromagnetic interaction between adjacent openings on
he metallic surface even at visible frequencies; other
aves have to be considered for full assessment [7], and

o add to the complexity, one has to take into consider-
tion the inevitable cross-conversion between these waves
nd the SPPs [8].
Because of this difficulty, the SPP progression picture is

ften abandoned, and fully vectorial electromagnetic com-
utations are preferably used for designing and analyzing
ub-� metallic surfaces. The drawback of the computa-
ional approach is that our intuitive understanding is con-
iderably lowered. This explains for instance why under-
tanding the extraordinary optical transmission has led
o a large controversy over the past ten years [9]. It is the
uthors’ opinion that, although the transmission through
D hole arrays is well documented nowadays, the role of
PPs in the transmission through periodic slit arrays is
1084-7529/10/061432-10/$15.00 © 2
ot yet fully understood—see the initial discussions in
10–12] and more recent analysis with the benefit of hind-
ight [13–18]. This is all the more surprising as these
ratings, which have been initially developed for light
pectroscopy, are presently becoming important compo-
ents for various applications, such as polarization con-
rol [19,20], SPP-coupling [21], hot-spot generation [22],
pectral filtering [23], on-chip optical information process-
ng, nanoscience research [6], etc.

In order to bring new light on the scattering physics of
ub-� slit arrays, we use here the theoretical formalism
ecently developed in [21] and study the SPPs that are lo-
ally excited on the metallic ridges of lamellar gratings
omposed of an array of grooves or slits and illuminated
y an incident plane wave. The present approach con-
rasts with more classical approaches initiated in the
900s by Fano, Hessel and Oliner (see [24] and references
herein) to explain grating anomalies through collective
esonance modes of periodic interfaces. Hereafter, we
ather study the individual SPPs locally excited on every
idge of the surface. In particular, we focus on the normal-
zed SPP-excitation rate—defined as the ratio between
he intensities of the local SPP mode excited on the ridges
nd of the incident plane wave—as a function of wave-
ength, incidence angle, grating period, and slit width. It
s found that the maximum SPP-excitation rate is very
eak, �10 for slit arrays, but that it can reach 100 by us-

ng resonant grooves. We additionally study how the exci-
ation rate depends on the metal permittivity and show
hat the dependence is completely different from that of
solated slits or grooves [25]. Our analysis is based on an
nalytical model that provides closed-form expressions for
he SPP-excitation rate and on fully vectorial computa-
ion data.

The present article follows a recent letter [26]. It is
uch more detailed, and additionally provides for the im-

ortant case of groove arrays that support strong reso-
010 Optical Society of America
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ance. It is organized as follows. In Section 2, we define
hat we call the normalized SPP-excitation rate, and on

he basis of the normal-mode orthogonality, we explain
ow this rate can be calculated by solving Maxwell’s equa-
ions. In Section 3, we study the influence of the angle of
he incident plane wave on the SPP-excitation rate at vis-
ble frequencies. It is found that the excitation rate is very
ow (0.05) in general, except when the illumination angles
nd wavelengths are close to Rayleigh anomalies, for
hich one of the spectral orders emerges from the grating
t the grazing angle. The computational results are
hown to be in quantitative agreement with the predic-
ions of a simplified analytical model that we present in
ection 4. As the result of the quantitative agreement, the
odel allows us to thoroughly analyze and intuitively un-

erstand the influence of all the grating parameters on
he excitation rate. The influence of the metal conductiv-
ty deserves particular attention; it is the purpose of Sec-
ion 5. Additionally, in Section 6, we use the approximate
odel to investigate other geometries, such as metallic

roove arrays. The geometries that offer very large nor-
alized excitation rates are important in practice, espe-

ially for sensor applications. The conclusion is drawn in
ection 7.

. DEFINITION OF THE NORMALIZED
PP-EXCITATION RATE FOR PERIODIC
ETALLIC INTERFACE
e start by considering a gold interface perforated with a

eriodic array of semi-infinite slits; see Fig. 1(a). The
rating period is denoted by a, w represents the slit
idth, and f=w /a is the slit fill factor. The frequency-
ependent permittivity �m of gold is taken from [27]. The
rating is embedded in air with the relative permittivity

ig. 1. (Color online) Local excitation of SPPs on the individual
idges of periodic metallic surfaces. (a) Example of an interface
etween a homogeneous medium (permittivity �d) and a periodic
edium composed of an array of semi-infinite slits. rn, tn,r, and t

re scattering coefficients used in the analytical model of Section
. eSP

+ and eSP
− represent the normalized excitation rate of SPPs

ropagating along positive and negative x directions. (b) An ex-
mple of SPP-excitation rates [eSP

+: lighter (red online) curve,
nd eSP

−: darker (blue online) curve] calculated for gold ��m
−9.04+1.06i�, a=0.7 �m, w=100 nm, f=w /a=0.143, �
637 nm and �=0. The black circles show the SPP damping on
at metal surfaces, exp�−2 Im�k �x�.
SP
d= �nd�2=1 and is assumed to be illuminated by a TM-
olarized plane wave (magnetic field parallel to the inter-
ace), since SPPs are not excited for the other polariza-
ion. The incident wavelength is denoted by � and the
ncidence angle by �. The scattered field can be calculated
ith fully vectorial computational tools. We use here a
odal method [28] that is derived from the rigorous

oupled wave analysis (RCWA) [29], and which addition-
lly allows us to satisfy outgoing wave conditions in peri-
dic media (the semi-infinite slit array). The approach
olds for an illumination by either a plane wave of the air
ladding or by a Bloch mode of the slit array. Hereafter,
e denote by [Hy�x,z�, Ex�x,z�, Ez�x,z�] the total field

cattered by the perforated interface. Indeed, SPPs that
ropagate in opposite directions are locally excited on the
at surfaces (the ridges) between the slits.
To calculate the SPP excitation, we refer to a normal-
ode formalism recently developed for analyzing SPPs

hat are launched by sub-� slits on metallic surfaces
21,25,30] and other isolated indentations [31]. Hereafter,
e assume that the SPP modes are normalized such

hat their magnetic fields are unitary on the interface
t x=z=0. Thus the transverse field components
f the forward-propagating SPP may be written
s �Hy ,Ez� = �HSP�z� ,ESP�z�� exp�jkSPx�= �1,kSP/ ����0��
exp�j�SPz�exp�jkSPx�, with �=�d or �m for z�0 or z	0,

SP= ��dk0
2−kSP

2�1/2 in air and ��mk0
2−kSP

2�1/2 in metal.
SP=k0��d�m/ ��d+�m��1/2 denotes the SPP propagation
onstant along the x axis, and k0=2
 /�=� / c is the wave
ector modulus in vacuum.

According to the completeness theorem for normal
odes of waveguides [32], the total field scattered by the

eriodic surface can be locally decomposed in every flat
ection w /2+na	x	−w /2+ �n+1�a (n being a relative in-
eger) as a combination of forward and backward bounded
nd radiative modes of the planar interface:

Hy�x,z� = ��SP
+�x� + �SP

−�x��HSP�z� + �aHy
���x,z�,

�1a�

Ez�x,z� = ��SP
+�x� − �SP

−�x��ESP�z� + �aEz
���x,z�,

�1b�

here the sign � refers to a summation over a continuum
f radiation modes. �SP

+�x� and �SP
−�x� are the magnetic

mplitudes of the SPPs propagating in positive and nega-
ive x directions, respectively. Like the total field itself,
hey are pseudo-periodic functions of the x coordinate,

SP
+�x+a�=exp�jndk0a sin���� �SP

+�x�. Using the orthogo-
ality between bounded and radiative modes ��Ez

��

�x ,z�HSP�z�−ESP�z�Hy
���x ,z��dz=0 [21], we obtain the

ormalized excitation rates for SPPs propagating in ei-
her the positive or negative x directions,

eSP
+�x� = ��SP

+�x��2 = �4NSP�−2�	 �ESP�z�Hy�x,z�

+ E �x,z�H �z��dz�2

, �2a�
z SP
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eSP
−�x� = ��SP

−�x��2 = �4NSP�−2�	 �ESP�z�Hy�x,z�

− Ez�x,z�HSP�z��dz�2

, �2b�

here NSP=1/2�ESP�z�HSP�z�dz is a normalization con-
tant, approximately given by NSP���m�1/2�4��0�d

3/2� for
�m���d.

For the following calculations, we assume that the
agnetic field of the incident plane wave is unitary at x
z=0. Since our normalized SPP mode also manifests a
nitary amplitude at x=z=0, eSP

+ and eSP
− can be viewed

s normalized excitation rates. If eSP
±�1 (resp. eSP

±	1),
he SPP intensity of the launched SPPs is larger (resp.
maller) than that of the incident illumination; this corre-
ponds to a field enhancement (resp. retrenchment).

Figure 1(b) shows a numerical example. The calcula-
ion is performed for a=0.7 �m and � /a=0.91. The lighter
red online) and darker (blue online) curves represent the

SP
+�x� and eSP

−�x� functions, respectively, calculated with
qs. (2a) and (2b). For normal incidence ��=0° �, they are
eriodic eSP

+�x�=eSP
+�x+a� and, for symmetry reasons,

SP
+�x�=eSP

−�−x�. Within the slit intervals na−w /2	x
na+w /2, the integrals defined by Eqs. (2a) and (2b)
ay also be calculated, but they are meaningless since

here are no air–metal interfaces in those intervals. For
very ridge, eSP

+ exponentially depends on the coordinate
axis. The exponential decay exactly coincides with the

PP damping �exp�−2 Im�kSP�x�� on metallic flat surfaces,
hich is shown with black circles for one of the ridges.
he coincidence is not fortuitous and evidences the sound-
ess of the mode decomposition formalism for quantifying
he SPP-excitation rate on the individual ridges [21].

Let us further consider the SPP mode propagating in
he positive x direction. We note that eSP

+ is always larger
n the right side of the slit than on the left side (it is the
everse situation for eSP

−). The jump is due to several el-
mentary scattering events—including elastic ones with
PPs that are impinging on the individual slits and in-
lastic ones with other fields (such as the incident plane
ave or the quasi-cylindrical waves [8] that scatter
PPs)—that illuminate the individual slits. Note that the
et jump exactly compensates the decrease due to SPP
amping across every individual ridge. This property that
s a direct consequence of the periodicity is general; it
oes not depend on the geometry (slit width, groove
epth, etc.), it holds for both eSP

+�x� and eSP
−�x�, and it

olds for arbitrary illumination either with plane waves
mpinging at oblique incidence or with the Bloch modes of
he slit array.

Although the present work is devoted to periodic struc-
ures, the normalized SPP-excitation rate can also be de-
ned for structures that are not periodic. Figure 2 shows
he example of a structure that is composed of eleven
rooves in a gold film. For an illumination at �=800 nm
y an incident Gaussian beam with a 5� waist, the groove
epths and widths have been optimized with a simplex
ethod [33] to maximize the energies of the SPPs

aunched on both sides of the array. For the optimal pa-
ameters, the SPP efficiency is as large as 78%, implying
hat more than 3/4 of the incident photons are converted
nto two symmetric SPPs launched in opposite directions.
he curves show the normalized SPP-excitation efficien-
ies �+�x� and �−�x� that represent the local SPP energy
ow propagating to the right or left on every flat interface
etween the grooves (we use here a slightly different nor-
alization for convenience). It is remarkable to observe

hat the optimal geometry found by maximizing the SPPs
aunched on both sides of the array produces a progres-
ive increase of the local efficiency inside the array. As we
now from optimizations performed for other beam waists
nd groove numbers, the present solution contrasts with
thers (not shown) that present much more abrupt varia-
ions of the efficiency and that are also much less robust
o fabrication errors.

. NORMALIZED SPP-EXCITATION RATES
T VISIBLE FREQUENCIES
ecause the SPP damping over a single ridge is very weak

n general [it is only 8% at �=633 nm for gold in Fig. 1(b)],
e will not consider the x dependence of eSP

+�x� and

SP
−�x� in the following. Thus the normalized SPP-

xcitation rate will be considered as the averaged value
btained in the center of every ridge. The rate will be sim-
ly denoted by eSP

±, with eSP
±=eSP

±�a /2�. We have re-
eated the calculations of Fig. 1(b) for various values of
he angle of incidence � and of the illumination wave-
ength �. Figure 3(a) shows eSP

++eSP
− in the ��−k
� dia-

ram. The results were obtained with the RCWA for a
0.7 �m, w=100 nm, and for the gold geometry of Fig.
(a).
In general, the normalized SPP-excitation rate is very

eak on average ��eSP
+�= �eSP

−��0.05�; it is larger than
nity only for some narrow bands in the vicinity of the
ayleigh wavelengths. This will be interpreted in Section
as a coherent interference between the individual SPPs

nd quasi-cylindrical waves (CWs) that are excited and
cattered by every slit of the array. Note however that the
xcitation enhancement is not overwhelmingly strong; the
veraged value in the narrow bands is only 4, a value ob-
ained for the field intensity on a flat metallic interface il-

ig. 2. (Color online) Efficiencies of SPPs locally excited on the
idges of an 11-groove SPP-coupler in a gold substrate illumi-
ated by a normally incident Gaussian beam. The efficiencies are
ormalized by the power of the Gaussian beam. The optimization

s performed for �=800 nm �nm=0.18+5.13i�. The coupler is sym-
etric, and starting from the center �x=0�, the width w, height h,

nd central location of the five outer grooves are w=0.32, 0.40,
.42, 0.40, 0.41 �m; h=0.07, 0.07, 0.07, 0.05, 0.015 �m; and x
0.35, 1.12, 1.84, 2.63, 3.38 �m. The width and depth of the cen-

ral groove are w=0.37 �m and h=0.08 �m, respectively.
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uminated by a plane wave with a unit amplitude. Indeed,
he perforated interface is not a resonant geometry, be-
ause every slit drains off an important fraction of the in-
oming energy carried by the incident SPPs [9,13]. The
nhancement resonance is more acute in the vicinity of
he � point �eSP

+=eSP
−�15�, where counter propagating

PPs with opposite amplitudes may be resonantly excited
ith a slightly oblique illumination by breaking the ver-

ical symmetry achieved under normal incidence [34]. The
right bands in Fig. 3(a) generally follow two sets of
urves: the Rayleigh wavelengths shown with the dimmer
ashed (red online) curves and defined by k
+2n
 /a
±k0, and the folded dispersion relations of SPPs on flat
etallic surfaces �k
+2n
 /a= ±kSP�, shown with the

righter dashed (white online) curves. Note that the two
ets of curves almost merge at small energies, for which
SP�k0. This is because the SPPs exhibit a long tail in
he dielectric cladding at small energies and thus are
ransmitted through slits with an almost unitary trans-
ission coefficient, rendering their dispersion curves

lose to those of SPPs on flat metallic surfaces.

. ANALYTICAL MODEL
n order to obtain an insight into the influence of the vari-
us grating parameters on the normalized SPP-excitation

ig. 3. (Color online) Normalized SPP-excitation rate in the
�-k
� diagram at visible frequencies. (a) Fully vectorial [Eqs. (2a)
nd (2b)] result showing eSP

++eSP
− as a function of the parallel

ave vector k
=k0nd sin��� and the normalized frequency a /�.
he results hold for the gold geometry of Fig. 1(a) and for a
0.7 �m. The dimmer (red online) and brighter (blue online)
ashed curves represent the Rayleigh anomalies and the folded
ispersion relation of SPPs on flat metal surfaces. (b) and (c) are
nlarged views of (a) obtained, respectively, with the RCWA and
he approximate model [Eqs. (5a) and (5b)]. Quantitative agree-
ent is achieved.
ate, we further propose an analytical model based on
lassical approximations used for analyzing gratings with
ub-� apertures [35–37]. Within the scope of the
odel, the field above the grating is expressed with a
ayleigh expansion, Hy�x ,z�=exp�j�0x�exp�−j�0k0z�
�nrn exp�j�nx�exp�j�nknz�, where rn represents the un-
nown reflectivity coefficient of the nth order �n=k


2n
 /a, and �n
2k0

2+�n
2=�dk0

2. The electric fields can be
btained from Maxwell’s equations, Ex�x ,z�
−�jk0�−1�Hy�x ,z� /�z, and Ez�x ,z�= �jk0�−1�Hy�x ,z� /�x.
he electromagnetic field in the slits is assumed to be
omposed only of the fundamental propagative Bloch
ode of the array. Details of the single-mode approxima-

ion can be found in [10]. For the sake of accuracy, we use
urface impedance boundary conditions [36,37] rather
han the perfect conductor approximation [38] for match-
ng the boundary conditions at the interface z=0. Accord-
ng to Eqs. (2a) and (2b), the excitation rates are given by

eSP
+�x� = �n�0�rn�2�4�NSP��−2�	 �ESP�z�Hy

�n��x,z� + Ez
�n�

��x,z�HSP�z��dz�2

, �3a�

eSP
−�x� = �n�0�rn�2�4�NSP��−2�	 �ESP�z�Hy

�n��x,z� − Ez
�n�

��x,z�HSP�z��dz�2

, �3b�

here

rn = �n,0

�n − Zs

�n + Zs
+

2�Zs − neff�fg0gn�0

��0 + Zs���n + Zs��1 − I�
. �4�

n Eqs. (3) and (4), �n,0=1 if n=0 and 0 otherwise, neff de-
otes the effective index of the fundamental slit mode
neff�1�, Zs=�m

−1/2 is the metal surface impedance sup-
osed to be independent of k
 for a fixed wavelength
36], I=n��Zs−neff�fgn

2� / ��n+Zs� with n running over
ll integers, gn=1/w�−w/2

w/2 ��x�exp�j�nx�dx, Hy
�n��x ,z�

exp�j�nx�exp�j�nk0z�, and Ez
�n��x ,z�= �jk0�−1�Hy

�n� /�x.
he fundamental slit mode profile ��x� can be figured out
nalytically by using the surface impedance boundary
onditions [37] and is normalized such that
/w�−w/2

w/2 ���x��2dx=1. Note that the specularly reflected
lane wave does not contribute to the excitation of SPPs
nd has been removed from the plane wave expansion of
qs. (3a) and (3b). The latter shows that eSP

± stems from
summation of the contributions from all the grating-

eflection orders. We have analytically shown that, in the
um, only a single reflection order significantly contribute
o eSP

±. This result, which is consistent with one’s classi-
al idea that SPPs are launched on periodic metallic in-
erfaces when their momentum matches that of the inci-
ent illumination through a multiple of the grating
omentum, can be used to drastically simplify the ex-

ressions in Eqs. (3a) and (3b). Hereafter we will be con-
erned only by the SPPs that are launched through first-
rder scattering, so that the main contribution in Eqs.
3a) and (3b) is due to n=+1 or −1. By further neglecting



t
r
p

w
i
t
o
t
w
t

a
3
a
t
i
t
e
c
c
n
m
[
e
[
t

d
t
t
a
c
s
S
s
t
r
c
d
t
s
b
S
c
i
v
a
H
a
f
s
s
o

a
t
c
t
C
t
c
c

t
R
w
p
i

5
I
p
g
S
e

F
f
o
c
m
a
O
w
R
(
+

1436 J. Opt. Soc. Am. A/Vol. 27, No. 6 /June 2010 B. Wang and P. Lalanne
he field penetration in the metal, the SPP-excitation rate
esulting from a first-order scattering of the incident
lane wave may be written

eSP
+ = R1Q1 = �r1�2� �SP��1 + kSP�

kSP��1k0 + �SP��2

, �5a�

eSP
− = R−1Q−1 = �r−1�2� �SP��−1 − kSP�

kSP��−1k0 + �SP��2

, �5b�

here R±1= �r±1�2. Q1 and Q−1 refer to the fraction factor
n the rightmost side of Eqs. (5a) and (5b). They essen-
ially come from the overlap integral of the SPP fields and
f the positive and negative first-order plane waves. In
he vicinity of the Rayleigh wavelengths �R=a�1±k
 /k0�,
here the normalized excitation rate is maximum, Q±1

ake the simplified form

Q±1 � 4�1 + �2�m��±1 − ��/a�1/2�−2, �6�

nd peak at �=�±1, for which eSP
±�4R±1���±1��. Figures

(b) and 3(c) compare the analytical formula of Eqs. (5a)
nd (5b), with fully vectorial computational results ob-
ained with the RCWA. For the sake of better comparison,
n Fig. 4 we show two spectra of the excitation rate ob-
ained for �=10° [Fig. 4(a)] and �=0° [Fig. 4(b)]. The
xcitation-rate maxima in Fig. 4(a) are located in the vi-
inity of the Raleigh wavelengths �R/a=1±sin��� indi-
ated by the lighter (red online) vertical dashed lines. For
ormal incidence, eSP

+ and eSP
− are equal, and their

axima are obtained exactly at the Rayleigh wavelengths
see Fig. 4(b)]. As in Fig. 3(b), the normalized SPP-
xcitation rate predicted with the approximate model
darker (blue online) curves] quantitatively agree with
he RCWA data [lighter (red online) curves].

Our current understanding of the SPP-excitation on
ressed metallic interfaces is based on SPP multiple scat-
ering. Intuitively, one expects that, under light illumina-
ion, every individual slit launches SPPs in the positive
nd negative directions, and that the SPPs further elasti-
ally scatter on the nearby slits, with possibly multiple
catterings involving back-reflection. A model (called pure
PP model hereafter, to emphasize that only SPPs are as-
umed to transport the electromagnetic information on
he surface) that allows to us calculate the SPP-excitation
ates within this fully elastic framework has been re-
ently developed to indentify the role of SPPs in extraor-
inary optical transmission. The SPP-coupled-mode equa-
ions are readily obtained for periodic structures like the
lit array considered in the present work, and details can
e found in the Supplementary Section of [9]. The pure
PP model predictions are shown with the dotted–dashed
urves in Fig. 4(a) and 4(b). They are rather accurate; for
nstance, the model quantitatively predicts the very weak
alues of the excitation rate far away from �R and the “ex-
ct” location of the maxima at a wavelength close to �R.
owever, it underestimates the maximum excitation rate
nd does not predict the sharp peak obtained for �=0° or
or eSP

− at �=10°. Indeed the intuitive picture, which as-
umes that the electromagnetic interaction between the
lits is solely mediated by SPP fields, is incomplete, and
ther waves different from the SPPs, the (CWs) [7,21,39],
re also launched on the ridges surfaces. Like the SPPs,
hese waves further scatter on the nearby slits, and are
onverted into SPPs [8]. Since the sole approximation of
he pure SPP model consists in neglecting the additional
W, one deduces that the appearance of sharp peaks for

he excitation rate is due to multiple CW-to-SPP cross-
onversions that occur at every individual slit and that
onstructively interfere for ���R.

As evidenced by Figs. 3 and 4, the agreement between
he analytical model predictions and the fully vectorial
CWA data is quantitative, and the model can be used
ith confidence to analyze the impact of various grating
arameters on the normalized SPP-excitation rate. This
s the purpose of Section 5.

. PROPERTIES OF SPP-EXCITATION RATE
n this section, we again consider the slit array scattering
roblem of Fig. 1(a), and study the influence of various
eometrical and material parameters on the normalized
PP-excitation rate. In particular we analyze the influ-
nce of the metal conductivity and of the slit fill factor.

ig. 4. (Color online) Normalized SPP-excitation rate spectrum
or fixed angles of incidence. (a) �=10° and (b) �=0°. Solid (red
nline), dashed (blue online), and dotted–dashed (black online)
urves refer to the data obtained with the RCWA, the approxi-
ate model, and the pure SPP model, respectively. Note that eSP

+

nd eSP
− merge for normal incidence because of the symmetry.

ther parameters used for the computation are a=0.7 �m and
=0.143a. The vertical dashed lines (red online) represent the
aleigh wavelengths, �R/a=1±sin���. The vertical dashed lines

blue online) represent the SPP wavelengths, �SP/a= ��m�d / ��m
�d��1/2±sin���.



A
I
s
a
v
n
a
l
=
b
[
5
t
t
a
n
f
e
s
l
s
e
(
p
5
i
d
t
r
t
c
a

c
c
m
r
c
c
a
S
S
m
�
r
a
i
h
[
�
e
w
t
w
t
m
b
b
d
d
M
�
t
b
e

F
a
v
w
(
o

B. Wang and P. Lalanne Vol. 27, No. 6 /June 2010/J. Opt. Soc. Am. A 1437
. Influence of Metal Conductivity
t is important to understand how the SPP-excitation rate
cales as the metal permittivity increases. By using the
nalytical model, we have calculated eSP

+ and eSP
− by

arying the incident wavelength from the visible to the
ear-infrared. The results are shown in Fig. 5 for �=10°
nd 0°. The spectra are obtained by varying the wave-
ength for several values of the grating period from a
0.7 to 3.1 �m, by scaling all the grating dimensions, and
y using the gold permittivity dependence tabulated in
27]. Two general trends that are valid for oblique [Fig.
(a)] or normal [Fig. 5(b)] incidence are observed. First,
he width �� of the SPP-excitation branches narrows as
he metal conductivity increases. From Eq. (6), we have
nalytically shown that the peak width �� is predomi-
antly due to the special dependence of Q±1. It is easily

ound that the normalized peak width �� /a of Q1 or Q−1 is
qual to �2− �2���m�−1 at normal incidence, showing ��m�−1

caling as the metal permittivity increases at long wave-
engths. This trend will be interpreted below as the con-
equence of an increased SPP propagation length. Second,
xcept at visible frequencies, the maxima of eSP

+ and eSP
−

denoted eSP
�max� hereafter) are found to be almost inde-

endent of the metal conductivity, as also shown in Fig.
(c) that shows the extracted maximum values at normal
ncidence. This result is unexpected in our opinion. In-
eed, for isolated slits [21,25] or subwavelength indenta-
ions in general [31], the normalized SPP-excitation rate
apidly drops (it scales as ��m�−1) as we move from visible
o infrared frequencies. This is easily understood if one
onsiders that the SPP mode spreads farther and farther
way in the dielectric half-space as the wavelength in-

ig. 5. (Color online) Influence of metal conductivity on the norm
s a function of the wavelength of the incident illumination for v
isible and infra red frequencies, respectively. (a) �=10° and (b) �
avelengths. (c) Maxima of the excitation rate at normal inciden

red online) and dashed (blue online) curves, respectively, refer to
f ���2, �1-��2 on the metal conductivity. The variation of �� �−1 is a
m
reases, and that spatially delocalized fields cannot be ex-
ited efficiently by subwavelength scatterers. Naïvely, one
ay anticipate this general trend to be observed with ar-

ays of subwavelength indentations. Actually the grating
ase is much more intricate. First, restructuring the dis-
ussion to the sole contribution of SPPs (by neglecting
gain the impact of the CWs), we may consider the pure
PP model and analyze the multi-scattering process of
PPs by every individual slit. Within the scope of the
odel, the peak maximum is approximately given by

��2 / �1− ��+���2 at normal incidence [9], where � and � rep-
esent the SPP transmittance and reflectance coefficients,
nd � is the SPP-generation coefficient at a single slit [see
nsets in Fig. 5(d)]. For narrow slits, we approximately
ave �−1�� as the first-Born approximation applies; see
8] for details. Thus the peak maximum can be written as
��2 / �4�1−��2�. We have calculated the SPP-scattering co-
fficients with a fully vectorial method [13]. In Fig. 5(d),
e plot ���2 and �1−��2 as a function of the metal conduc-

ivity. It is clear that both efficiencies scale as ��m�−1,
hich is shown with a dashed–dotted curve. As a result,

he excitation rate predicted by the pure SPP model re-
ains constant as the metal permittivity varies, as shown

y the dashed curve in Fig. 5(c). The physical reason can
e qualitatively understood as follows. As the metal con-
uctivity increases, fewer SPPs are launched by the inci-
ent plane wave at every individual slit ����2� ��m�−1�.
eanwhile the SPPs are less scattered by adjacent slits

�1−��� ��m�−1/2�, implying that the gathering (propaga-
ion) length of SPPs on the corrugated metallic surface
ecomes longer. It should be mentioned that these prop-
rties are not specific to slit geometries and are also ob-

SPP-excitation rate spectrum. (a) and (b) Spectra are calculated
grating periods, so that the front and rear curves correspond to

he dashed (red online) lines under the peaks denote the Rayleigh
e circles are fully vectorial data obtained with RCWA. The solid
edictions of the analytical and pure SPP models. (d) Dependence
own as a reference. The insets show the definition of �, �, and �.
alized
arious
=0°. T
ce. Th
the pr
lso sh
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ained for hole chains [9]. If one neglects SPP back-
eflections, the length can be written as LSP�
a�2 ln����−1. Thus as the metal permittivity increases,

ewer SPP are launched by every individual slit, but the
eaker coupling is exactly compensated by the fact that
very slit gathers SPPs that are launched at slits farther
nd farther away.
Although the pure-SPP model predicts the main special

haracteristics, it is only qualitative, as evidenced by the
urves in Fig. 5(c). Indeed, full assessment requires con-
idering the CWs that are launched by the individual
lits—in addition to the SPPs—and their further cross-
onversion to SPPs through scattering by adjacent slits
8]. This process, which is actually the dominant one even
t near-infrared frequencies [Fig. 5(c)], relies on scaling
aws that are similar to those previously discussed in the
ure SPP model; the cross-conversion efficiency again de-
reases as the wavelength increases [8], but the decrease
s compensated by the increased gathering length over
hich the cross-conversion processes are gathered at ev-
ry single aperture. The overall effect is independent of
he wavelength, as evidenced by the nearly constant dif-
erence between the dashed and solid curves at long
avelengths in Fig. 5(c).

. Influence of the Slit Width
igure 6(a) shows the dependence of the normalized SPP-
xcitation rate on the slit fill factor f=w /a. The computa-
ional results obtained with the RCWA hold for normal in-

ig. 6. (Color online) Influence of the slit width. (a) Normalized
PP-excitation rate as a function of the wavelength for a
3.5 �m and for various slit widths w �f=w /a�. The results are
btained with the RCWA for normal incidence �eSP

+=eSP
−=eSP�.

b) Peak value of eSP. (c) Peak width ��. In (b) and (c), the RCWA
ata and analytical data are shown with solid curves and circles,
espectively.
idence and for a grating period a=3.5 �m. As discussed
n Subsection 5.A, eSP is always maximum for �=�R for
ormal incidence. Figures 6(b) and 6(c) show the varia-
ions of the peak excitation rate eSP

�max� and of the peak
idth �� with f. The width weakly depends on f, and only

SP
�max� exhibits an S-shaped variation for small fill fac-

ors. The weak dependence is because the occurrence of
he Rayleigh anomaly is independent of the slit width for

fixed grating period. From Eqs. (5) and (6), we have
hown analytically that this variation is due to R±1 (Q±1 is
ndependent of f) and is approximately given by

eSP
�max� � �4fnmsinc�
f�/�1 + 2fnmsinc2�
f���2, �7�

howing that the peak SPP-excitation rate initially grows
uadratically with f for f	1/ �nm�, where nm=�m

1/2. In ad-
ition, the normalized peak width is approximately given
y

��/a � �2 − � 2��Zs�2, �8�

howing that the peak width is independent of the slit
idth. The analytical model (circles) predictions well
atch the fully vectorial computational data (solid

urves) in Fig. 6(c). For large widths �f�0.5�, the single-
ode approximation ceases to be valid, and the analytical
odel cannot be used with confidence.

. GROOVED GRATINGS
o far, we have investigated the SPP-excitation rate on
he ridges of gratings consisting of semi-infinite slit ar-
ays. Let us now consider gratings composed of periodic
rray of grooves, as shown in the inset of Fig. 7(a). Assum-
ng a single-mode approximation in the groove [10], the
ormalized SPP-excitation rate on the ridges (between
he grooves) can be straightforwardly calculated using the
pproximate model. We obtain

eSP
+ = R1Q1 = �r1 +

tt1rbu2

1 − u2rbr�2� ��1 + kSP�kd

��1k0 + kd�kSP
�2

,

�9a�

eSP
− = R−1Q−1 = �r−1 +

tt−1rbu2

1 − u2rbr�2� ��−1 − kSP�kd

��−1k0 + kd�kSP
�2

,

�9b�

here u=exp�jneffk0h� with h being the groove depth; rb
�neff−Zs� / �neff+Zs� is the reflectance coefficient of the

undamental slit mode at the groove–substrate interface;
=2g0�0 / ���0+Zs��1−I�� and r= �Zs−neff�−1�2neff / �1−I�
Zs−neff� are, respectively, the transmittance and reflec-

ance coefficients of the fundamental slit mode at the
roove entrance; and

t1 =
fg1�Zs + neff + �Zs − neff�r�

�1 + Zs
,
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t−1 =
fg−1�Zs + neff + �Zs − neff�r�

�−1 + Zs
, �10�

epresent the scattering coefficients of the slit mode into
he positive and negative first grating orders. Note that
nly the ±1 orders are considered in the simplified treat-
ent. R±1 is affected not only by the field that is directly

eflected from the groove apertures (as for the slit case),
ut also by the field reflected from the groove bottoms,
eading to possible groove resonances. This is evidenced
y Fig. 7, which shows the ��−k
� diagrams of eSP

++eSP
−

or two groove depths h=0.3a and 0.6a. Quantitative
greement is achieved between the fully vectorial RCWA
omputational data [Fig. 7(a)] and the model predictions
f Eq. (9) [Fig. 7(b)].

There are several noticeable differences with the semi-
nfinite slit geometry. First, the excitation rate may reach

uch larger values �eSP�100� when the grooves resonate.
he width �� of each band is also narrower than that ob-
ained for slits. More importantly, as a result of the addi-
ional groove resonance condition, new bands far away
rom the Rayleigh wavelengths are found. This is illus-
rated by the ��−k
� diagram obtained for h=0.3a, where
he lower band splits into two branches for a /��0.9.

Figures 8(a) and 8(b) show the normalized SPP-
xcitation rate for normal incidence. Again we consider
wo groove depths, h=0.3a and 0.6a. All the calculations
re performed for a=0.7 �m with the RCWA (red-solid
urves) or with the approximate model (blue-dashed
urves). It is clear that only a single peak appears at the
ayleigh anomaly for h=0.3a. In comparison with Fig.
(b) obtained for slits, a much stronger excitation rate

ig. 7. (Color online) Normalized SPP-excitation rate on the
idges of a grating composed of a periodic array of grooves in
old. (a) RCWA data obtained for groove depths h=0.3a and 0.6a,
=0.7 �m, w=100 nm. (b) Corresponding results obtained with

he approximate model.
�100� is found and the peak width �� is remarkably
arrower. Interestingly, another peak appears in the vi-
inity of the Rayleigh anomaly for h=0.6a. To explain
his, we continuously vary the groove depth in Fig. 8(c). It
s found that several discrete bands alternately appear at
arge depths, which relate to the Fabry–Perot resonance
n the groove. The resonance condition reads

2 Re�neff�k0h + arg�rb� + arg�r� � 2 Re�neff�k0h + arg�r�

= 0 �modulo 2
�, �11�

ince rb is approximately equal to unity. The bright bands
n Fig. 8(c) result from two resonance mechanisms. The
rst mechanism holds in the vicinity of Rayleigh wave-

engths and is exactly the same as that previously dis-
ussed for semi-infinite slit arrays. Note that this mecha-
ism is almost systematically assisted by a groove
esonance. The reason is that arg�r� varies rapidly for �
�R [14], which implies that the resonance condition of
q. (11) is always satisfied when a spectral order emerges

rom the grating at the grazing angle. The second mecha-
ism is a pure Fabry–Perot resonance that may occur far
way from any passing-off of a diffracted order. In Fig.
(c), we have additionally plotted the �-h curves (white
ircles) associated with the resonance condition of Eq.
11), which accordingly follow the positions of the bright
ands associated with the two identified mechanisms.
igure 8(d) shows the influence of the metal permittivity

ig. 8. (Color online) Normalized SPP-excitation rate for peri-
dic groove arrays in gold at normal incidence. (a) and (b): Spec-
ra obtained for h=0.3a (a) and h=0.6a (b). The RCWA data and
nalytical results are denoted by solid (red online) and dotted
blue online) curves, respectively. (c) Excitation rate as a function
f the wavelength and of the groove depth for a=0.7 �m. The
ircles indicate the location of the groove resonances according to
q. (10). (d) Excitation rate as a function of the wavelength (hori-
ontal axis) and of the grating period (vertical axis) for h=0.6a.
s for slits, the peak width narrows and the peak value remains

onstant as the metal permittivity increases.



a
a
p
w
t
e
t
n

7
I
a
o
p
r
t
l
(
m
R
a
i
d
g
l
t
s
h
F
a
h

t
s
t
e
i
S
m
s

A
T
s

E
g

R

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

1440 J. Opt. Soc. Am. A/Vol. 27, No. 6 /June 2010 B. Wang and P. Lalanne
s the grating period is varied from a=0.7 to 3.5 �m. It is
pparent that, like the slit case, eSP

�max� is almost inde-
endent of the metal permittivity, and that the peak
idth �� narrows as a increases. In addition, we observe

hat the small-energy peak exhibits a blue shift; this is
asily understood by considering the dispersion proper-
ies of neff and arg�r� leading to the Fabry–Perot reso-
ance in Eq. (11).

. CONCLUSION
n summary, we have theoretically investigated the
mount of SPPs that are excited on every individual ridge
f lamellar metallic gratings. For gratings consisting of
eriodic arrays of slits, the normalized SPP-excitation
ate is in general rather weak, except when the illumina-
ion angle and wavelength are close to the Rayleigh wave-
ength (Figs. 3 and 4). Additionally, we have shown [Eqs.
5) and (6)] that under normal illumination, the maxi-
um eSP

�max� of the excitation rate is always met at the
aleigh wavelength ��=a�. Perhaps counterintuitively
nd in contrast with the SPP-excitation rate of isolated
ndentations, we found that eSP

�max� is virtually indepen-
ent of the metal permittivity (Fig. 5). As we scale the
rating parameters and move from visible to infrared
ight, eSP

�max� remains constant; only the peak width of
he normalized SPP-excitation rate is narrowed. These re-
ults are not specific to slit arrays, as they also hold for
ole arrays. We have additionally shown that, because of
abry–Perot resonances, gratings consisting of periodic
rrays of grooves exhibit much higher SPP-excitation en-
ancement �eSP

�max��100�; see Figs. 7 and 8.
Although the main body of the study relies on fully vec-

orial computational results using the RCWA, all the re-
ults have been explained with a fully analytical model
hat provides closed-form expressions for the SPP-
xcitation rate. We expect that this study helps in provid-
ng an enhanced comprehension of the involvement of
PPs in the rich physics of periodic metallic surfaces. It
ay also help the design of future plasmonic devices,

uch as SPP generators, couplers, reflectors, etc.
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