Difference between penetration and damping lengths in photonic crystal mirrors
Christophe Sauvan, Jean-Paul Hugonin, Philippe Lalanne

To cite this version:

HAL Id: hal-00570607
https://hal-iogs.archives-ouvertes.fr/hal-00570607
Submitted on 5 Apr 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Difference between penetration and damping lengths in photonic crystal mirrors

C. Sauvan, J. P. Hugonin, and P. Lalanne

Citation: Appl. Phys. Lett. 95, 211101 (2009); doi: 10.1063/1.3266840
View online: http://dx.doi.org/10.1063/1.3266840
View Table of Contents: http://apl.aip.org/resource/1/APPLAB/v95/i21
Published by the American Institute of Physics.

Related Articles
Time dependent changes in extreme ultraviolet reflectivity of Ru mirrors from electron-induced surface chemistry

Fabrication of bioinspired omnidirectional and gapless microlens array for wide field-of-view detections

A combined Kirkpatrick-Baez mirror and multilayer lens for sub-10 nm x-ray focusing
AIP Advances 2, 012175 (2012)

Liquid crystal micro-lenticular array assembled by a fringing field

X-ray–optical cross-correlator for gas-phase experiments at the Linac Coherent Light Source free-electron laser

Additional information on Appl. Phys. Lett.
Journal Homepage: http://apl.aip.org/
Journal Information: http://apl.aip.org/about/about_the_journal
Top downloads: http://apl.aip.org/features/most_downloaded
Information for Authors: http://apl.aip.org/authors

ADVERTISEMENT

NEW!

iPeerReview
AIP’s Newest App
Authors... Reviewers...
Check the status of submitted papers remotely!
Difference between penetration and damping lengths in photonic crystal mirrors

C. Sauvan,a J. P. Hugonin, and P. Lalanne
Laboratoire Charles Fabry de l’Institut d’Optique, CNRS, Univ. Paris-Sud, Campus Polytechnique, RD128, 91127 Palaiseau, France

(Received 27 May 2009; accepted 31 October 2009; published online 23 November 2009)

Different mirror geometries in two-dimensional photonic crystal slabs are studied with fully vectorial calculations. We compare their optical properties and, in particular, we show that, for heterostructure mirrors, the penetration length associated with the delay induced by distributed reflection is not correlated with the characteristic damping length of the electromagnetic energy distribution in the mirror. This unexpected result evidences that the usual trade-off between short damping lengths and large penetration lengths that is classically encountered in distributed Bragg reflectors can be overcome with carefully designed photonic crystal structures. © 2009 American Institute of Physics. [doi:10.1063/1.3266840]

\[L_p = \frac{1}{2} v_g \tau = \frac{c}{2 n_g} \frac{\partial \phi_g}{\partial \omega}, \quad (1) \]

where \(v_g \) and \(n_g \) are the group velocity and the group index of the incident mode. In classical DBRs, the penetration length defined by Eq. (1) is directly related to the characteristic damping length \(\delta \) of the energy distribution inside the mirror. For arbitrary filling factors and index modulations \(\Delta n \), the relation \(L_p \approx \delta \) holds, the equality being fulfilled in the limit case of quarter-wave DBRs with low refractive index contrasts for which \(L_p = \delta \) holds, where \(\Lambda \) is the grating period and \(n \) is the average index. Consequently, these two characteristic lengths are often considered to be equal and mixed up in the literature. The delay induced by distributed reflection is therefore usually not seen as a degree of freedom to design high-Q and small-V microcavities, since large delays are thought to be synonymous of large volumes. However, we demonstrate hereafter that the penetration and damping lengths are not necessarily correlated and that carefully designed PhC mirrors allow to overcome the usual trade-off between short damping lengths and large penetration lengths.

In this letter, we study the optical properties of reflectors in 2D PhC slabs with three-dimensional (3D) rigorous calculations. We compare different mirrors and demonstrate that, in the structure shown in Fig. 1(b) and known in the literature as the heterostructure mirror,4 the penetration length associated with the delay is unexpectedly much larger than the characteristic damping length of the energy distribution. Thus, such mirrors can induce large delays while maintaining small volumes.

Figure 1 shows the two structures under study, which both aim at reflecting the fundamental mode of a single-line-defect PhC waveguide (W1 waveguide). In the first structure, the mirror consists of a finite-length section of the surrounding PhC, see Fig. 1(a). It will be referred as the classical mirror hereafter. The second structure is the heterostructure mirror.4 It consists of a finite-length section of a deformed W1 waveguide with the same transverse lattice constant \(a \), but a smaller longitudinal lattice constant \(a_w < a \), see Fig. 1(b). In both structures, the 2D PhC is a triangular lattice of air holes etched in a silicon membrane with \(a=420 \) nm. The
The classical mirror with \(N = 3 \) and its group index is shown in Fig. 1. The spectral position of the oscillations, which are much larger for the heterostructure, depends on the mirror length. Such a behavior inside the band gap does not exist in classical DBRs where the distributed reflection is due to a single evanescent Bloch mode. But in the PhC mirrors under study, more than one evanescent Bloch mode are involved in the reflection process. These higher-order modes, which were previously reported for slow-light injection in W1 waveguides, cause some oscillations, whose amplitude decreases with the mirror length. Nevertheless, the radiation losses given by \(1 - R - T \) do not exhibit such oscillations; they are roughly equal for every length to \(1 - R_{\lambda} \) with \(R_{\lambda} \) the reflection of the semi-infinite mirror (thin curve). It is noteworthy that heterostructure mirrors exhibit extremely low radiation losses, \(1 - R_{\lambda} \approx 10^{-3} \).

Although several evanescent modes are involved in the reflection process, it is possible to estimate the characteristic damping length \(\delta \) of the intensity in the mirror from the transmission calculation as a function of the mirror length. Figure 3(a) shows the variation of \(T \) in a logarithmic scale for \(\lambda = 1.54 \) \(\mu \)m. The calculated data for the classical and the heterostructure mirrors are given by crosses and squares, respectively. As expected, the transmissions exponentially decay with the length, \(T = \exp(-L/\delta) \), and the linear fits shown by the solid lines in Fig. 3(a) allow to retrieve the damping length \(\delta \) for both mirrors. They are of the same order of magnitude \(\delta = 360 \) nm for the classical mirror and \(\delta = 460 \) nm for the heterostructure. The discrepancies between the ideal linear decrease and the actual data can be attributed to higher-order evanescent Bloch modes involved in the reflection process.

The penetration length \(L_p \) is directly calculated from the phase of the reflected mode, see Eq. (1), and its variation with the mirror length for \(\lambda = 1.54 \) \(\mu \)m is represented in Fig. 3(b).
FIG. 3. Mirror properties as a function of the mirror length for \(\lambda = 1.54 \, \mu \text{m} \). (a) Transmission in a logarithmic scale. Crosses: classical mirror. Squares: heterostructure mirror. The solid lines show a linear fit of \(\log(T) \) that allows to estimate the damping length \(\delta \). (b) Penetration length. The thin line corresponds to \(L_p = L \). The calculations have been performed from \(N=1 \) to \(N=11 \) periods.

3(b). For the classical mirror (crosses), \(L_p = 620 \, \text{nm} \) remains constant even for short mirrors \((N=1 \text{ or } 2)\) and is comparable to the damping length. For the heterostructure mirror, the penetration length varies with the mirror length for very short mirrors, but it reaches rapidly a plateau corresponding to the value of the semi-infinite mirror. From \(N=3 \), \(L_p = 3 \, \mu \text{m} \) is roughly constant and sevenfold larger than the damping length. Unlike the classical mirror that mostly behaves like an usual DBR, the heterostructure mirror exhibits an unexpected behavior with a penetration-length-to-damping-length ratio much larger than unity. Besides, it is interesting to note that short heterostructure mirrors may be remarkably efficient \((R > 99\%)\) with penetration lengths that are even larger than the mirror length.

By repeating the fitting procedure shown in Fig. 3(a) for other frequencies, the spectral dependence of the damping length can be calculated. The results are represented in Fig. 4.

FIG. 4. Spectral variation of the penetration length \(L_p \) and of the damping length \(\delta \). The calculations of the penetration length have been performed for semi-infinite mirrors. For the classical mirror, \(L_p \) is represented by the dashed curve and \(\delta \) by the crosses. For the heterostructure mirror, \(L_p \) is represented by the solid curve and \(\delta \) by the squares.

together with the penetration length. \(L_p \) has been calculated for semi-infinite mirrors, since it weakly depends on the mirror length. For the classical mirror (dashed curve and crosses), both lengths are comparable, like in DBRs. On the contrary, for the heterostructure, the penetration length (solid curve) is much larger than the damping length (squares), except for large wavelengths where the incident group velocity is small. In fact, close to the band gap edge \(\lambda_c = 1.52 \, \mu \text{m} \), the properties of heterostructure mirrors are similar to those of classical DBRs, with a divergence of \(\delta \) and \(L_p \). But the fact that \(L_p \) remains one order of magnitude larger than \(\delta \) inside the band gap is really unusual. This result evidences that, in a heterostructure mirror, light is reflected with a delay corresponding to a propagation distance that is considerably larger than the exponential decay of the intensity in the mirror.

In conclusion, we have studied the optical properties of reflectors in 2D PhC slabs. We have shown that, in heterostructure mirrors, the penetration length associated with the delay can be much larger than the characteristic damping length of the energy distribution inside the mirror. This amazing property evidences that these two characteristic lengths are not necessarily correlated. Consequently, the usual trade-off between short damping lengths and large penetration lengths that is encountered in classical DBRs can be overcome with carefully designed PhC structures. Intuitively, large penetration lengths may be understood as a result of the small lattice constant difference in the heterostructure. Indeed, such a behavior is classically encountered in DBRs with a small index contrast. But, contrary to DBRs, heterostructure mirrors exhibit also small damping lengths because of their peculiar dispersion properties. This unexpected result allows to understand why, until now, the quality factors achieved in heterostructure cavities remain one order of magnitude larger than those achieved in 1D PhC resonators, while the mirror radiation losses and the cavity-mode volumes are essentially the same.

The authors acknowledge funding through the EU-FP6 “SPLASH” project and the French ANR under Contract No. Miraman ANR-06-NANO-000-30.