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The dispersion properties of surface modes supported by metal/dielectric interfaces perforated by two-
dimensional arrays of subwavelength apertures are studied. An analytical surface-impedance model is derived.
It provides closed-form expressions for the dispersion relation of surface modes and allows to take into account
the aperture geometry and the dispersive and dissipative properties of the metal. The model predicts the
dispersion relation and the mode lifetime, in quantitative agreement with fully vectorial computational results
and with experimental data obtained at optical frequencies. The analysis reveals a double plasmonic band gap
in the center of the Brillouin zone for a square array. It additionally clarifies the effects of various different
geometrical and material parameters on the surface properties.

DOI: 10.1103/PhysRevB.79.165405 PACS number�s�: 42.25.Bs, 42.70.Qs, 73.20.Mf, 78.68.�m

I. INTRODUCTION

In recent years, there has been much interest in control-
ling light-matter interactions by introducing structures on
length scales equal to or smaller than the wavelength of the
light. By varying the shape and the size of the inclusions, it
is possible to control the effective refractive index and thus
to add new possibilities to the range of materials available in
optics �see Refs. 1–3, for instance�. Like other optical waves,
the properties of surface-plasmon polaritons �SPPs� can be
tailored by engineering the respective contributions of the
photonic and the electronic parts of the mode. This can be
achieved by puncturing the metallic surface with arrays of
subwavelength apertures. Such textured interfaces are known
to strongly alter the radiative and nonradiative dampings of
SPPs �Refs. 4 and 5� to allow strong light confinement
regimes6 or to create a new family of bounded modes for
interfaces with very large metal conductivities.7–9

Despite their importance and while much effort has been
devoted to the characterization of their optical properties,
there has been little theoretical work on surface modes sup-
ported by periodically textured interfaces. A microscopic
model based on the scattering of SPPs has been recently
derived.10 Although it provides a clear foundation for the
existence of the mode, it relies on fully vectorial calculations
that prevent full analiticity. Some analytical investigations
have been conducted but only for perfectly conducting
screens and for asymptotic situations �hole array with period
much smaller than the wavelength�.8,9,11,12 Finally, numerical
studies have been performed at optical frequencies with fully
vectorial computations.13 Although the latter treatment is vir-
tually exact at all frequencies and allows a quantitative
agreement with experiments, it is rather computationally de-
manding and lacks from sufficient physical insight. As a con-
sequence, one usually uses the analytical expression of the
flat-interface SPP for the design or the interpretation of ex-
perimental results. Unfortunately, this drastic approximation
results in systematic frequency deviations with experimental
observations and in the impossibility of taking into account
the impact of the aperture geometry.14–18

In this paper, we present a formalism that yields explicit
formulae for the energy and the lifetime of surface modes

supported by textured interfaces. The formalism developed
in Sec. II is based on the definition of a specific periodic
surface impedance for the textured metal. It leads to a simple
analytical treatment. The surface mode dispersion relation is
determined by a 3�3 matrix whose coefficients are given by
closed-form expressions. In these expressions, the aperture
geometry and the metal conductivity appear explicitly, thus
allowing a simple understanding and engineering of the op-
tical properties of textured metallic surfaces. In Sec. III, the
model is used to finely analyze the band structure of a me-
tallic square array. Comparisons with fully vectorial compu-
tational results evidence that the 3�3 matrix treatment is
able to accurately predict the complex dispersion relation of
the surface modes with the lowest energies. Deviations are
only observed for high-energy bands. Section IV discusses
the influence on the surface properties of various parameters
such as the metal conductivity, the aperture area, and the
aperture shape. Comparisons with experimental results fur-
ther validate the model. In addition to its simplicity that may
be useful for further engineering textured metallic surfaces,
the analytical treatment allows for an in-depth understanding
of all the various physical and geometrical parameters that
govern the plasmonic properties of periodically textured sur-
faces.

II. SURFACE-IMPEDANCE MODEL

We consider an interface between two semi-infinite re-
gions �I� and �II� �see Fig. 1�. All materials are nonmagnetic.
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FIG. 1. �Color online� Interface between a dielectric half space
�region I� and a metallic substrate perforated by a lattice of semi-
infinite apertures �region II�. The propagation of SPP modes in the
x direction is schematically represented in red.
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Region �I� is a homogeneous dielectric medium �permittivity
�I�. Region �II� is composed of a metallic medium �permit-
tivity �II� drilled with a rectangular array �periods dx and dy�
of subwavelength apertures that are filled with a dielectric
material �permittivity �a�. The apertures fill factor is denoted
by �. We restrict ourselves to surface modes with ky =0.

Let us first briefly consider the case of a flat interface �
=0. In every uniform region, the electromagnetic field is a
plane wave with a complex wave vector ki=kxux+kziuz, i
=I , II. The SPP mode propagating along the surface exists
only in TM polarization �Hz=0�. Its dispersion relation can
be obtained by writing the continuity of the tangential fields
across the interface, EtI=EtII and HtI=HtII. We can introduce
in these continuity relations the surface impedance Zi of each
uniform half space defined by19

Eti = Zini � Hti, �1�

where ni is a unit vector normal to the interface �nI=−uz and
nII=uz� and Zi=kzi /��0�i. Finally, the dispersion relation of
the flat-interface SPP is simply given by4

ZI + ZII = 0. �2�

Hereafter, we generalize this well-known expression for sur-
face modes supported by periodically textured interfaces.
The key point is to define a surface impedance for the me-
tallic region perforated by periodic apertures.

A. Surface impedance of the uniform dielectric region

To derive the dispersion relation of the surface modes
supported by the periodic interface in Fig. 1, we follow the
same method as for the flat surface and write the continuity
of Et and Ht across the interface. Therefore, in the following,
we only consider the expressions of the tangential fields.
Moreover, like in the flat-interface case, only TM-polarized
plane waves �Hz=0� are considered in the following descrip-
tion.

In the uniform half space defined by region �I�, the elec-
tromagnetic field can be rigorously written as a Rayleigh
expansion,13

EtI�x,y,z� = �
n,p

EtI
�n,p�ei�kx

�n�x+ky
�p�y+kzI

�n,p�z�, �3a�

HtI�x,y,z� = �
n,p

HtI
�n,p�ei�kx

�n�x+ky
�p�y+kzI

�n,p�z�. �3b�

Equations �3a� and �3b� are discrete sums of plane waves
where kx

�n�=kx+n2� /dx, ky
�p�= p2� /dy, and kx

�n�2+ky
�p�2

+kzI
�n,p�2=�Ik0

2, with k0=2� /�. Without any approximation,
one may associate a surface impedance to every plane wave
�n , p�,

EtI
�n,p� = − ZI

�n,p�uz � HtI
�n,p�, �4�

where ZI
�n,p�=kzI

�n,p� /��0�I.

B. Surface impedance of the nanostructured metallic region

In the periodically textured half space �region �II��, the
electromagnetic field can be rigorously written as a Bloch-

mode expansion.13 However, some approximations are nec-
essary to be able to define a surface impedance for the tex-
tured metal. They all rely on the opacity of the metal and on
the small aperture size compared to the wavelength and the
period.

�1� In the apertures, we use a single-mode approximation.
The field is described by the guided mode of an isolated
hole, and we assume that a surface impedance Za can be
introduced by using the definition of the impedance for a
perfect metal waveguide provided that the calculation of the
propagation constant � is performed by using the real metal
permittivity with a finite conductivity. The hole mode, in
general the fundamental evanescent one, is selected accord-
ing to symmetry considerations, as will be discussed later.

�2� In the metal, we assume that the solution in the limit
of infinitely small apertures remains valid. The field is then
given by a Rayleigh expansion similar to Eq. �3�, and a sur-
face impedance Zm

�n,p� can be introduced for every plane wave
�n , p�.

The single-mode approximation and the continuity of Ht
at z=0 allow us to write the tangential electric field in the
apertures as

EtII
ap�x,y,0� = �

n,p
Zauz � HtI

�n,p�ei�kx
�n�x+ky

�p�y�. �5�

In the limit of infinitely small apertures, the field in the metal
is given by a discrete sum of plane waves

EtII
met�x,y,z� = �

n,p
A�n,p�ei�kx

�n�x+ky
�p�y−kzII

�n,p�z�, �6a�

HtII
met�x,y,z� = �

n,p
B�n,p�ei�kx

�n�x+ky
�p�y−kzII

�n,p�z�, �6b�

where kx
�n�2+ky

�p�2+kzII
�n,p�2=�IIk0

2. Moreover, the continuity of
the tangential field implies that A�n,p�=EtI

�n,p� and B�n,p�

=HtI
�n,p�. Like in region �I�, one may associate a surface im-

pedance Zm
�n,p�=kzII

�n,p� /��0�II with every plane wave �n , p�,
and finally the tangential electric field in the metal can be
written as

EtII
met�x,y,0� = �

n,p
Zm

�n,p�uz � HtI
�n,p�ei�kx

�n�x+ky
�p�y�. �7�

Equations �5� and �7� can be straightforwardly rewritten
as a single expression that defines a periodic surface imped-
ance for the textured region �II�,

EtII�x,y,0� = �
n,p

ZII
�n,p��x,y�uz � HtI

�n,p�ei�kx
�n�x+ky

�p�y�, �8�

with

ZII
�n,p��x,y� = � Za = 	0�/� in the holes

Zm
�n,p� = kzII

�n,p�/��0�II in the metal.
� �9�

In Eq. �9�, Zm
�n,p� is the impedance of the plane wave �n , p� in

the metal and Za is the impedance of the hole mode. The
latter is chosen among the less attenuated modes of the me-
tallic waveguide �in general the fundamental evanescent
mode�, which appear to be TE polarized. For TE-guided
modes, Za=	0� /� where � is the propagation constant of
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the mode. The selection rules for the guided mode also in-
clude some symmetry considerations, as will be discussed
later.

By taking advantage of the periodicity of ZII
�n,p��x ,y� in

Eq. �8�, we can write the continuity of Et in the Fourier
space, which leads to the following relation between the
Fourier components of the electric and magnetic fields:

EtI
�n,p� = �

q,l
Zn−q,p−l

�q,l� uz � HtI
�q,l�, �10�

where Zn−q,p−l
�q,l� are the Fourier coefficients of the periodic

surface impedance ZII
�q,l��x ,y�.

Let us emphasize that, in contrast to previous
approaches,8 the use of a specific periodic impedance for the
perforated metal allows us to take into account the effect of
the finite conductivity of the metal. Moreover, Eq. �10�
shows that the Fourier components of the field are coupled
together through the Fourier coefficients of the impedance. A
similar result is classically obtained in periodic dielectric
media, such as photonic crystals, where the Fourier compo-
nents of the field are coupled together through the Fourier
coefficients of the permittivity.20 Equation �10� evidences
that within the model approximations, the descriptions of the
Bloch modes propagating in a photonic crystal and of those
supported by a perforated metallic surface are conceptually
identical; the periodic permittivity being simply replaced by
a periodic surface impedance. Evidencing this analogy is an
important result of the model.

C. Dispersion matrix

With the expressions of the surface impedance in regions
�I� and �II� given by Eqs. �4� and �10�, the continuity relation
can be written as

∀�n,p�,�
q,l

�ZI
�n,p�
n−q,p−l + Zn−q,p−l

�q,l� �uz � HtI
�q,l� = 0. �11�

In this matrix equation D · �uz�Ht�=0, the size of the dis-
persion matrix D depends on the number of plane waves
considered in the Rayleigh expansions. The surface modes
are the complex-frequencies solutions of det�D�=0 calcu-
lated for real values of kx in the first Brillouin zone. The
nondiagonal terms of D �line �n , p�, column �q , l�� are given
by the Fourier coefficients Zn−q,p−l

�q,l� of the periodic surface
impedance of the textured metal. The diagonal terms of D
are equal to ZI

�n,p�+ �ZII
�n,p�	, where �ZII

�n,p�	=Z00
�n,p�=�Za+ �1

−��Zm
�n,p� is the average surface impedance of the textured

metal.
The matrix coefficients clearly evidence the physical na-

ture of the surface modes supported by a textured metallic
interface. The diagonal terms characterize an effective sur-
face mode that propagates on an effective flat interface with
an impedance equal to the average impedance �ZII

�n,p�	. Its
value is driven by the metal conductivity and the aperture
shape and size as will be discussed in Sec. IV. The dispersion
relation of this effective mode is folded inside the first Bril-
louin zone because of the periodic nature of the surface; each
folded branch corresponding to a plane wave �n , p� in the
Rayleigh expansion �see Eq. �3��. Moreover, because of the

nondiagonal terms, the different folded branches correspond-
ing to the average impedance contribution are coupled to-
gether through the higher-order Fourier coefficients of the
periodic impedance Zn−q,p−l

�q,l� . These Fourier coefficients rep-
resent the coupling strength between the waves �n , p� and
�q , l� introduced by the nanostructuration. Intuitively, this
coupling that additionally brings radiative damping into play
will be important only for kx values corresponding to the
crossing of several folded branches and it will mainly in-
volve the plane waves associated with this crossing.

In the following, we restrict ourselves to the surface
modes with the lowest frequencies and we neglect the
coupling between the x and y directions. The matrix D then
splits into two independent 3�3 submatrices and, as
we shall see, only three plane waves are sufficient to
accurately describe the surface mode; these waves
are labeled by �n , p�= 
�−1,0� , �0,0� , �+1,0�� and
�n , p�= 
�0,−1� , �0,0� , �0, +1��. Let us emphasize that by in-
cluding the propagating zero order, which represents the cou-
pling to far-field radiation, the treatment accounts for the
total losses �radiative and nonradiative� of the surface modes.
The 3�3 matrix describing the dispersion relations of the
surface modes associated with the ��1,0� plane waves is
given by

�ZI
�−1,0� + �ZII

�−1,0�	 Z−10
�0,0� Z−20

�1,0�

Z10
�−1,0� ZI

�0,0� + �ZII
�0,0�	 Z−10

�1,0�

Z20
�−1,0� Z10

�0,0� ZI
�1,0� + �ZII

�1,0�	

 .

�12�

A similar matrix describes the dispersion relations of the
surface modes associated with the �0, �1� waves,

�ZI
�0,−1� + �ZII

�0,−1�	 Z0−1
�0,0� Z0−2

�0,1�

Z01
�0,−1� ZI

�0,0� + �ZII
�0,0�	 Z0−1

�0,1�

Z02
�0,−1� Z01

�0,0� ZI
�0,1� + �ZII

�0,1�	

 .

�13�

These expressions of the dispersion matrix are valid for any
aperture shape. In the following, we restrict ourselves to rect-
angular apertures of width wx and wy. In this case, the Fou-
rier coefficients of the periodic surface impedance ZII

�n,p��x ,y�
are given by

Z00
�n,p� = �ZII

�n,p�	 = �Za + �1 − ��Zm
�n,p�, �14a�

Zql
�n,p� = ��Za − Zm

�n,p��sinc�q�
wx

dx
�sinc�l�

wy

dy
� , �14b�

where �=wxwy /dxdy is the apertures fill factor and sinc�x�
=sin�x� /x. These coefficients obey the following symmetry
properties: Zql

�n,p�=Z−ql
�n,p�=Zq−l

�n,p�=Z−q−l
�n,p�. Moreover, an analyti-

cal expression of the propagation constant � of the hole
mode can be obtained as a function of the optogeometrical
parameters �II, �a, wx, and wy.
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III. SURFACE MODES OF A SQUARE ARRAY

In this section, we analyze the band structure of a silver/
air interface perforated by a square array of square holes of
width w=280 nm and period dx=dy =d=750 nm. The per-
mittivity of silver is taken from Ref. 22 and �I=�a=1. The
model predictions for this interface are validated by compari-
son with the results of a three-dimensional �3D� fully vecto-
rial calculation performed with the Fourier modal method.13

We first discuss the dispersion diagram and the lifetime of
the surface modes supported by this square array. Then we
interpret an unexpected feature in the dispersion diagram
evidenced by fully vectorial computations, namely, the ap-
pearance of a double plasmonic band gap. Finally, we link
the model predictions to experimental results by discussing
the free-space coupling of surface modes.

A. Dispersion diagram

The dispersion curves of the surface modes predicted by
the 3�3 matrix treatment are shown in Fig. 2�a� with thick
red curves. There are four branches associated with ��1,0�
and �0, �1� plane waves. In this square lattice structure,
these four modes are coupled together in the center of the
Brillouin zone. Within the model, the coupling between
��1,0� waves is treated independently of the coupling be-

tween �0, �1� waves. The surface modes associated with the
��1,0� waves correspond to the lower and upper modes in
Fig. 2�a� �curves labeled Sx and Ax�. They are mainly SPPs
propagating in the x direction along an effective flat interface
with an average impedance �ZII

�−1,0�	 and �ZII
�1,0�	, respectively.

For kx=0, these two counter-propagating modes couple to-
gether through the Z20

�−1,0� and Z−20
�1,0� Fourier coefficients of the

impedance �see Eq. �12��. The coupling results in the appear-
ance of a band gap between symmetric �low-frequency mode
Sx� and antisymmetric �high-frequency mode Ax� standing
waves, like in one-dimensional �1D� structures.23 A similar
analysis can be made for the two other surface modes asso-
ciated with �0, �1� waves and labeled Sy and Ay, and—since
the holes and the unit cell are square—there is a single band
gap for kx=0 between two modes with a double degeneracy.
To take into account the symmetry difference of the surface
modes for kx=0, the Sx �respectively, Sy� branch in Fig. 2�a�
is calculated with the fundamental symmetric TE01 wave-
guide mode of the apertures �respectively, TE10� and the Ax
and Ay branches are calculated with the antisymmetric hole
mode with the lowest in-plane momentum: TE11.

The dispersion curves have also been calculated with a
3D fully vectorial treatment �Fourier modal method� using
�15 Fourier harmonics in x and y directions �blue curves in
Fig. 2�a��. The results of the analytical model are in very
good agreement with the vectorial Fourier calculations for
the three lowest bands Sx, Sy �symmetric modes�, and Ay
�antisymmetric mode�.

B. Mode lifetime

Figures 2�b� and 2�c� further validate the model predic-
tions for the complex frequency ��+ i�� of the Sx, Sy, and Ay
surface modes as a function of the hole width w. A good
agreement between the surface-impedance model �red
curves� and fully vectorial calculations �blue points� is dem-
onstrated for hole widths up to nearly d /2. It is worth em-
phasizing that the total lifetime of the surface modes given
by the imaginary part �� is accurately predicted by the 3
�3 dispersion matrix, even for large holes that induce strong
radiation losses.

Figure 2�c� shows very low and almost constant damping
for the antisymmetric mode Ay, due to the absence of radia-
tive coupling for kx=0. On the contrary, radiation losses
through the propagating �0,0� plane wave are predominant
for the Sx and Sy modes, and the aperture widening induces a
strong increase in the losses.

C. Second plasmonic band gap

The model predictions are found to be inaccurate for the
upper branch Ax in the center of the first Brillouin zone and
also for larger kx values �see Fig. 2�a��. For kx=0, the fully
vectorial calculations reveal the appearance of a second band
gap between the Ax and Ay modes. This result shows that in
a two-dimensional �2D� array, the x and y directions shall not
be treated independently because of the weak coupling be-
tween the ��1,0� and �0, �1� plane waves through the
��1, �1� grating vectors. This coupling lifts the degeneracy
between the antisymmetric modes. Hence, for kx=0, the
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FIG. 2. �Color online� Model validation for a silver/air interface
perforated by a 2D square array of square holes. �a� Dispersion
diagram �width w=280 nm, period d=750 nm, and �I=�a=1�.
Thick red curves: analytical model predictions. Each curve is cal-
culated with a single TExx waveguide mode in the apertures as
follows: �Sx ,TE01�, �Sy ,TE10�, �Ax ,TE11�, and �Ay ,TE11�. Thin blue
curves: results obtained with the fully vectorial modal method �Ref.
13�. Dashed black lines: Rayleigh anomalies �grazing incidence
condition for each diffracted wave�. The surface modes can be ex-
cited by either TM polarized �solid curves� or TE-polarized �dashed
curve� incident plane waves �see the discussion in Sec. III D�. �b�
Real and �c� imaginary parts of the complex frequency �=��
+ i�� for the Sx, Sy and Ay modes as a function of the hole width for
kx=0. Model predictions �solid red curves� are compared to Fourier
calculations �blue dots�.
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modes Ax and Ay should not be described anymore as a
standing wave resulting from the superposition of two
counter-propagating surface waves, like in 1D structures, but
rather as a standing wave resulting from the superposition of
four surface waves �see Fig. 3�. Such a coupling is allowed
between the antisymmetric modes Ax and Ay, whereas it is
forbidden for symmetry reasons between the symmetric
modes Sx and Sy, which remain degenerate �see the blue
curves in Fig. 2�a��.

Figure 3 shows the magnetic field intensities of the four
surface modes calculated with the Fourier modal method for
kx=0 and kx=0.21� /d. In Fig. 3�a�, the distributions of the
in-plane components of the magnetic field �Hx and Hy� evi-
dence the symmetric and antisymmetric standing waves re-
sulting from the coupling between two surface waves �Sx and
Sy� and four surface waves �Ax and Ay�. These coupled
modes are schematically represented by the red arrows in
Fig. 3�a�, where the plus and minus signs represent the sym-
metric and antisymmetric natures of the coupling. In addi-
tion, the magnetic field z component Hz a posteriori validates
the main approximation of the surface-impedance model,
namely, the single TE mode approximation for the field in
the hole. According to the magnetic field z component Hz,
the hole modes are TE01, TE10, and TE11 for Sx, Sy, and Ay
bands, respectively. However, for the Ax mode, the predomi-
nant waveguide mode in the apertures is a superposition of
two antisymmetric hole modes, namely, TE11 and TE33. This
field calculation evidences why the surface-impedance
model based on a single-mode approximation in the holes
cannot predict the second band gap.

As soon as kx�0, the intricate four-waves mixing no
longer holds. Figure 3�b� shows that the four surface modes
can be accurately described with a single-mode approxima-
tion in the apertures and a one wave �Sx and Ax� or two-wave
�Sy and Ay� picture above the metal. The slope of the Ax
branch is not well predicted by the surface-impedance model
in Fig. 2�a� since it has been calculated by using the antisym-
metric TE11 hole mode. In fact, Fourier calculations show
that as soon as kx�0.2� /d the predominant mode in the

holes is the symmetric one TE01 �see Fig. 3�b��. We have
checked that the asymptotic behavior of the Ax mode for
large kx values can be predicted by the model by using the
TE01 hole mode in the dispersion matrix. The physical
mechanism inducing this asymptote d /��1.05 is the prox-
imity of the cut-off frequency of the TE01 mode, leading to a
greater penetration depth into the apertures.

D. Free-space coupling

The magnetic field symmetries observed in Fig. 3 allow
us to define the following selection rules for the external
excitation of the surface modes by an incident plane wave,
depending on its polarization. A TM-polarized incident plane
wave with ky =0 possesses a magnetic field oriented along
the y axis and can only excite surface modes whose Hy com-
ponents are symmetric with respect to the x axis; namely Sx,
Ax, and Ay modes �solid curves in Fig. 2�a��. Similarly, TE-
polarized incident plane waves can only excite the Sy mode
�dashed curve in Fig. 2�a��. It is important to notice that the
excitation of antisymmetric modes �Ax ,Ay� vanishes at nor-
mal incidence due to symmetry reasons.

These selection rules include all surface modes supported
by a two-dimensional perforated interface. They are impor-
tant for the interpretation of the resonant features appearing
in transmission and reflection spectra of metallic films tex-
tured with a two-dimensional array of subwavelength aper-
tures. Let us emphasize that the selection rules derived from
the model shed a different light on previous angle-resolved
experimental14 and theoretical13 transmission spectra. In
these works, the spectra were interpreted by using only two
surface modes �Sx and Ax�, like in 1D structures, instead of
four. Actually, a careful analysis of Fig. 2�a� in Ref. 14
shows that the experiment indeed reveals three different
bands, which can be associated to the excitation of Sx, Ax,
and Ay modes by TM-polarized incident light. These three
bands also appear in other recent angle-resolved
experiments.24 It is worth noticing that these selection rules
remain valid in anisotropic plasmonic crystals �dx�dy�.25 In
this case, the degeneracy between the symmetric modes Sx
and Sy is lifted. If dx
dy, a coupling between the modes Sx
and Ay occurs for nonzero wave vectors leading to a band
gap between two coupled modes that can be described with a
three-waves picture.26 Although the model cannot predict the
band-gap width, it can accurately predict the crossing posi-
tion in the �� ,k� space as a function of all array parameters,
including the aperture shape and size.

IV. INFLUENCE OF THE HOLE GEOMETRY

In this section, we take advantage of the analytical char-
acter of the model to derive simple trends for the dispersion
relation of the surface mode with the lowest energy as a
function of various geometrical parameters. In particular, we
study the influence of the metal conductivity, the aperture
area, and the aperture shape. Comparisons with experimental
data further validate the model predictions and elucidate the
origin of the fine resonance changes achieved by tuning the
aperture shape.

(a) (b)kx = 0 kx = 0.21π/dy
x |Hy|2 |Hz|2|Hx|2|Hx|2 |Hy|2 |Hz|2

Ax

Ay

Sy

Sx

Ax

Ay

Sy

Sx

FIG. 3. �Color online� Magnetic field intensity of the four sur-
face modes calculated with the Fourier modal method. �a� For kx

=0. �b� For kx=0.21� /d. The field intensity is plotted on the inter-
face �z=0� for a single period. High �respectively, low� intensity
regions are shown in red �respectively, blue�. Red arrows indicate
the propagation direction of each single wave involved in surface
modes, and the plus and minus signs show the symmetric and an-
tisymmetric natures of the coupling.
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A. Respective influence of the metal conductivity
and the aperture area

In order to get further physical insight into the impact of
the aperture size and shape on the surface modes, let us
neglect the coupling between the different plane waves. Ac-
cording to the surface-impedance model, the dispersion rela-
tion of every folded branch �n , p� is then simply given by

ZI
�n,p� + �Za + �1 − ��Zm

�n,p� = 0. �15�

In Eq. �15�, the influence of the hole shape and size is con-
tained in the average surface impedance of the textured
metal, which is simply driven by the propagation constant of
the hole mode � �through the hole impedance Za� and the
apertures fill factor �.

Figure 4 shows the dispersion curve of the Sx surface
mode calculated with different degrees of approximation.
The influence of the coupling between counter-propagating
surface waves is revealed by the comparison between the 3
�3 matrix calculation �dashed red curves� and Eq. �15� �blue
curve�. It shows that the couplings induce a small redshift in
the center of the first Brillouin zone, but they are negligible
in the calculation of the real part of the surface mode fre-
quency as soon as kx�0.

Additional approximations are now considered to clarify
the influence of the apertures on surface modes. Considering
infinitely small apertures ��→0� in Eq. �15� leads to the
folded dispersion relation of the flat-interface SPP: ZI

�−1,0�

+Zm
�−1,0�=0 �dark curve in Fig. 4�. Opening apertures in the

smooth surface induces an increase in the average impedance
because of the greater penetration depth in the apertures than
in the metal ��Za�� �Zm

�−1,0���. This average impedance in-
crease results in a redshift of the dispersion curve for increas-
ing hole widths. This is illustrated by the difference between
the dark and blue curves in Fig. 4 �see also the hole width
dependence of Sx, Sy, and Ay modes for kx=0 in Figs. 2�b�
and 2�c��. This behavior predicted by the model and con-
firmed by Fourier calculations is in agreement with previous
transmission experiments through drilled films.15–17

If perfect metal is considered �Zm
�−1,0�=0�, the dispersion

relation given by Eq. �15� leads to the “spoof surface-
plasmon” model described in Refs. 8 and 9: ZI

�−1,0�+�Za=0
�green curve�. The difference between the green and blue
curves demonstrates that the finite conductivity of the metal
cannot be neglected. As a whole, Fig. 4 shows that the aver-
age surface impedance provides a mesoscopic description of
surface modes on 2D metallic structures.

B. Influence of the aperture shape

In the last part, we focus on the model capability to pre-
dict fine resonance changes achieved by tuning the aperture
shape. For this purpose, we compare the model predictions
with transmission measurements carried out by van der
Molen et al.18 through gold films deposited on BK7 sub-
strates �optical index ns� and drilled with rectangular holes
with a constant hole area ��=12% and d=425 nm�. Experi-
ments have shown that the hole shape wy /wx strongly influ-
ences the resonance wavelength of the extraordinary trans-
mission at normal incidence. This is illustrated in Fig. 5,
where the wavelengths of the transmission peaks in Ref. 18
are shown as a function of the aspect ratio �black marks�. At
first sight, one may expect that the model would not predict
this dispersive behavior obtained for constant �. Actually,
this is not true. The red curve in Fig. 5 shows the model
predictions for the Sx band at kx=0 and for a gold permittiv-
ity given by a Drude model �m=1−�p

2 / ��2+ i���, �p=1.2
�1016 s−1 and �=1.3�1014 s−1, and ns=1.52. Quantitative
agreement with the experimental results is achieved; the
slight difference being potentially attributed to an inevitable
coupling for finite metal thicknesses of the BK7/gold surface
mode with the air/gold surface mode in the experiment.13

Referring to Eq. �15�, the strong wavelength shift is under-
stood as an enhancement of the hole impedance Za. Physi-
cally, this behavior is the consequence of an enhanced pen-
etration depth into the rectangular apertures, due to a
decrease in the cut-off frequency of the fundamental TE01
hole mode as wy /wx increases.21 As one approaches the cut-
off, the surface mode is more and more governed by the hole
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FIG. 4. �Color online� Surface mode Sx calculated with different
degrees of approximation: analytical surface-impedance model with
a 3�3 dispersion matrix �red dashed curve� and without coupling
�blue curve�, assuming perfect metal �green curve�, assuming infi-
nitely small holes �flat interface, solid dark curve�, and Rayleigh
anomaly �thin dark dashed line�, which corresponds to the flat in-
terface with perfect metal.
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FIG. 5. �Color online� Influence of the aspect ratio wx /wy of
rectangular holes on surface-plasmon resonances. The transmission
resonance wavelengths measured through a drilled gold film are
taken from Ref. 18 �black marks�. They are compared with the
position of the Sx mode calculated with the analytical model for
kx=0 �red curve�. Horizontal dark line: SPP wavelength of the flat
gold/substrate surface. Inset: dispersion curves of the fundamental
Sx mode for four different aspect ratios.
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mode. The cut-off frequency decrease for large aspect ratios
does not only induce a redshift of the surface mode energy
for kx=0 but also a strong flattening of the entire Sx band, as
evidenced in the inset of Fig. 5.

V. CONCLUSION

In summary, we have derived closed-form expressions for
the dispersion relation of surface modes supported by metal-
lic surfaces perforated by 2D arrays of subwavelength aper-
tures. The model predictions that take into account the radia-
tive and nonradiative damping of the mode are in
quantitative agreement with fully vectorial Fourier calcula-
tions and with recent experimental results. Vectorial calcula-
tions have shown that the biperiodicity induces an unex-
pected coupling between orthogonal SPP waves that leads to
a double plasmonic band gap in the center of the first Bril-

louin zone. The model sheds a different light on previous
experiments and clarifies the impact on the surface modes of
a number of geometrical and material parameters such as the
aperture shape and size or the metal conductivity. Indeed, the
model evidences that the surface mode of a textured interface
can be mainly described by the dispersion relation of a flat
interface provided that the metal be replaced by an average
metallic medium whose effective properties depend on the
optogeometrical parameters of the surface �see Eq. �15��. The
formalism described in this paper is then very simple and
provides an efficient tool for further engineering of plas-
monic devices and metallic metamaterials.
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