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We present the range of optical architectures for imaging systems based on a single optical component, an
aperture stop, and a detector. Thanks to the formalismof third-order Seidel aberrations, several strategies
of simplification andminiaturization of optical systemsare examined. Figures ofmerit are also introduced
to assess the basic optical properties and performance capabilities of such systems; by this way, we show
the necessary trade-off between simplicity, miniaturization, and optical performance. © 2011 Optical
Society of America
OCIS codes: 110.3925, 220.1010, 220.4830, 110.4190.

1. Introduction

There is currently a need for miniaturized and cheap
imaging systems for both military and civilian appli-
cations. To reduce their size and their mass, imaging
systems have to be as simple as possible, which
means that they have to involve a minimal number
of optical elements. In this paper, the simplest sys-
tem is defined as a system which is composed of only
three elements: a single optical component, an aper-
ture stop, and a detector. These elements can be
complex if needed. For example, optics can involve
aspheric surfaces or diffractive optical elements, or
can be a microlens array with a complex shape.
The detector can also be curved. Indeed, a curved im-
age surface would provide a way to lower the number
of optical elements and to reduce the amount of off-
axis aberrations [1], since all rays would fall quite
perpendicularly to the surface of the detector.

The design of such simple systems has been widely
addressed in many papers over the past decades. We
can quote, for example, systems involving curved
detectors [1], multichannel systems inspired by the
compound eyes of insects [2–7], multichannel sys-

tems based on the TOMBO principle [8], lenseless
imagery [9–17], and folded imaging systems [18,19].
Therefore, choosing the suitable system for a given
application among all these concepts is often not
obvious for an optical designer. The objective of this
paper is to give design rules for simplified and
miniaturized systems.

Somepapers [20,21] aimat evaluating the impact of
the breakthrough with standard complex systems on
imagequality: in [20], scaling rules for optical systems
are described and evaluated in terms of image quality
through the introduction of the space-bandwidth pro-
ductparameter.Reference [21] givesanewmerit func-
tion which takes into account the field of view, the
angular resolution, the sensitivity, and the volume
of the optical system in a single equation. It compares
the quality of two types of systems, a multichannel
system and a folded annular system, to a nominal
“classic” optical system, by evaluating the perfor-
mancemetric for eachsystem. In thispaper,weextend
the classification of existing simple and miniaturized
systemswhich canbe found in literature thanks to the
study of third-order Seidel aberrations.

Section 2 recalls the formalism of third-order
Seidel aberrations, which aims at giving a general
expression of the maximal amount of fourth-order
wave aberration at the edge of the exit pupil and
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for a maximal field of view. This equation can be ex-
pressed as a function of the focal length, the field of
view, and the f -number of the optical system, as well
as the refractive index of the material, the bending of
the lens, and the position of the aperture stop in the
particular case of a single lens. From this equation, it
turns out that different strategies can be lead to sim-
plify an optical system. Section 3 is a review of these
strategies, leading to the development of optical sys-
tems based on a single component, an aperture stop,
and a detector. Through the introduction of different
figures of merit, we evaluate the impact of using a
single optical component on image quality, and sev-
eral solutions are proposed to overcome limitations
and to maintain a good optical quality.

2. Definition of the Maximal Wave Aberration

A. Definition of the Wave Aberration

We consider a rotationally symmetrical optical
system. If this optical system is limited by the diffrac-
tion, its exit pupil function is described by a function
ps0

ðr;φÞ, which is the geometrical image of the aper-
ture stop of the system [22]. The parameters r and φ
are the coordinates in the exit pupil plane (see
Fig. 1). The function ps0

ðr;φÞ is equal to 0 outside
the pupil and to 1 inside the pupil if the illumination
of the pupil is uniform.

In the general case, the optical system may not be
limited by the diffraction because of aberrations;
therefore, the exit pupil function psðr;φ; r0Þ is modi-
fied in the following way [23]:

psðr;φ; r0Þ ¼ ps0
ðr;φÞ exp

�

i
2Π

λ
Wðr;φ; r0Þ

�

: ð1Þ

The function psðr;φ; r0Þ is referred to as the general-
ized pupil function. The parameter r0 is the coordi-
nate in the image plane (see Fig. 1).

The function Wðr;φ; r0Þ is called the wave aberra-
tion. It is defined as the optical path difference be-
tween a reference sphere, which is centered on the
Gaussian image of the object point, and the real wave
surface at the exit pupil of the optical system.

The power series expansion of W can be written in
the following form [24]:

W ¼ Wð0Þ þWð4Þ þWð6Þ þWð8Þ þ…: ð2Þ
The general expression for the fourth-order wave
aberrations is given by the following equation [25]:

Wð4Þðr;φ; r0Þ ¼ −
1

4
Br4 þ Fr3r0 cosφ − Cr2r02 cos2 φ

−
1

2
Dr2r02 þ Err03 cosφ; ð3Þ

where B, F, C, D, and E are coefficients. These five
terms stand for third-order Seidel aberrations, re-
spectively, spherical aberration, coma, astigmatism,
field of curvature, and distortion.

B. Expressions of the Coefficients B, F, C, D, and E in

the Case of a Thin Lens

We can give simplified expressions for the coeffi-
cients B, F, C, D, and E if we consider an optical sys-
tem made of a single thin lens, for which the object
plane is at infinity (see Fig. 2). The thin lens is de-
scribed by three parameters: the curvatures of the
two refractive surfaces, C1 and C2, and the refractive
index of the lens material n. Let us introduce the op-
tical power P and the bending γ of the lens, which
take into account the three parameters of interest.
Their expressions are, respectively:

P ¼ 1

f
¼ ðn − 1ÞðC1 − C2Þ; ð4Þ

γ ¼ 1

2
ðC1 þ C2Þ: ð5Þ

Fig. 1. Illustration of the pupil coordinates r and φ and of the image plane coordinate r0.
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The coefficients B, F, C,D, and E can be expressed as
functions of the refractive index n, the optical power
P, the bending γ, and the distance t between the en-
trance pupil and the lens [26]:

B ¼ U; ð6Þ

F ¼ −tU þ V ; ð7Þ

C ¼ t2U − 2tV þ P

2
; ð8Þ

D ¼ t2U − 2tV þ nþ 1

2n
P; ð9Þ

E ¼ −t3U þ 3t2V − t
3nþ 1

2n
P; ð10Þ

where

U ¼ β

2
þ nð4n − 1Þ
8ðn − 1Þ2ðnþ 2ÞP

3

þ P

2nðnþ 2Þ ½ðnþ 2Þγ − ðnþ 1ÞP�2; ð11Þ

V ¼ P

2n

�

ðnþ 1Þγ −
�

nþ 1

2

�

P

�

: ð12Þ

In the expression of U, β stands for the aspheric
profiles of the surfaces of the lens: β ¼ ðn − 1Þðb1C3

1
−

b2C
3

2
Þ, where b1 and b2 are the conic constants of the

two surfaces of the lens.

C. Expression of the Maximal Wave Aberration

The number of optical elements which are needed to
correct the aberrations of an optical system is linked

to the amount of wave aberrations which is present
in the exit pupil plane of the optical system. The
maximum wave aberration which can be tolerated
at the edge of the exit pupil for a maximal field angle
is of particular interest.

We want the maximal field angle rays to intercept
the image plane at the edge of the detector, which is
supposed to be square sized, with a length tdet in each
direction. Therefore, the maximal value of r0 (coordi-
nate in the image plane) is r0max ¼ tdet=2. At the edge
of the exit pupil, the maximal value of r is rmax ¼
ϕs=2, where ϕs is the diameter of the exit pupil.
Under paraxial conditions, r0max and rmax can be ex-
pressed by the following relations: r0max ¼ fFOV=2
and rmax ¼ f =ð2#Þ, where FOV is the field of view
of the system and # its f -number (# ¼ f =ϕs). Then,
the maximal fourth-order wave aberration Wð4Þ can
be expressed as a function of f , FOV, and #:

W
ð4Þ
maxðf ; #;FOVÞ ¼ −

B

26

f 4

#4
þ F

24
FOV

f 4

#3
−
C

24
FOV2

f 4

#2

−
D

25
FOV2

f 4

#2
þ E

24
FOV3

f 4

#
: ð13Þ

W
ð4Þ
max also depends on the refractive index n, the

bending γ, and the position t of the pupil (these de-
pendences are contained in the terms B, F, C, D,
and E). To make things clearer, we give a simplified
expression ofW

ð4Þ
max as a function of n, γ, f , #, and FOV

in the case where the aperture stop is in the plane of
the thin lens (thus, t ¼ 0):

W
ð4Þ
maxðn; γ; f ; #;FOVÞ ¼ −

1

29

nð4n − 1Þ
ðn − 1Þ2ðnþ 2Þ

f

#4

−
1

27ðnþ 2Þ
f 3

#4

�

ðnþ 2Þγ

−
1

f
ðnþ 1Þ

�

2

þ nþ 1

25n
γf 3

FOV

#3

−
2nþ 1

26n
f 2

FOV

#3
−

1

25
f 3

FOV2

#2

−
1

26

nþ 1

n
f 3

FOV2

#2
: ð14Þ

Depending on which parameter is chosen to mini-
mizeW

ð4Þ
max (either n, γ, f , #, or FOV, and in the general

case t), a different optical architecture is obtained.

D. Influence of Reducing the Maximal Wave Aberration

on Traditional Figures of Merit

Usually, the Rayleigh criterion is used to evaluate
the maximal amount of aberration which can be tol-
erated in the optical system. The Rayleigh criterion
postulates that the maximal wave aberration
amount which can be tolerated at the edge of the exit

pupil is equal to λ=4 [27]. Therefore, if W
ð4Þ
max remains

inferior to λ=4, the optical system is limited by the
diffraction, and traditional figures of merit can be
used to evaluate the impact of the simplification

Fig. 2. (Color online) Illustration of a thin lens, an aperture stop
(which is the entrance pupil), and a detector. t is the distance
between the entrance pupil and the lens.
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and miniaturization of optical systems in reference
to a nominal “classic” optical system (for example,
a single thin lens). These traditional figures of merit
are recalled in the following subsections.

1. Angular Resolution and Number of Resolved
Points

The angular resolution instantaneous field of view
quantifies the ability of the optical system to distin-
guish small details [28]. It is linked to the maximum
spatial frequency νmax that can be resolved by the op-
tical system. νmax can be calculated as the ratio be-
tween the blur caused by the optical system and
its focal length. Two main factors contribute to the
blur caused by the optical system (the diffraction
spot size and the geometrical spot size), and it is com-
monplace to combine these effects by calculating the
square root of their quadratic sum [20]. As we have
just mentioned at the beginning of this section, we
consider that the optical system is limited by the dif-
fraction, so that the diffraction spot size becomes pre-
ponderant in relation to the geometrical spot size of
the optical system. Thus, IFOV can be expressed by
the following equation:

IFOV ¼ λ#

f
: ð15Þ

The number of resolved points is defined as follows:

Nb ¼
�

FOV

IFOV

�

2

: ð16Þ

By introducing Eq. (15) into Eq. (16), the number of
resolved points can be expressed in the following way
as a function of f , FOV, and #:

Nb ¼ f 2FOV2

λ2#2
: ð17Þ

Nb does not depend on n, γ, and t; therefore, it is sui-
table to play on these parameters to reduce the max-

imal amount of aberrations. However, like W
ð4Þ
max, Nb

is an increasing function of f and FOV, and it is a de-
creasing function of #. Thus, playing on f , FOV, and #

to minimizeW
ð4Þ
max results in a decrease of the number

of resolved points. A trade-off between the simplifica-
tion of an optical system and the number of resolved
points is sometimes necessary and it can be summar-
ized in the following way: “Bigger is better but small
is best” [29]. Having less resolved points is the price
to pay for widespread optical systems in simple and
cheap applications.

2. Étendue

The étendue is linked to the ability for an optical sys-
tem of collecting light. If we want to image a scene,
the étendue G is inversely proportional to the square
of the f -number for an object at infinity:

G ¼ Πtpix
2

4#2
: ð18Þ

In this paper, we consider that the size of the pixel is
adapted to the radius of the Airy pattern, thus, G no
longer depends on the f -number:

G ¼ 1:17λ2: ð19Þ

In this case, the étendue remains constant while
miniaturizing an optical system which is limited
by the diffraction.

3. Strategies for the Simplification and the

Miniaturization of Optical Systems

A. Playing on the Refractive Index, the Bending of the

Lens, and the Position of the Pupil

Simple considerations based on Eqs. (6)–(10) can be
carried out. We first consider that the entrance pupil
is in the plane of the lens (t ¼ 0). The bending γ ap-
pears both in the spherical aberration term (depen-
dence with γ2) and in the coma term (dependence
with γ). Therefore, two choices are possible for the va-
lue of γ. The first one consists of minimizing the sphe-
rical aberration, so that the suitable value of γ is
given by

γmin ¼ 1

f

nþ 1

nþ 2
: ð20Þ

The second one consists of canceling the coma aber-
ration; in this case, γ has to be chosen according to
the following equation:

γðcoma¼0Þ ¼
1

f

2nþ 1

2ðnþ 1Þ : ð21Þ

If we choose the bending according to Eq. (21), it is
possible to correct simultaneously spherical aberra-
tion and coma just by giving aspheric profiles to the
surfaces of the lens (β ≠ 0). If the pupil remains in the
plane of the lens, the astigmatism term cannot be
canceled; however, it can be reduced just by moving
away the pupil from the lens (t ≠ 0), which results in
introducing a little amount of coma, and distortion.
Field curvature can be reduced by choosing a high
refractive index of the material. This approach has
been used to design a simple system working in
the infrared spectral bandwidth. This simple system
is only composed of an aperture stop used as the en-
trance pupil of the system, a Silicon meniscus, and a
planar detector [30].

If playing on the refractive index, the bending, and
the position of the pupil is not sufficient to provide a
good optical quality, the traditional approach con-
sists of increasing the number of optical surfaces,
which often leads to increasing the number of optical
components. However, a method which increases the
number of optical surfaces while using a single opti-
cal component has already been proposed: the design
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is based on a folded imaging system which reflects
the optical path multiple times with concentric re-
flectors [18,19]. The limitation of such folded systems
is that the field of view is narrowed as the number of
reflective surfaces increases. However, it is possible
to maintain a constant étendue by keeping the area
of the pupil constant with respect to a classic nonobs-
cured system. Other approaches which consist of
playing on f , FOV, and # result in decreasing W

ð4Þ
max

without increasing the number of optical surfaces.
These approaches are described in the following
subsections.

B. Increasing the f-Number #: Lenseless Imagery

By choosing a high f -number for the optical system,
no focusing element is required to image a scene.
This corresponds to the simplest optical systems.
For example, the pinhole camera is only composed
of an aperture stop with a low-diameter value [9,10].

We note M the scaling factor, that is to say that
#2 ¼ M#1, where #1 is the f -number of a nominal
“classic” system. IFOV is thus affected in the follow-
ing way: IFOV2 ¼ MIFOV1, and the number of re-
solved points scales with 1=M2: Nb2 ¼ Nb1=M

2.
Note that the off-axis étendue can be improved if a

curved detector is associated with the pinhole [9].
The lowangular resolution IFOVprovided by a pin-

hole camera can be improved by using other lenseless
imaging systems, such as coded apertures. In the case
of coded apertures, the scene is no longer imaged by a
single pinhole, but by many pinholes properly ar-
ranged [11–13]. Other lenseless imaging concepts in-
volve a circular diffraction grating. It has been shown
that circular diffraction gratings, which belong to the
class of self-imaging objects, concentrate the light
along a focal line and therefore have an imaging prop-
erty [14,15]. Continuously self-imaging gratings
(CSIGs), which are also self-imaging objects, have
even been studied by using the formalism of third-
order Seidel aberrations [31]. This formalism enables
one to compare the performance of CSIGs with the
performance of classical lenses. Alternatives to circu-
lar diffraction gratings, such as diffractive optics or
holographic axilens, have also been studied for ima-
ging properties [16,17]. One of the advantages of all
lenseless imaging systems is their great depth of
focus.

C. Decreasing the FOV: Multichannel Insect’s Eyes

Another way to reduce the maximal amount of
fourth-order wave aberrations is to decrease the field
of view of the optical system (FOV2 ¼ FOV1=M).
Although IFOV remains the same in reference to a
nominal classic optical system, the number of re-
solved points decreases as 1=M2 (Nb2 ¼ Nb1=M

2).
However, if the solid angle is carefully divided into

M2 optical channels (all the channels having tilted
optical axes), the field of view, and thus the number
of resolved points, remains constant in reference to a
nominal classic optical system. This approach is di-
rectly inspired by the compound eyes of insects [2–7].

Therefore, the multichannel approach reduces the
field of view of each channel FOVe while keeping Nb

constant. However, great care must be taken because
the field of view of each channel (FOVe) depends on
the f -number of a single channel and is limited by the
geometrical design of the optical system, which
changes between curved and planar configurations.
Based on the notations of Fig. 3(a) for a curved sys-
tem and of Fig. 3(b) for a planar system, it turns out
that the f -number is linked to the field of view FOVe

of a single optical channel through the following
equations (provided the angles FOVe and θ are
small):

#curved ¼ 1

θ þ FOVe

; ð22Þ

for a curved system, where θ is the angle between the
axes of successive channels of the optical system, and

#planar ¼
1

FOVe

; ð23Þ

for a planar system. In the case illustrated in
Fig. 3(b), each channel has the same FOVe, and
the overall FOV will be increased by adding a beam
deflector at the top of the system, so that the optical
axes of the channels are tilted in respect to each
other.

As the angles FOVe and θ are small, they can be
expressed in the following way:

FOVe ≈
tdet
f

; ð24Þ

θ ≈
tdet
e

: ð25Þ

A simple ray tracing through the system shows that
if θ > FOVe (that is to say e < f ), spatial lacunarities
appear in the image because some areas of the scene
are not imaged by the system. In general, this case is
not suitable for practical imaging applications. If θ ¼
FOVe (that is to say e ¼ f ), which is illustrated in
Fig. 3(a), the scene is perfectly tiled between the dif-
ferent optical channels, and the overall field of view
FOV of the system is given by FOV ¼ MFOVe, where
M stands for the number of channels in one direction.
If θ < FOVe (that is to say e > f ), overlap areas are
provided between adjacent channels, which can help
to retrieve a single image from the collection of sub-
images provided by the multichannel system.

The f -number of a single optical channel is greater
for a planar system than for a curved one: therefore, it
is more convenient to design a curved system in order
to work with a lower value of #. The minimal f -
number for a curved system can be obtained by tiling
the scene into the different optical channels without
providing any overlap area between the channels. In
this case, the f -number of the curved system is given
by the following expression:
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#curved ¼ 1

2FOVe

; ð26Þ

so that

#curved ¼ #planar
2

: ð27Þ
That is why a curved microlens array associated with
a curved detector would convey the best results [32]
[this configuration is directly based on the apposition
compound eyes of the fly (see Fig. 4)].

From a practical point of view, the field of view
FOVe of one channel is chosen so that the maximum

amount of fourth-order wave aberration W
ð4Þ
max fulfils

the Rayleigh criterion (W
ð4Þ
max ≤ λ=4). Then, the opti-

mal number of channels Nch is linked to the desired
overall FOV of the system through the following
relation: Nch ¼ FOV=FOVe.

However, current state-of-the-art technology im-
plies the common use of planar components, such as
planar detectors and planar microlens arrays. Thus,
the design becomes more complex, because it has to
address two main difficulties (tilting the optical axis
of each channel by using a planar component and
suppressing cross talk between adjacent channels).
Other elements must be added to the design, such as
a beam deflector [7,8,33] or thin and long opaque
walls between the microlens array and the detector
[4,8].

D. Decreasing the Focal Length f : The TOMBO Principle

The final way to decreaseW
ð4Þ
max consists of decreasing

the focal length f of the system.However, according to
Eqs. (15) and (17), miniaturizing an optical system by
decreasing its focal length while maintaining a con-
stant FOV and a constant f -number results in a
decrease of the angular resolution IFOV and of the
number of resolved points Nb [20]: if f 2 ¼ f 1=M, then
IFOV2 ¼ MIFOV1 and Nb2 ¼ Nb1=M

2. This is illu-
strated in Fig. 5(a). Several solutions could be used
to compensate for this loss of resolved points [34].
One of these solutions is to design amultichannel sys-

tem by replicating a miniaturized imaging system
[see Fig. 5(b)], with each channel providing nonredun-
dant information. Each subimage is undersampled;
that is why an image processing method has to be ap-
plied to the set of undersampled subimages to obtaina
final image with an enhanced angular resolution. Ac-
cording to the sampling theorem of Papoulis [35], if
each subimage is undersampled by a factorM2, a sin-
gle image can be retrieved froma collection ofM2 non-
redundant subimages, avoiding a loss of information.
This approach relies on image reconstruction algo-
rithmswhich are based onnonredundant information
provided by the optical channels. To obtain this non-
redundancy, practical challenges have to be achieved,
such as introducing subpixel shifts between the sub-
images. These subpixel shifts can be obtained either
by choosing a microlens array pitch which is not a
multiple of the size of the pixel, or by tilting the optical
system in relation to the axes of the detector [34]. If
the relative subimage shifts are determined once
and for all by calibrating the camera, the image recon-
struction becomes impervious to changes in subimage
content, contrast, sharpness, and noise [36].

The Nyquist frequency of the detector is given by
fNy ¼ 1=ð2psÞ, where ps is the sampling pitch of the
detector. The size of the pixels tpix is inferior to the
sampling pitch (tpix ≤ ps), and we define the fill factor
F of the pixels by the following equation:

Fig. 3. (Color online) Illustration of a multichannel optical system (a) with curved components, (b) with planar components.

Fig. 4. Illustration of an apposition compound eye (which corre-
sponds to the eye of the fly), with a curved microlens array and a
curved retina in a convex shape (see [7]).
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F ¼
�

tpix

ps

�

2

: ð28Þ Thus, ps ¼ tpix corresponds to the case where the fill
factor of the pixels is equal to 1. We can only expect to
retrieve frequencies until the cutoff frequency of the

Fig. 5. (Color online) (a) Illustration of the miniaturization of an optical system by decreasing its focal length f , while maintaining a
constant f -number and a constant field of view, and illustration of the decrease of the number of resolved points. (b) Method to compensate
for the loss of resolved points by replicating an optical miniaturized system.

Fig. 6. (Color online) Illustration of the different strategies used to design a simple imaging system with a minimal number of optical
elements.
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pixel 1=tpix. Therefore, if the fill factor of the pixels is
equal to 1, the Nyquist frequency is fNy ¼ 1=ð2tpixÞ,
and a system based on the TOMBO principle with
two nonredundant channels in each direction would
enable one to retrieve frequencies until twice the
Nyquist frequency. If we want to retrieve frequencies
higher than twice the Nyquist frequency, the fill fac-
tor of the pixels has to be reduced in order to increase
the cutoff frequency of the pixels, and the number of
required nonredundant channels has to be increased.
The optimal number of nonredundant channels Nch

is given by the following equation:

Nch ¼ 2
ffiffiffiffi

F
p : ð29Þ

For example, if the fill factor of the pixels is equal to
F ¼ 0:25 (that is to say tpix ¼ ps=2), the optimal num-
ber of nonredundant channels is Nch ¼ 4. The pro-
blem which arises in image reconstruction is that
the contrast of high frequencies (up to the cutoff fre-
quency of the pixel) is very low and even equal to 0 at
the cutoff frequency of the pixel.

4. Conclusion

In this paper, we have described different strategies
to design a simple imaging system based on a single
optical component. These strategies are summarized
graphically in Fig. 6. They are all deduced from the
theory of third-order Seidel aberrations. We can see
that playing on different parameters (the index of re-
fraction n, the bending γ, the position of the pupil t,
the focal length f , the field of view, and the f -number)
reduces the amount of fourth-order wave aberration
of the system. It is more convenient to play on n, γ,
and t since these parameters do not affect the resolu-
tion of the system. However, if it is not sufficient, the
classic approach consists of increasing the number of
optical elements in order to increase the number of
optical surfaces. Nevertheless, we have shown that
other approaches keep on using a single optical com-
ponent. Annular folded systems increase the number
of optical surfaces while keeping a single optical com-
ponent. Playing on #, FOV, and f enables the design
of simple or miniaturized systems, but it results in a
decrease of the number of resolved points. The inter-
est of multichannel optical systems is that they can
be very compact while maintaining a satisfying num-
ber of resolved points. From a practical point of view,
although multichannel systems rely on simple opti-
cal architectures, the unique optical element which is
used can be complex. Curved detectors, curvedmicro-
lens arrays, and planar microlens arrays with poten-
tially important optical power are not mature yet.
Suppressing cross talk between adjacent channels
is also an important issue. Then, multichannel sys-
tems have to overcome technological challenges to
be widespread in a large range of applications.

This work was sponsored by the Délégation Génér-
ale pour l’Armement (DGA) of the French Ministry of
Defense.
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