
HAL Id: hal-00567027
https://hal-iogs.archives-ouvertes.fr/hal-00567027

Submitted on 4 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

General recipe for flatbands in photonic crystal
waveguides

Omer Khayam, Henri Benisty

To cite this version:
Omer Khayam, Henri Benisty. General recipe for flatbands in photonic crystal waveguides. Optics
Express, 2009, 17 (17), pp.14634-14648. �10.1364/OE.17.014634�. �hal-00567027�

https://hal-iogs.archives-ouvertes.fr/hal-00567027
https://hal.archives-ouvertes.fr


 

General recipe for flatbands in photonic crystal 
waveguides 

Omer Khayam
*
 and Henri Benisty 

Nanophotonics and Electromagnetism Group, Laboratoire Charles Fabry de l’Institut d’Optique,  
CNRS, Univ Paris-Sud, 2 Av. Augustin Fresnel, RD 128, 91127 Palaiseau, France 

*Corresponding author: omer.khayam@institutoptique.fr 

Abstract: We present a general recipe for tailoring flat dispersion curves in 
photonic crystal waveguides. Our approach is based on the critical coupling 
criterion that equates the coupling strength of guided modes with their 
frequency spacing and results in a significant number of the modes lying 
collectively in the slow-light regime. We first describe the critical coupling 
scheme in photonic crystal waveguides using a simple coupled mode theory 
model. We also determine that canonical photonic crystal waveguides 
natively correspond to strongly coupled modes. Based on these analyses, 
our design recipe is as follows: Tune the profile of the first Fourier 
component of the waveguide periodic dielectric boundary to lower the 
coupling strength of the guided modes down to its critical value. We check 
that this generalized tuning may be accomplished by adjusting any desired 
optogeometric parameter such as hole size, position, index etc. We explore 
the validity of this general approach down to the narrow two-missing rows 
waveguides. The interest of this method is to circumvent most of the 
common trial-and-error procedures for flatband engineering. 
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1. Introduction  

A simple wavelength-scale periodic boundary corrugation along a dielectric waveguide 
confers it the extraordinary ability to slow down light [1, 2]. Waveguides made out of 2D 
periodic photonic crystal (PhC) lattice are no exception in this regard [3-7] and in addition to 
the peculiarities of a 1D periodic propagation, they offer a 2D photonic bandgap (PBG) 
guiding mechanism. The slow light regime in a PhC waveguide corresponds to obtaining a 
“flatband”– a region of the dispersion relation where the mode has a zero or constant group 

velocity �� , extending over a fraction of the k-space around the first Brillouin zone (BZ) 

edge. In practice, however, the bands of an actual PhC waveguide only form a local extrema 

at the BZ edge and the extent of the slow ��  region is very limited. One inherent reason for 

this is the hyperbolic character of the waveguide dispersion relation that fundamentally limits 
the span of the flatband inside the BZ. The other more extrinsic and less documented reason, 
as we shall learn, is the unadapted coupling behavior of the basic waveguide modes. It is the 
strength ‘�’ of this modal interaction that shapes the waveguide dispersion bands and causes a 
canonical n-missing rows PhC waveguide (a so-called Wn) to lie, by default, in the non-
flatband regime.  

Recently, several waveguide designs have been proposed to achieve flatband slow light 
based on tuning structural parameters such as the size of the boundary holes [8-10], their 
position [11], their refractive index [12, 13], the waveguide symmetry [14, 15] and chirping 
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the PhC waveguide [16, 17]. While each approach has its merits for the purpose it serves, a 
general recipe for flatband tailoring seems absent. Also the studies mentioned above are for 
particular monomode PhC waveguides, namely W1 and W2, it is unclear how they can be 
extended to more general waveguide widths. It is equally important to understand the band 
formation mechanism inside the PBG of PhC waveguides. This article aims at unifying these 
approaches under a common framework. It is admittedly difficult to relate ab initio the band 
flatness to the dielectric map of narrow Wn waveguides. But based on the findings of [1], we 
find it profitable to expand the problem as the obtainment of flatness in broader multimode 
waveguides. We find that this leads to a simple universal criterion when employing an 
analysis on basic guided modes familiar to coupled-mode theory (CMT) practitioners. In this 
paper, we devise a recipe based on this criterion and validate it towards narrower waveguides 
as much as possible.  

To situate our approach, we start with a qualitative description of the fundamental slow 
light mechanisms in the rich framework of PhC waveguides. Apart from laterally confining 
modes by the PBG effect, the periodic waveguide cladding also acts a grating, giving rise to 
“resonant diffraction” [18] of certain guided modes. These resonant conditions appear as zero-
group-velocity points on the dispersion diagram. Figure 1 categorizes the three basic types of 
slow light processes in a PhC waveguide and relates them to their standing oscillation patterns 
using the familiar ray picture. The flatband at kz = 0 in the band diagram (point ‘1’ in Fig. 
1(b)) corresponds to the conventional Fabry–Perot (FP) mode that draws its feedback from 
specular reflections from the waveguide boundary. As shown in Fig. 1(a) such an oscillation 
is purely transverse. At the first BZ edge (kz = �/�), a forward-propagating guided mode am of 
order m couples to its backward-propagating counterpart bm producing an anticrossing – a gap 
with two band extrema, referred as ‘2’ in Fig. 1. From a diffraction perspective, the BZ-edge 

zero ��  modes at each extrema satisfy the Littrow condition and are retro-diffracted back 

along the incident path. The PhC cladding, in this case, acts as a ‘distributed Littrow reflector’ 
providing feedback for the obliquely resonant “Littrow modes” [19]. The third type of slow 
light mechanism occurs inside the BZ where contrapropagating modes of different orders, 
namely �  and �� , interact. At a point in the k-space where their phase matching condition is 
satisfied, anticrossings or minigaps form [20], referred to as ‘3’ in Fig. 1(b).  Figure 1(a) 
shows the oscillation pattern at such a resonant anticrossing condition. If it occurs closer to 
the BZ-edge, the modes are called “near-Littrow modes” [19]. In mechanisms 2 and 3, the 
guided mode at band extrema of the anticrossing diffract either into itself or into another mode 
forming a stationary interference pattern or the slow mode. The width �� of the anticrossing 

in either case is dictated by the coupling strength � and is given by 
��
∆ω = �κ� � �

�
� +�

�
�( ), 

where ng is the group index of the modes and c the light velocity in vacuum.  
To produce a ‘flatband’ based on the above picture, we proceed as follows: Consider, for 

example, the blue branch from anticrossing ‘2’ to anticrossing ‘3’ in Fig. 1(b). If the widths of 
the two anticrossings are simultaneously increased, the two ends of the considered branch 
would move in opposite frequency directions: point A descends and point B rises until the 
curvature of the branch approaches zero and a flatband is formed, as shown in Fig. 1(c). So, 
we infer that the band flatness results from the interaction of at least two anticrossings. This 
makes the coupling strength � a natural design parameter in any band engineering approach. 
The extension of the above scheme leads us to consider a multimodal interaction where 
several flatbands can be formed by managing all the anticrossings as coherently as possible. In 
this work, based on the above remarks, we shall demonstrate how by tuning the width of the 
anticrossings through any generic engineering of �, the dispersion relation can be tailored to 
deterministically produce a flatband.  

For the sake of completeness here, we briefly highlight in Fig. 1(d) the significance of the 
flatband situation with respect to the Littrow resonances at and near the BZ edge. The large 
�kz range of the flatband (see Fig. 1(c)) translates into a large angular bandwidth ��, over 
which the mode does not apparently disperse and retains its resonant character. This is 
actually made possible by the hybridization of the Littrow mode with the other interacting 
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near-Littrow modes like type ‘3’ of Fig. 1(a). The ray picture does indeed suggest that, 
starting from Littrow condition of type ‘2’, the optical path is stationary at first order in �� 
when evolving to the type ‘3’ situation. There are some practical implications to this, such as, 
for instance angular tolerance for coupling into slow modes of a waveguide resonator [21]. 
We shall, however, use only the k-space band description of slow light in this paper. In the 
following section, the theory of the critical coupling is elaborated using conventional CMT 
models. Section 3 discusses the design approach for achieving critical coupling in PhC 
waveguides. 
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Fig. 1. Slow light mechanisms in PhC waveguide. (a) Oscillation patterns of 1. Fabry-Perot, 2. 
BZ-edge Littrow and 3. inside-BZ anticrossing modes and (b) their positions on a schematic 
dispersion diagram. (c) A flatband is formed near BZ edge by increasing the coupling strength 
�, and hence the gap width ��ab, at anticrossings 2 and 3. (d) The spread �kz of the flatband 
corresponds to the slow mode angular bandwidth �� inside the waveguide. The arrows show 
the resonance path of the flatband mode at BZ-edge (black arrows) and near BZ-edge (grey 
arrows). 

2. Critical coupling phenomenon in multimode interaction 

The modal interaction in a periodic structure can analytically be described by conventional 
coupled mode theory (CMT) [22]. In our recent study [1], we extended the coupled mode 
formalism to the case of coupling between multiple contrapropagating modes in broad 
dielectric waveguides with a periodically corrugated boundary. In such a multimodal 
environment it is the coupling coefficient � that, although acting locally between two modes, 
affects the global shape of the bands. Figure 2 shows the evolution of a generic multimode 
band structure of equidistant modes with increasing coupling strength, as calculated from the 
CMT: Here we consider four forward and backward modes with a constant free spectral range 
(FSR) and uniform coupling, i.e. constant �. The no-coupling case (� = 0) represents an 
“empty lattice” system where the native uncoupled modes are left unperturbed. Oscillating 
bands are formed when mini-gaps open for nonzero � values and initially increase in width as 
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� increases. However, when the gaps are of the same order of magnitude as the FSR (Fig. 
2(c)), the bands flatten. The corresponding value of the coupling coefficient is called the 
critical coupling, ‘�c’ , and scales precisely as FSR/� [1] (wavevectors and frequencies are 
related by the canonical group velocity of the problem). Beyond the critical coupling point, 
the bands revert to their original shape below critical coupling, with the exception of one less 
minigap (band oscillation). It can be remarked that critical coupling does leave some residual 
oscillations at the edges of the interaction region, not discussed in depth here. 
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Fig. 2. Evolution of equidistant and linear bands with increase in coupling strength. The 
interaction region is enclosed in a lozenge (dotted lines). At critical coupling, the gap width 
increases to half of the FSR.   

It is the simplicity of these ingredients (equidistant and linear mode branches, as shown in 
Figure 2) that we exploit here to introduce the concept of critical coupling. In what follows, 
we describe a framework to look at critical coupling in the modified context of hyperbolic 
dispersion relations, as is the case in PhC waveguides, and study the effect of varying modal 
coupling strength on the band shape. 

2.1 CMT model of a photonic crystal waveguide 

The dispersion relation of the PBG guided modes in a PhC waveguide can effectively be 
modeled by CMT. The basic coupled mode equations for two sets of contradirectional 

propagating modes, represented by their amplitudes ( )ma z  and ' ( )mb z , are given by:     

' '

'

( ) � ( ) , where { : }
�

� �
=

� �
+ δ + = ∈ ≤ ≤� �

� �
� �

N
a
m m mm m

m

d
i a z P b z m m N
dz

               (1) 

             ' ' '( ) � ( ) , where { ' : ' }
�

� �
=

� �
− + δ + = ∈ ≤ ≤� �

� �
� �

N
b
m m mm m

m

d
i b z P a z m m N
dz

            (2) 

where �  and ��  are the mode orders of the forward and backward modes of native 

dispersions δ��  and δ�� respectively, N the total number of modes and P is the parity condition 

depending on the waveguide symmetry. Note that we shall use the words ‘modes’ and 
‘branches’ interchangeably here. In a grating waveguide with only one of its boundaries 
corrugated, each forward-propagating mode interacts with a backward-propagating-mode and 
the parity variable has a fixed value of P = 1. However, when both the opposite boundaries are 
corrugated about a symmetry plane, as is the case in a canonical PhC waveguide, only similar 
parity modes interact [23] – a forward-propagating even mode couples with a backward-
propagating mode of even parity only. The parity condition is then defined 
as � ��� �	 � �	� �	 � � � �  (unity or zero).  

The hyperbolic dispersion of the native modes of a generic perfect-wall waveguide can be 

incorporated into the CMT model by the dispersion ( )
��

�
�
� � �ABCδ = −β  for the forward 

modes and ( )
��

�� � ��
� � � ABCδ = − − ∆β  for the folded backward modes where 
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��� �β ω= . FSR0 is the hyperbolic branch frequency-spacing at ��
�δ =  (the wavevector of 

FP modes), often expressed in terms of the waveguide width W as �Dπ . The parameter � 

corresponds to the first Brillouin zone edge symmetry point where the forward and backward 
branches, related by the first Fourier component of the periodicity, intersect one another. Such 
a mode coupling description relaxes the need for an explicit definition of Bragg frequencies as 
well as periodicity of the system. We assume all modes interact with the same strength, thus 

'� �=mm  for all �  and �� . The success of so simple an assumption will be seen later. The 

coupled mode equations can be cast into a matrix form as below: 

 

d
M iC M

dz
=                (3) 

where M is a vector of 2N elements containing the mode amplitudes in the order M = (a1, b1, 

a2, b2, …, aN, bN)
T
, where T denotes the transpose. C is the coupling matrix with frequency 

detuning along the diagonal 2 1,2 1+ + = −δa
m m mC  (forward modes, Eq. (1)) and 

2 ' 2,2 ' 2 '+ + = δb
m m mC  (backward modes, Eq. (2)) and coupling coefficients as off-diagonal 

elements such that, , ' �� � �+ + = −m mC  and , ' �� � �+ + =m mC  for the odd and even rows 

respectively. All other matrix elements are zero to cancel co-directional couplings. For each 

frequency of interest (the vertical axis), we diagonalize the matrix C and obtain the 

eigenvalues Eγ  which are the wavevectors with real part Re( γ ) corresponding to the 

propagating modes and imaginary part Im( γ ) representing the evanescent modes.  
Describing a periodically corrugated waveguide by such a CMT model is analogous to the 

pseudo-potential method [24] used so often in solid-state physics to calculate the electronic 
band structures based on empirical Fourier coefficients values for the periodic crystal 
potential. In the CMT model, the periodic index modulation of the optical waveguide system, 
with or without a PBG, is quantified in terms of the coupling strength � of the guided modes 
and is used to calculate the approximate dispersion relation. Figures 3(a)-3(c) shows the CMT 
results for three cases of mode coupling.  When � = 0, as in the case of a simple uncorrugated 
dielectric waveguide, no modal coupling occurs and the artificially folded bands simply cross 
one another as shown in Fig. 3(a). This region of overlapping forward-backward branches is 
symmetrically spread around point � and, as shall be seen, it is here that the intermodal 
interaction shapes the band dispersion. Notice that the spacing FSR0 of the branches is 

constant at kz ˹  Re(γ) = 0, whereas at the band folding point �, the modal spacing that we 

may denote FSR�, gradually increases from lower to higher �. 
For non-zero values of �, Figs. 3(b) and 3(c), the crossings convert to anticrossings and 

curly bands are formed respecting their parity conditions: Figure 3(b) is the typical case of a 
parity independent coupling (P = 1 in Eqs. (1)-(2)) where each crossing forms an anticrossing. 
This band structure is representative of a single-side corrugated waveguide such as a “single-
trench (ST) PhC waveguide” (see Fig. 5), where an air trench replaces a single row of holes 
on one of its boundaries. In section 3, we shall use them to study flatband formation in PhC 
waveguides under the critical coupling regime. In Fig. 3(c), parity-dependent coupling, as in 
the case of a canonical PhC waveguide with regular round holes and a central symmetry plane 
[23], causes the dispersion bands to roll up like necklaces separated by so-called “stripes of 
minigaps” [25]. The band diagram of an actual PhC waveguide W7, calculated using plane 
wave expansion (PWE) method, is plotted in Fig. 3(d) for comparison. It is clear that the CMT 
model mimics all the band structure features arising from the coupling behavior of the PBG-
guided modes in a PhC waveguide. The only difference being the continuum of dielectric and 
air bands which is naturally absent from the CMT picture. We may add that in an actual PhC 
waveguide, the FSR at kz=0 varies slightly with the modal frequency and angle due to 
periodic width modulation at the boundaries. This aspect, although not taken directly into 
account here in the CMT model, does not affect the coupling behavior of modes at the BZ 
edge. 
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Fig. 3. (a-c) Dispersion diagrams at different coupling coefficient values obtained from the 
CMT model of PhC waveguide modes. (a) � = 0 case (b) � > 0 case with parity-independent 
and (c) parity-dependent coupling (d) actual W7 raw dispersion diagram calculated with the 
PWE supercell method (only the discretization of PhC air and dielectric bands depends on the 
supercell size). The minigap-stripes and the necklace dispersion branches are perfectly 
mimicked by the CMT model. 

 

2.2 Flatbands at critical coupling 

Using the above developed CMT model, we now examine the effect of increasing the modal 
interaction strength on the hyperbolic bands, up to the point where the coupling coefficient is 
of the same order of magnitude as the FSR. We consider a general multimode case where 
FSR0 is taken as unity and the mode orders are in the range of � �A�� � . The value of � is 

kept uniform throughout the coupling matrix C, i.e. all modes couple with the same strength 
with all modes of opposite direction, whether �� ��   or �� �� . At the critical coupling 
value �c, the dispersion diagram manifests a region centered around the BZ edge (point �) 
where the local band oscillations are almost null. The red lozenge in Fig. 4 encloses the 
vertical and horizontal extent of this flatband region.  The dispersion diagrams for both parity-
dependent (Fig. 4(a)) and parity-independent (Fig. 4(b)) cases are extended into the second 
BZ (� < Re (�) < 2�) to reveal the full extent of the forward-backward coupling region 
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around the first BZ edge. It is clear that the flatband region occurs in the 
interval �B ��β� � , while the bands above and below it retain their oscillatory profile. The 

localized occurrence of the critical coupling is logically explained from the fact that the FSR� 
is not uniform but increases gradually from point A onwards to higher frequencies. In our 
case, the average FSR� in the red lozenge is approximately ~ 0.76 and the critical coupling 
occurs at �c = FSR� / � = 0.242 in the parity-independent case and at twice that value in the 
parity-dependent case. Since only similar parity modes couple in the later case, the 
anticrossings widths, and hence �c, are twice as large as the former case. Also evident from 
Fig. 4 is the difference between the flatbands of the two parity schemes. In Fig. 4(a), the effect 
of critical coupling is to ‘squeeze’ the necklace bands and widen the minigap-stripes. In Fig. 
4(b) the bands smooth out more evenly.  For the sake of clarity, in section 3 we shall employ 
the parity-independent band structures of an ST-PhC waveguide to demonstrate flatband 
engineering in PhC waveguides. 

 

Fig. 4. Dispersion diagrams at critical coupling in (a) parity-dependent and (b) parity-
independent schemes. The red lozenge encloses the flatband region. FSR� inside the lozenge is 
approximately 0.75 in (a) and 0.375 in (b), FSR0 being taken as unity. 

2.3 Features and limits of critically-coupled flatbands 

A striking feature of the critical coupling is the significant number of modes collectively lying 
in the slow-light regime. The �-range of the flatband region depends on the FSR� variation 
along frequency. For the case of coupling among linear branches (see Fig. 2) the FSR� 
variation being absent, all interacting modes achieve critical coupling simultaneously. Along 
the abscissa, the flatband region occurs in a wavevector window �kz 	 �[Re(�)] around point 
�, as shown in Fig. 4. In our case of multiple bands, it can be defined as the kz interval in 
which a given band centered at �, rises by an FSR�. As evident in Fig. 4, its indefinite 
extension to the entire BZ is restricted primarily by the intrinsic hyperbolic curvature of the 
waveguide dispersion relation. Interestingly, even when the coupling coefficient is uniform 

( '� �=mm ) for all mode branches, the anticrossings formed are not all of the same size. This 

makes the minigap-stripes symmetrically narrow down away from the first BZ edge – a 
feature also visible in the actual PhC waveguide dispersion relation in Fig. 3(d).  This implies 
that tailoring �kz may theoretically be possible by individually changing local anticrossing 
widths with a nonuniform spread of coupling coefficients. Inside the �kz window , the number 
of oscillations per band scales inversely with the square root of the waveguide width W as 
shown in appendix A1 of [1] . Narrower waveguides with fewer band oscillations would 
therefore show a wider spread of band flatness. These aspects shall also depend on the 
targeted application domain. 
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3. Achieving critical coupling in photonic crystal waveguides 

In order to physically achieve critical coupling in a periodically corrugated photonic wire such 
as a PhC waveguide, we need to (i) identify a design parameter to access and tune the 
coupling strength of its guided modes and (ii) assess the ‘default’ state of this strength that, in 
the specific case of a canonical PhC waveguide, we shall find to be ‘overcoupled’.  The two 
points are elaborated below. 

In a corrugated waveguide, each guided mode has a nonzero overlap with the cladding’s 

modulated region as shown in Fig. 5(d). In CMT, it is this overlap that essentially dictates the 

coupling strength κab  between a forward mode am of order �  and a backward mode ��b  of 

order �� , given by: 

             
ˆ( ) ( ) ( )d

( ) ( )d

� ��� � ��

� �

ε π
κ = = Γ = Γ

Λ

�
�

a b

ab x x
z za b

E x E x x xk k
u

k kE x E x x
                   (4) 

where u=a/λ=ωωωωa/2πc is the normalized frequency (allowing to correspondingly introduce 

FSRu) and � the period. Here a scalar version is given for simplicity and the BZ edge is 

considered. Ax is the normalized overlap integral of the unperturbed modal intensity profile, 

'( ) ( ) ( )
�=m mE x E x E x , with the first Fourier harmonic of the boundary dielectric profile 

�
�C � 	 DEF � � 	� �� 	 � � 	 ���� 	F� � � � � E� � ��ε ε ε�� � �� , where �� � 	F� � �� . We argue that a 

PhC waveguide satisfies this description when operated inside the bandgap. The physical 

reason, as pictured in Fig. 5(d) is the strong decay of the modal field in the periodic PhC 

cladding. Strong refractive-index contrast is of course a crucial factor for this rapid decay, as 

it is for the omnidirectionality of PhC bandgap. For our purpose, it means that the overlap 

integral Ax appearing in Eq. (4) has sizable contribution from only the first or second rows 

adjacent to the core. In other words, only the first few lobes of the dielectric Fourier harmonic 

profile � � 	�ε�  in Fig. 5(d) are of interest.  

 
 

Fig. 5. Classification of PhC waveguide variants according to their coupling strength as 
compared to that of the uncoupled DT-PhC waveguide modes. 

 
Based on the graphical analysis in appendix A, Fig. 5 shows a general classification of the 

PhC waveguide structures according to their coupling strength �. At the lower end is the 
double-trench (DT) PhC waveguide, shown in Fig. 5(a) along with its first Fourier component 

dielectric profile � � 	�ε� , where the first row of air holes at both the boundaries is replaced by 

air trenches. The absence of the boundary component of � � 	�ε�  almost kills the modal 

coupling, that is � ~ 0. Such waveguides, studied previously in [26-28], are a good 
approximation of the desirable ‘unperturbed’ PhC waveguide since they retain the PBG yet 
the bandgap-guided modes remain virtually uncoupled. Standard PhC waveguide structures, 
with regular round-shaped air holes at the boundary lie on the higher end of the � scale, 
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denoted by ‘�S’. The single-trench (ST) PhC waveguide in Fig. 5(c) is simply a parity-
degeneracy lifted version of the canonical PhC waveguide in Fig. 5(d). The only difference is 
the size of the splitting which is twice as large in the later case. The zero-dispersion flatband 
regime occurs at the critical coupling strength �c, such that �c < �S. From previous analysis [1], 
we established that in this critical regime, the dimensionless ratio �c / FSR� approaches a 
value of 1/�. This scaling can be grasped from the fact that the frequency splitting in a 
standard contradirectional case is ~2�. It can be seen from Figure 5(b) that the boundary 

component of � � 	�ε�  in the flatband waveguide, highlighted in dotted red line, is modified in 

amplitude and shape as compared to the standard waveguides which are comparatively 
‘overcoupled’. This trend suggests a general design philosophy for obtaining zero-dispersion 

bands – to tailor the first Fourier component profile � � 	�ε�  of the canonical PhC waveguide 

cladding so as to lower its coupling strength from �S to the critical coupling value �c. In terms 
of structural parameters, this translates into, for instance, changing the form, position or the 
index of the waveguide boundary holes as detailed below. 

 For the quantitative demonstration of our design strategy, we introduce here a useful 
quantity called the ‘critical overlap’, that simply corresponds to the slowdown regime at �c 
and is deduced from Eq. (4) as, 

 
�������� ��� �� ABC � π� �x                                  (5) 

Given an unperturbed waveguide system with mode spacing FSRu and modal group index ng, 

the critical overlap value ���������x  serves as a gauge for flatband engineering of its perturbed 

counterpart. In our analysis, we use the modal field E(x) of a DT-PhC waveguide and the 

profile � � 	�ε�  of the investigated ST-PhC waveguide to calculate the overlap integral Ax. Here, 

an ST-PhC waveguide is preferred over the canonical symmetric version for the sake of 
clarity. The absence of parity degeneracy in such waveguides facilitates understanding of 
band formation (no band pairing) and has no effect on the intrinsic number of the guided 

modes. The optogeometric parameters are then varied in order to lower Ax down to ���������x . 

We also independently check that the bands do become flat for this condition, i.e. for 

Ax=
���������x , using the following criterion: We define an average absolute velocity ��  as 

the average of ��  over a lozenge-shaped area of the band structure centered at the BZ edge, 

previously employed in Fig. 4. Except for slight discrepancy in ultimately confined 
waveguide, we will find good agreement between the critical overlap criteria and the actual 
achievement of slow light in the lozenge BZ edge region. 

Unless otherwise specified, the PhC is defined as triangular lattice of air holes in a 
substrate of index 3.21 (typical of actual InP-based heterostructures) and the dispersion 
diagrams are calculated by PWE method. For the overlap integral, the modal field of the DT-
PhC waveguide in 2D supercell is averaged along the z-axis. Such a 1D field is an appropriate 
approximation in order to focus on the first Fourier component. It is notoriously delicate to 
establish coupling strength in high-index contrast structures and with vector fields (see, e.g. 
[29], for seminal work on such aspects). In our case, the electric field x component becomes 

very strong in the trench so that 
�

� 	�� x dx can have its largest contribution from the trench 

alone, leading to several anomalies. We thus found it appropriate to use a DT-PhC waveguide 

electric field derived from the ( )D x  field by a somewhat larger dielectric constant (typically 

εr=2.4) in the trench. In this procedure, for consistency, we choose this value by constraining 

the resulting field profile ( )
�

E x  to fit that of the ST-PhC waveguide, i.e. the average field in 

the presence of holes rather than a trench, an approach adapted to the optogeometric 
optimization space. 
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Next we consider a few structural tuning techniques and design parameters that serve as a 

control handle over the modal coupling strength in PhC waveguides. While we only show a 

proof of principle here by optimizing the boundary contribution of � � 	�ε� , i.e. the first row of 

holes, the analysis equally applies to shaping the entire � � 	�ε�  distribution of the waveguide, 

either deeper in the cladding or in the central core. 
 

�C � 	�ε

Wavevector kz [�/a] 

Standard W9(a) Modified W9

(d)

0.50.25 0.3 0.450.40.35

10-2

10-3

Overlap Bx

1 1.50.5 0.6 0.90.80.7 1.1 1.2 1.41.31 1.50.5 0.6 0.90.80.7 1.1 1.2 1.41.3

Wavevector kz [�/a] 

0.24

0.26

0.28

u
 =

 a
/C

0.15 0.250.20.10

f’

(b)

(c)

(e)

0.3 0.35

<
|v

g
|>

�C � 	�ε

(d)

�
x

critical�C � 	�ε

Wavevector kz [�/a] 

Standard W9(a) Modified W9

(d)

0.50.25 0.3 0.450.40.35

10-2

10-3

Overlap Bx

1 1.50.5 0.6 0.90.80.7 1.1 1.2 1.41.31 1.50.5 0.6 0.90.80.7 1.1 1.2 1.41.31 1.50.5 0.6 0.90.80.7 1.1 1.2 1.41.31 1.50.5 0.6 0.90.80.7 1.1 1.2 1.41.3

Wavevector kz [�/a] 

0.24

0.26

0.28

u
 =

 a
/C

0.15 0.250.20.10

f’

(b)

(c)

(e)

0.3 0.35

<
|v

g
|>

�C � 	�ε

(d)

�
x

critical

 
 

Fig. 6. (a). A standard W9 ST-PhC waveguide, its first Fourier component dielectric profile and 
(b) its dispersion diagram. The dark triangular regions at the corners represent the light cone.  
(c) Evolution of the average group velocity with the change in hole size, labeled through f’ and 
through the overlap integral. The curve dips by an order of magnitude at the critical overlap 
value obtained from the simple Eq(5). (d)  W9 ST-PhC waveguide with modified hole size and 
(e) its actual flattened band diagram. The flatbands are highlighted in the red lozenge, where 
the quantity plotted in (c) is extracted. 

3.1 Hole size 

Adjusting the boundary hole size for tuning the delay-bandwidth product in narrow single 
mode PhC waveguides (namely W1 and W2) has recently been demonstrated by several 
groups [8-10]. They showed that for different hole radii, the slope of the band near BZ-edge 
hinges on the anticrossing between the index mode and the PBG guided mode. Here we show 

that this approach is equivalent to changing the shape of � � 	�ε�  and results in critical coupling. 

Also, we choose a broader waveguide to show that the analysis can be extended to multimode 
systems. Figures 6(a)-6(b) shows a standard W9 ST-PhC waveguide, its dielectric first Fourier 
component distribution and its dispersion diagram. All holes are circularly shaped in a 
triangular lattice of fill factor f = 0.35. The dispersion bands are plotted in the first and second 
BZ to reveal the entire coupling region around the first BZ edge. Since the critical coupling 
occurs only locally in a (u, kz) window around the BZ edge, we focus on a few bands enclosed 
inside the red lozenge in Fig. 6(b). The average normalized group velocity of these bands, 

conveniently defined as ��� �� ��� , is plotted in Fig. 6(c) as a function of the 

design parameter f’, the fill factor of the innermost row of PhC cladding holes. At a certain 

reduced hole size (f’=0.2), the bands collectively flatten out and ��  dips by more than one 

order of magnitude. Figure 6(e) shows the respective flattened band diagram at this point. 

Further decreasing the hole size returns ��  to its original value at the unmodified hole 

size. To relate this behavior to the modal coupling strength, we calculate the overlap Ax of a 
typical near BZ-edge mode of a W9 DT-PhC waveguide inside the lozenge, given by  u=0.26 
and kz=0.95. The bottom axis in Fig. 6(c) shows Ax for each hole size. The critical overlap for 

this mode is found from Eq. (5) to be approximately ���������x =0.3776. This value agrees 

closely to the ��  dip in Fig. 6(c) at Ax=0.3753.  Thus by varying the spatial duty cycle of 

boundary index modulation, the strength of � � 	�ε�  can be diminished (as shown schematically 
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in Fig. 6(d)) to achieve critical overlap. Below this value, the modes are in the undercoupled 
regime and collectively regain their group velocity. It may be noticed that the top scale in Fig. 
6(c) is not linear due to the complex relationship of the geometrical parameter (hole size in 
this case) with the overlap integral. Only in the case of varying the hole epsilon, a quantity 
direct proportional to the overlap integral, shall we find the scales linear. 

3.3 Hole epsilon 

Varying the index contrast of the waveguide’s periodic boundary, by either microfluidic 
infiltration [12] or by exploiting ring-shaped holes [13] is yet another way of optimizing 

� � 	�ε�  to achieve slow light. Figures 7(a)-7(b) shows a standard W5 ST-PhC waveguide and 

its dispersion diagram. Increasing the dielectric constant of the inner most row of holes, Dhole, 

decreases the boundary contribution of � � 	�ε� , as shown schematically in Fig. 7(d). As in the 

previous case we focus on the BZ-edge bands in the red lozenge to highlight the collective 
slowdown effect. For the Ax calculations, we now use the field of the mode at u=0.2724 and 

kz=0.95 of a W5 DT-PhC waveguide. Figure 7(c) shows the evolution of ��  and Ax with 

increasing Dhole. At the critical overlap, ��  now dips by an order of magnitude. The shift 

between ���������x  value (0.6476) and the lowest ��  point at Ax=0.6418 is only 1%. It may 

be noted that only a slight increase in hole index (Dhole~1.5
2
) is required to achieve the critical 

regime. This value corresponds qualitatively to the recent analysis in [12] but they use a 
narrow W1 waveguide. 
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Fig. 7. (a). Standard W5 ST-PhC waveguide and (b) its band diagram and light cone (dark solid 
regions). (c) Evolution of the average group velocity with the change in hole’s dielectric 
constant, again labeled also by the overlap integral. The group velocity dips close to the 

expected critical value ≈0.647. (d)  W5 ST-PhC waveguide with modified hole dielectric and 
(e) Flattened band diagram at Dhole=2.25. The flatbands are highlighted in the red lozenge. 

3.2 Hole position 

Shifting the rows of waveguide boundary holes towards the cladding also leads to the critical 
regime. Figures 8(a)-8(b) shows a standard W2 ST-PhC waveguide and its dispersion 
diagram. Lower number of guided modes, and hence anticrossings, in such narrow 

waveguides lead to intrinsically low band curvatures.  Our usual gauge ��   becomes in 

this narrow limit the average velocity of the sole central band enclosed in the red lozenge. As 

the first row of holes is shifted by an amount s×b , where = � ��� �  is the separation 

between two adjacent hole rows, the boundary contribution of � � 	�ε�  is pushed into the 

cladding, as shown schematically in Fig. 8(d). The overlap Ax decreases with the shift, from 

right to left, as does the average normalized group velocity �� . Near the critical overlap 
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���������x =1.26, ��  drops to around 2.5 times its unperturbed value. The slight deviation 

between the ��  minima and ���������x  can be ascribed to the inherent shortcomings of 

approximate perturbation calculations in high index contrast structures. The wavevector span 
of flatband can be extended by further modifying the second row of holes, hence the second 

lobe in the profile of � � 	�ε� , as demonstrated recently in [11]. 
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Fig. 8. (a). Standard W2 ST-PhC waveguide and (b) its band diagram with light cone (dark 
solid regions). (c) Evolution of the average group velocity with the shift in first row of holes 
labeled by parameter s (“shift”, see text). The group velocity dips near the critical overlap 
value. (d)  W2 ST-PhC waveguide with modified hole position (e) Flattened band diagram at 
s=0.6. The flatbands are highlighted in the red lozenge. 

 

3.4 Other methods 

Several other sophisticated PhC waveguide structures [17, 30-33] have recently been 
proposed for the slow light engineering. However, here we comment on a few fundamental 
design aspects in a PhC waveguide and on how they relate to the critical coupling. For 
instance, changing the width of waveguide [8]  has been shown to work for narrow PhC 
waveguides where the only anticrossing in the PBG, the one near the dielectric band edge, 
determines the band shape. Due to the influence of the band edge proximity on the coupling 
strength of this special anticrossing and the fact that the FSR of the single PBG guided mode 
is elusive, it is delicate to directly test this approach for the critical coupling criteria. 
Moreover, in broader PhC waveguides, since the mode density in the PBG increases with the 
width, a similar approach would probably not apply, due to the interaction with other guided 
modes. 

In [14, 15], PhC waveguide cladding symmetry is the design parameter. This method 
exploits the inversion of mode coupling parity [23] to produce flat dispersion bands. The 

relative phase of first Fourier contributions � � 	�ε�  between the two sides of the waveguide is 

modified. This changes the distribution of coupling strengths among the guided modes, which 
is no more uniform: two distinct coupling strengths appear having the dependency 

( ϕ± ∆� ���F �E ) where the phase ϕ∆  is dictated by the relative shift between cladding 

positions. One can infer that every other mode has a chance to become flat, so that our 
approach would have to be generalized to bring more insight. Because it is used by the cited 
works only in very narrow waveguide (up to W2), there is no chance to witness the systematic 
aspects of this situation, unlike the bulk of this study on broader waveguides with 

symmetric � � 	�ε� . 

4. Conclusions  

We have described a simple recipe for designing flatbands in a PhC waveguide. The approach 

is intuitive and based on optimizing the coupling strength of the guided modes to achieve the 
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critical coupling regime – the configuration whereby the coupling strength is equivalent to the 

frequency spacing of the locally equidistant modes. Through CMT and PWE calculations, we 

demonstrated that a PhC waveguide achieves flatbands around the BZ-edge when its coupling 

strength reaches its critical value. A prerequisite to our approach is the validity, hitherto 

unnoticed, of a coupled-mode description of the rich PhC waveguide bandstructure in the 

entire PBG, carrying features such as the “minigap-stripes” described in [25]. We first 

determined the default coupling strength of a canonical PhC waveguide that we found to be 

overcoupled, i.e. the interaction strength of modes is above their critical value. We explicitly 

assessed this point based on exact simulations. To lower the coupling strength to its critical 

value, we then optimized the first Fourier harmonic profile � � 	�ε�  of the periodic waveguide 

boundary. It was shown that for any optogeometric tuning of the waveguide boundary holes, 

the slow-down regime was always achieved at the critical coupling. In practice, we made use 

of a normalized overlap integral x�  of non perturbed modes with � � 	�ε�  of the modified PhC, 

whose structural parameters were tuned to reach the critical value ���������x . The associated 

collective flatbands were quantified using the average group velocity �� : more than one 

order of magnitude slow down was commonly achieved on average over the substantial zone-

edge targeted area of the dispersion diagram. The typical optimization tolerance window has a 

relative width of a few percent around the exact minimum at ���������x . Beyond this point, the 

bands revert to their original dispersive state. We finally emphasize that our approach gives 

almost direct rules for the dielectric constant map, similar to the formerly proposed treatment 

of PhC cavity design [34]. Such approaches drastically reduce the parameter space complexity 

and the associated lengthy trial-and-error search routines. Lastly, the flatband recipe 

developed in this work is not just restricted to periodic optical waveguides. It could naturally 

be extended to analogous electronic structures such as corrugated graphene nanoribbons [35] .  

APPENDIX A 

A corrugated photonic wire is a perturbed waveguide system wherein the guided modes are in 
a coupled state with reference to a smooth, non corrugated wire. Away from the critical 
coupling point, the modes could in general be either undercoupled, i.e. � < �c, or overcoupled, 
i.e. � > �c. To achieve flat bands in the former case, the coupling strength has to be increased 
while it has to be decreased in the later case. In a canonical PhC waveguide defined by 
omitting one or several rows of holes in a lattice of identical round-shaped holes, the 
dispersion bands are commonly not flat and thus fall in one of the two regimes. To determine 
which one, we track the evolution of the photonic band structure as a function of the 
waveguide perturbation. Starting from an almost unperturbed case, a DT-PhC waveguide, a 
periodic perturbation is gradually introduced until we obtain the standard PhC waveguide, i.e. 
an ST-PhC waveguide. The reason behind perturbing only one boundary of the DT-PhC 
waveguide is to easily keep track of the bands and better analyze their formation (see Fig. 5). 
The band diagram of the W9 equivalent DT-PhC waveguide, calculated by PWE method, is 
shown is in Fig. 9(b). The dispersion bands are plotted in the first and second BZ to reveal the 
entire coupling region around the first BZ edge. Moreover for clarity, we only highlight the 
bands (red) in a fixed interval around the first BZ edge. Since in his case the boundary 
corrugation is absent, � ≅  0 and the dispersion bands can be seen to cross each other, similar 
to the case of Fig. 3(a).  
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Fig. 9. Evolution of band structure of a PhC waveguide with increasing boundary perturbation; 
(a,c,e) Sketch of waveguides and dielectric first Fourier harmonic profile, (b,d,f) band 
structures highlighting the mode coupling region around the BZ edge. 

As a periodic sinusoidal perturbation is introduced in one of the boundaries, see Fig. 9(c), 
curly bands start forming at higher frequencies and gradually progress down to lower 
frequencies as the perturbation amplitude increases.  Figure 9(d) shows the dispersion diagram 
of this intermediate stage where three distinct families of bands are observed. The red bands at 
lower frequencies see only a slight perturbation of the boundary and the anticrossings are only 
beginning to form. At the higher frequency end (blue bands), modes have a greater overlap 
with the perturbed boundary and hence a higher coupling strength. These two coupling 
regimes are divided by a third family of modes (highlighted in green) where the band 
flattening is obvious. We argue that these bands are at the critical coupling point and separate 
the k-space into overcoupled blue bands with � > �c and undercoupled red bands with � < �c. 
Also, the number of band oscillations above the critical region is one less than that below it, as 
pointed out in Fig. 2. When the boundary perturbation takes the form of round holes, (see Fig. 
9(e)), which can be made morphologically continuous, modal coupling increases to a point 
where only the blue bands exist and the situation of zone edge modes in such a standard PhC 
waveguide is said to be overcoupled. 
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