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We present general aspects of coupling among two or more families of modes with a view to deepen the insight
on so-called “dark modes.” We first review the relationship of dark modes, “coherent population trapping,” “ro-
tating wave approximation,” “coupled-mode theory,” and a few related concepts. The approach we emphasize is
related either to inhomogeneous light–matter strong coupling or to the variety of multimode coupled systems
designed for slowing down light or for filtering light. Some semantic caveats are discussed, notably down to
what can be termed “dark” and “bright” in as simple a system as a distributed Bragg reflector case. A generic
“N–F” classification simply states that whatever the total number N of modes, the key point is the number NF

of “prediagonal” families, since the number Nb of bright modes is simply NF leaving Nd=N−NF dark modes.
© 2009 Optical Society of America

OCIS codes: 130.0130, 270.0270, 130.5296, 140.3945, 260.2030.

1. INTRODUCTION
A number of recent proposals exploit the concepts of dark
modes, either for photonic crystal and photonics use, or,
closer to its origin, in the light–matter interaction. The
aim of this communication is to deepen the understanding
and classify the phenomenology of dark modes arising in
N-moded (N levels) systems with N�2.

From an optoelectronic perspective, no firm connection
to the dark states concept has been formulated. Hence, we
start by providing the reader with a review of the con-
cepts history using this terminology. The common math-
ematical tool of non-Hermitian N-level matrices and their
SU(3) invariance properties [1–4] is one of the generic
similarities allowing the dark states to practically per-
vade many of the recent fields of photonics.

For our purpose let us focus on the birth in 1976 of the
concept of dark states from the experiments by Alzetta et

al. [5,6] and Arimondo and Orriols [7], and to the large
body of coherent population trapping (CPT) works [8] for
which the 1996 review by Arimondo [9] is a welcome entry
point. CPT has become a nickname even more popular
than dark states for this domain. This semantic shift
makes the re-emergence of the same dark states in other
topics complex to trace.

As for CPT itself, briefly said, when sending two
crossed lasers on a sodium vapor with spatially variable
magnetic field, conditions of extinction of the sodium fluo-
rescence were seen macroscopically. The three states in a
typical CPT experiment form a so-called “�” system. The
main signature is the disappearance of the absorption
(and thus the luminescence) from a laser pumping one
“leg” of the �, when a second laser is switched on with the
proper strength and tuned around the other leg transi-
tion. The most straightforward explanations exploit the
“dressed state” picture, whereby under the influence of
the intense laser fields, hybrid atom–light states should

be employed, as they are known in Rabi oscillations
theory of a two-level system. These states split apart from
the bare states, so that when one pumps apparently a
single leg, what is actually prepared is an atom in a co-
herent superposition of two atom-field states. If, due to
the role of all recombinations not hitherto discussed, all
the atomic population is eventually transferred and shel-
tered in an antisymmetric dressed-atom–light configura-
tion for which spontaneous or stimulated decays are for-
bidden, a macroscopic “dark” appearance results. The
characteristic “peak in the dip” feature of CPT modified
absorption can be found by a standard search from the
above guidelines in dozens of related recent papers, but it
is beyond our scope to bridge more precisely our approach
with these flourishing recent developments.

The general framework and usefulness of the rotating
wave approximation to describe multilevel atomic sys-
tems coupled by laser fields has been addressed, among
others by [3,10]. The description of the slow time evolu-
tion of the diagonal part of the density matrix is the main
result that carries a similarity with coupled-mode theory
in the domain of waveguides etc. [11–13].

Arimondo [9] further explains the application of the
CPT to amplification without inversion, adiabatic trans-
fer, and velocity-selective CPT for atom cooling. The work
of Harris and Imamoglu [14] and Harris [15] has further
popularized a particular “variant,” the regime of electro-
magnetically induced transparency or EIT. In generic
CPT, there is a need to have two large laser amplitudes,
translating into two nonzero Rabi frequencies, so that the
dressed states have a particular coupling canceling ab-
sorption of one leg. In EIT, bare atom states are dressed
by a single laser in such a way that absorption is canceled
even for a weak “probe” field of the second laser, providing
a kind of linear response, and justifying the name EIT for
this variant [16]. This does not preclude the existence of
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an advantageous nonlinear regime based on these EIT
conditions [17]. Both nonlinearities and EIT are related to
successful ways of strikingly slowing down light, the com-
mon point being the strong effect of EIT on the refractive
index dispersion [9,18]. We leave these issues aside be-
cause the concept of dark states has not been so much fa-
vored along this wide branch of activity. On the contrary,
the domain of exciton physics has been well penetrated by
this terminology. References [19,20] represent two ex-
amples among other of late 1990s work. Dicke states [21],
which have been key to theorizing superradiance [22], are
welcome in exciton physics all the more because excitons
have readily been a natural vehicle to enhance superradi-
ance or radiative phenomena in general. In this commu-
nication, a paper on excitons in microcavities [23] (so-
called cavity polaritons [24,25]), subjected to
inhomogeneous broadening, will serve as our initial basis
to address the generality of dark states.

Also connected to similar ideas is the use, in molecular
physics, of dark states to address coupling from a poten-
tial surface of an excited state to the vibronic manifold of
a lower lying potential surface, nearly a thermodynamic
“bath.” Hamiltonians similar to those interesting us [23]
are, thus, found in [26,27] in the late 1980s. The same
partly holds for [28] on Rydberg atoms with locally struc-
tured energy landscapes. More recently, related contribu-
tions in highly excited collisional effects were also re-
ported [29–31].

Finally, for the sake of completeness, dark states may
be not directly relevant to our present work or even mis-
leading: the dark state terminology often denotes a lumi-
nescent material irreversible degradation, a case that we
discard here. Another use arises from the fundamental
description of light–matter interaction, whereby “dark
eigenstates” are those of the Hamiltonian before an elec-
tromagnetic field term in some gauge is included [32],
e.g., p2 instead of �p−qA�2. Nor does it directly concern us
here. We close this “semantic” review with Table 1 which
summarizes the above uses.

Let us now turn to the reasons for our contribution,
which is the increased use of the dark state or dark mode
terminology in the area of waveguides, nanophotonics,
photonic crystals, and plasmonics [33–40]. For man-made
physical objects such as waveguides instead of atoms, we
have to consider modes localized in a specific dielectric (or
metallodieletric) structure. Without perturbation (e.g.,
without periodicity or cavity–waveguide interaction), the
sets of eigenmodes would merely suffer from dissipative
incoherent losses involving non-Hermitian behavior
(quasi-normal modes), but no coupling. To endow some de-
sired optical device function, modes are generically forced
to interact through local or periodic perturbations, an in-
teraction that is visually rendered by the typical associ-
ated anticrossing patterns in the dispersion. In this con-
text, dark modes denote modes whose interaction is
weaker than “expected.” This expectation may be seen to
some extent as an “educated guess” when many modes
are involved.

Consider a system that has N=Np+Nq modes (states)
that belong to two families �NF=2�. In generic cases anti-
crossing patterns are described as a function of detuning
as an order parameter; in periodic cases a wave vector k

additionally labels dispersion branches; for a given k, the
N branches correspond to N states. Here, there are Np

modes in family 1, and Nq in family 2. All Np modes are
coupled to potentially all Nq modes, but the main assump-
tion is that the Np modes and Nq modes do not couple
among themselves, they are “eigenmodes among them-
selves” (also called “prediagonalized” Hamiltonian, we hy-
pothesize a relation with the invariance subsets of [2]).
They can also be thought of as two degenerate subsets of
modes, with orthogonality rules inside each subset, plus a
variable degree of degeneracy lifting, stemming from in-
homogeneous broadening, for example. We will show in
Section 2 that this situation will produce Nb “bright
modes” and Nd=N−Nb dark modes, namely, Nb=2 and
Nd=N−2. We then discuss heuristic explanations for this
simple result: we provide more insight of the system re-
sponse in Section 3, based on an analysis of a secular
equation in a simple known case [23,27]. We then exam-
ine in Section 4 the dispersion relations with two families,
and start by the most basic cases �Np=1�, before going to
a more general case �Np�1�. Section 5 generalize the re-
sults to more than two families of modes, namely, NF

families, and proposes that Nb=NF and Nd=N−NF are
the number of bright and dark states in this case. The
natural classification emerging from this view could help
in labeling the several kinds of dark modes systems en-
countered in the growing literature on the topic. We fi-
nally examine the relationship with slow light of passive
linear nature (Section 6), when multimode interactions
are met, before concluding (Section 7).

2. EXAMPLES, ANALOGIES AND CAVEATS
FOR DARK MODES

For example, in our system that has N=Np+Nq modes–
states, indices p (modes in family 1) and q (modes in fam-
ily 2) may refer to forward and backward modes [41], or to
backward and quasi-localized modes such as coupled reso-
nator optical waveguide (CROW) modes [34–37]. Families
p and q may also be photon modes and atom–exciton–
polaron states (among many others, see [19]), often with
negligible dispersion, interacting together. We anticipate
that such situations may arise as well in the context of
metamaterials since among them the most striking ones,
the so-called negative index materials, have internal de-
grees of freedom that are crucial for their electromagnetic
behavior.

As for the bright–dark modes, they refer to the fact that
most of a given �pj ,qk� interaction, i.e., a coupling that
would produce the second state if excited by the first in
isolation, will disappear when the whole bunch of coher-
ent interactions is present—in atom physics, nonlinear ef-
fects correspond to this case: light→coherent matter
polarization→coherent light, notably the so-called �

three-level situation. Hence in atom physics a dark state
means no absorption–no luminescence instead of an ex-
pected bright transition for the isolated �pj ,qk� case. In
the middle of an absorption peak, a dip with allowed
transmission may occur because one then excites a self-
sustained oscillation frequency of the “loaded” system.

Note that the analogy with optoelectronics and wave-
grating interaction needs some care: a reflection event in
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a standard distributed periodic dielectric structure [such
as distributed Bragg reflector (DBR) mirrors and distrib-
uted feedback (DFB) diodes] is actually a coupling. And
now, a paradox creeps in if we consider that the absence of
such a coupling—the situation in the transmission win-
dow of a DBR—represents a dark case (all reflective in-
terfaces do not give a coherent response); conversely a
bright case arises in the reflective stop band, when trans-
mission vanishes and interaction is effective. We hope

that on further reading the significance of these remarks
will be clear and helpful.

An extra difficulty in the dark–bright distinction is to
appreciate which are the “canonical” ways to excite the
system, and which are not canonical. When a grating
written along a guiding structure couples an entrance
mode to an internal mode not detected at a standard exit
[42], it is not clear, depending on the configuration,
whether reflection is bright and transmission dark or the

Table 1. Uses of the Dark State Terminology: Domain, Relevant References, Comment

Domaina References Commentsb

Coherent population trapping [1–10] Initially for archetypal systems such as � and V

three-levels configurations, with two strong laser
beams.

Dark states are those dressed states formed
through transitions that, in the presence of the
second beam, do not absorb the first beam; bright
states are the remaining radiating transitions.

Electromagnetically induced transparency [14–18] Derived from CPT but one beam has low power
and behaves as a linear probe; can be seen as
nonlinear resonant index changes. Here, dark
states are also dressed states that do not absorb
the incoming energy whereas their constituent
states would, in the low power linear regime.
Bright states are the other dressed states.

Superradiance, Dicke states [21,22] Coherent interaction of, e.g., emitting two-level
atoms. Bright states are the fully symmetrical
states of an ensemble of identical atoms (e.g.,
two-level atoms, not all in the same state). Other
linear combinations give rise to various degrees of
radiant states. There are notably subradiant
states. The less radiant are termed dark states,
notably in quantum optics and quest for best
possible qubits.

Excitons [19,20,23] In [23] a microcavity mode couples to nearly
degenerate exciton subsets, only two bright modes
arise, the rest are dark.

Transition of complex excited state [26–31] Between molecular energy surfaces in the Franck–
Condon picture, or in highly excited molecules,
[28] is specific of Rydberg atom.

Plasmonics [33,38–40] Plasmonic modes poorly coupled to the outside
are called dark.

Waveguide dark mode [34,35] Combination of waveguide modes does not
interact with cavity and can be termed dark, for
example.

Domains not relevant

Dark Hamiltonian [32] Dark states refer to Hamiltonian of particles
without interaction with light, hence a kinetic
term p2 and not �p−qA�2.

Degraded molecules (no reference given) Generally chemically reacted, not directly
relevant here. Some cases may, however,
correspond to the transition of complex excited
states, but the material aspect dominates over its
internal level couplings

a
The last two entries are considered as not relevant in our discussion.

b
A short definition of dark and bright states is given in most entries.
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contrary. Some internal modes in coupled waveguide and
cavities, or in photonic bandgap materials, are notori-
ously difficult to linearly excite, often for symmetry rea-
sons (spontaneous emission of embedded species can help,
then, see [43]). Similarly, in atom physics, the coherent
excitation of several atoms with nontrivial phases is con-
sidered as delicate in most experiments, as is discussed at
length in the huge body of ongoing quantum information
studies. The issue that we first want to deepen is there-
fore “why does it happen that some eigenmodes do not see
the strong interaction of their isolated constituents (un-
coupled modes) when two families of modes interact?”

3. MATRIX FORM AND TRENDS FROM THE
SECULAR EQUATION

The generic matrix describing the interaction has the
form

M = � P Gpq

Gqp Q
�, P = �

E1 0

�

0 En

� ,

Q = �
Ep+1 0

�

0 Ep+q

� . �1�

The coupling terms are ad hoc in the “full” G matrices.
It is fully analogous to a Hamiltonian, but in the case of
optical modes, complex diagonal terms may be introduced
to represent power losses and leakages. In coupled-mode
theory (CMT) [11–13,44] the diagonal terms would be
propagation constants of uncoupled modes, and G would
correspond to the coupling constants usually denoted �

and typically induced by a dielectric constant periodic
modulation. As a reminder, the rotating-wave approxima-
tion for atoms employs similar Hamiltonians, with non-
Hermitian terms related to loss of population [3].

A good basis for our goal is [23], a paper on vacuum
Rabi splitting in microcavities with excitons, considering
the coupling of a single cavity mode (p=1 for us) at Eo

with a set of inhomogeneous exciton–atom modes
�E1 , . . . ,Eq�, hence N=1+Nq (=1+n in their notations),
and Gpq= 	g1 , . . . ,gq
 is a line vector, with all gk elements
bounded to some value g (as mentioned, [26,27] studied
the same matrix). Their main result states that, for cou-
pling strengths larger than the typical separation of the
inhomogeneous set �E1 , . . . ,Eq�, Nb=2 bright states capi-
talize most of the coupling. This results in the so-called

Rabi splitting being E±=Eo± ��gk
2�1/2 (becoming g�q if for

k=1. . . j, gk=g and �
1). The Nd=N−2=Nq−1 other
states are affected only to second order in g, depending on
the exact separations among the �E1 , . . . ,Eq� set. The au-
thors of [23] extend their study to imaginary parts of the
energies, to grasp the expected absorption mechanisms,
thus confirming the “darkness” of the N−2 states, and,
further, the robustness of the linewidth of vacuum Rabi
split lines against appreciable inhomogeneity of the exci-
tonic (electronic) part of the system under study.

Some insight may be gained from the determinant
Det�M−�1�, since it appears at the denominator of all lin-

ear excitation problems (and of course its zeroes are the
eigenvalues). Reference [23] shows that within a nonzero
factor, the secular equation Det�M−�1�=0 simply reads

S��� = �
k=1

q

gk
2�Ek − ��−1 − �Eo − �� = 0. �2�

The plot of Fig. 1 illustrates the graphical solution of
S���=0: the q homographic functions gk

2�Ek−��−1 have
their singularities clustered around ��Eq��, and cross zero
once between each of them (they are nondegenerate).
Conversely, far from the singularities, their asymptotic
branches add up constructively. The crossings with the
solid line So���=Eo−� (case Eo���Eq��) lie in majority
close to the central zeroes, in which case original modes
contribute to the linear response with a combination of
phase retardation and advance [�Ek−��−1 have variable
signs], that is, a set of dark modes form, which are inter-
calated between original ones [27] (and arbitrarily clus-
tered if the initial states are sufficiently close to perfect
degeneracy). Conversely, the two bright modes correspond
to the two intersections on the sides. There, the situation
for all gk

2�Ek−��−1 implies, for a given intersection, a
single sign of all responses, hence a collective coupling.
The situation for a typical detuned case (dashed-dotted

line, �Eo− ��Eq���� �g�q) shows that the coupling effects
are comparatively weak, the eigenvalues are now close to
the uncoupled values, with more perturbative shifts.

4. DISPERSION FOR TWO FAMILIES
„NF=2…

This first step in understanding the elementary diagonal-
ization now obviously leads to the situation of Figs. 2(a)
and 2(b), if some spatial dispersion parametrizes the two
families (other parameters such as static fields for atomic
spectra splitting may be devised). In the case of Fig. 2(a)
Eo is nondispersive while the �Eq� represent forward
modes with some common group index ng,k=ng. It follows

Fig. 1. (Color online) Graphical solution of Eq. (2). The contrib-
uting homographic functions are thinner continuous dark gray
lines, and each represents the response of a single oscillator. So-
lutions associated to bright and dark states are shown for a small
Eo value (dashed line) and for a more detuned value (dashed-
dotted line).
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from the above that two bright modes describe a large an-
ticrossing pair of branch, while the Nd=Nq−1=N−2 re-
maining branches manage to go through the interaction
region with only a faint slowdown, on a scale dictated by
the interplay of the local interbranch spacing Ek−Ek±1

and the scale of the coupling region (as can be inferred
also from Fig. 1). Figure 2(b) is just the same case, but
with the Eo branch tilted (backward mode), thus resem-
bling [35]. The single dark mode in [35] is the one not af-
fected by the anticrossing, as before.

At this stage, a further precaution regards the analogy
between CMT and Hamiltonians. The usual way to em-
ploy CMT in media without gain makes use of the fre-
quency as the control parameter in order to find the
propagation constants as eigenvalues. The matrix of in-
terest is not Hermitian, but symmetric. There is a kind of
duality, however, if the wave vector is formally considered
as the control parameter, a view that circumvents the
change of nature of the eigenvalues in the gaps that oc-
curs in standard CMT.

Along another line, before proceeding, we note that the
dark mode offers easy propagation, and no interaction,
thanks to the “loading” of uncoupled modes with the right
phase and amplitude combination. Whether such a com-
bination is easy or difficult to reach from external excita-
tion is a generic coupling issue, generally a demanding
feat for isolated atoms, maybe a less demanding one for
optical beams. We would like now to remark that in a
DBR, in relation with the role of loading internal modes
on the overall response, the presence of the transmission
window in such a coherent treatment should be seen as
the “nontrivial” feature, since in isolation, each period re-
flects a fair amount. It is only collectively that the inter-
nal degrees of freedom (local forward and backward
waves) form a Bloch mode allowing nearly perfect trans-
mission. With this in mind, it is the stopband that genu-
inely hits the bright mode of the DBR, because the inter-
action is perfectly in phase for all reflections.

In Fig. 3, we generalize the above results to two mul-
tiple families (i.e., Np�1 now). In Figs. 3(a) and 3(b) we
scan cases analogous to those of Figs. 2(a) and 2(b). The
added complexity of the first family does not change much
the picture, there are still Np=2 bright modes in our case.
In Figs. 3(c) and 3(d) we zoom on the interaction among
the dark states. The intricate net of modes in the center

may now exhibit some degree of slowness on the whole
scale covered by the uncoupled branches. This scale is
much larger than the scale of a single anticrossing. Un-
fortunately, we are not aware of a case offering an ana-
lytical solution or a simple secular equation in such a
case. However, the linear response for the excitation at a
particular frequency or wave vector may now become
quite complex, with as many sharp features—analogous
to “induced transparency” windows—as anticrossings.

5. GENERAL CASE, DISPERSION FOR NF�2
FAMILIES

Furthermore, we can still generalize (without mathemati-
cal demonstration) and reach a classification: the general
case is to consider F families of modes having no internal
interaction, but only external ones. The G matrices are
then to be defined among each of the NF�NF−1� /2 family
pairs. In the above, NF=2, and only one kind of G matrix
was to be defined. In the general case, we can infer that
there are F bright states and Nd=N−NF dark states. In
[34], NF=3 and N=5 states are present (two waveguides
with degenerate forward and backward modes, plus a
nondegenerate cavity or CROW mode), hence Nd=5−3
=2 dark states are formed. We propose to term this “an
N−NF classification,” in order to compare the numerous
emerging proposals with a basic synthetic tool. NF=3 can
often be met with bidirectional waveguides and more lo-
calized modes, as discussed early enough [45], and re-
vived in many recent studies.

It remains to be proven that imaginary parts of the ei-
genvalues, ��, generally follow the same trends as in [23]
(and also of the illustration in [19] for instance), but an
examination of the reasons for the association of strong
splitting and strong absorption (“brightest” states) ap-
pears from elementary algebra from Eq. (2): peaks in ��

also tend to follow the algebraic sum of the strength of ho-
mographic functions. However, details of coupling to the
bath allowing such a relaxation would be needed for more
firm physical conclusions.

Fig. 2. (Color online) Dispersion relation for one mode coupled
to a manifold of �q� modes; (a) the single mode �p=1� is disper-
sionless; (b) the single mode �p=1� has backward dispersion; The
ellipse-shaped line is the sum of real and imaginary wave vectors
as is classical in the CMT approach.

Fig. 3. (Color online) Dispersion relation for a general case be-
tween �p� and �q� modes; (a) �p� modes are dispersionless; (b) �p�
modes have backward dispersion; (c) and (d) are magnifications
of the indicated regions of (a) and (b) showing the local advent of
slow light flatbands.
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6. RELATION WITH SLOW MODES IN A
MULTIMODE CASE

As a last point, the case of Figs. 3(b) and 3(d) is nothing
but contradirectional coupling by a grating of period a in
a multimode waveguide at the Brillouin zone boundary
[41,46]. In this precise case of a broad waveguide, the
branches are hyperbolic and at the Brillouin zone edge
�k=� /a�, they are locally linear and equidistant with
some local free spectral range (FSR) [Figs. 4(a) and 4(b)],
leaving the number of useful parameters to two (FSR and
g insofar as N-independent physics is sought).

To link this point to our previous work, we may now
consider what happens for decreasing interactions. Fig-
ures 4(c) and 4(d) show that within the lozenge-shaped re-
gion of darkness, the advent of slow light is maximal for a
critical coupling condition �
g=0.32, just around the
point where two split bright states start to emerge sepa-
rately from the dark ones. We have discussed in [41] the
occurrence of maximally slowed down light for a coupling
constant g
FSR/�=0.318 here, and the advent of bright
modes that take most of the coupling strength beyond this
value. Performing novel optical functions with dark
modes is thus promising in several respects, again with
sufficient care for coupling, boundary conditions, and of
course losses.

7. CONCLUSION

In summary, we have discussed that the interaction of N

modes grouped in NF families gives Nd=N−NF dark
modes and Nb=NF bright modes, whose interaction oc-
curs more collectively than the others. The location of
dark modes in a generic band diagram has been discussed
for NF=2, when two families interact and form two bright
states and N−2 dark states. The significance to related
topics (light–matter interaction, imaginary parts, physics
of eigenmodes in DBR) has also been given and possible
paradoxes or semantic caveats addressed. We believe that
this discussion helps in distinguishing and classifying

among emerging proposals, be it simply by terming the
interaction scheme an “N−NF” scheme; e.g., N−NF
5
−3 in [34]; N−NF
n−1 in [23], etc. Grating-induced back
reflection in a broad multimode waveguide also falls
within the scope of the present description on the optical
side. But because our discussion is generic, we note that it
could also apply to electronic and acoustic dispersion ef-
fects. The analogy of CPT and the coupled-mode theory of
coupled rings is rendered quite visually on the cover of
the IEEE-LEOS December 2008 newsletter and in Fig. 3
of [47].
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